期刊文献+
共找到40,459篇文章
< 1 2 250 >
每页显示 20 50 100
Molecule‑Level Multiscale Design of Nonflammable Gel Polymer Electrolyte to Build Stable SEI/CEI for Lithium Metal Battery
1
作者 Qiqi Sun Zelong Gong +13 位作者 Tao Zhang Jiafeng Li Xianli Zhu Ruixiao Zhu Lingxu Wang Leyuan Ma Xuehui Li Miaofa Yuan Zhiwei Zhang Luyuan Zhang Zhao Qian Longwei Yin Rajeev Ahuja Chengxiang Wang 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期404-423,共20页
The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious int... The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious interfacial instability,which is a big challenge for design and application of nonflammable GPEs.Here,a nonflammable GPE(SGPE)is developed by in situ polymerizing trifluoroethyl methacrylate(TFMA)monomers with flame-retardant triethyl phosphate(TEP)solvents and LiTFSI–LiDFOB dual lithium salts.TEP is strongly anchored to PTFMA matrix via polarity interaction between-P=O and-CH_(2)CF_(3).It reduces free TEP molecules,which obviously mitigates interfacial reactions,and enhances flame-retardant performance of TEP surprisingly.Anchored TEP molecules are also inhibited in solvation of Li^(+),leading to anion-dominated solvation sheath,which creates inorganic-rich solid electrolyte interface/cathode electrolyte interface layers.Such coordination structure changes Li^(+)transport from sluggish vehicular to fast structural transport,raising ionic conductivity to 1.03 mS cm^(-1) and transfer number to 0.41 at 30℃.The Li|SGPE|Li cell presents highly reversible Li stripping/plating performance for over 1000 h at 0.1 mA cm^(−2),and 4.2 V LiCoO_(2)|SGPE|Li battery delivers high average specific capacity>120 mAh g^(−1) over 200 cycles.This study paves a new way to make nonflammable GPE that is compatible with Li metal anode. 展开更多
关键词 Anchoring effect Nonflammable gel electrolyte In situ cross-linked Electrode-electrolyte interface Li metal battery
下载PDF
Activation of adult endogenous neurogenesis by a hyaluronic acid collagen gel containing basic fibroblast growth factor promotes remodeling and functional recovery of the injured cerebral cortex
2
作者 Yan Li Peng Hao +6 位作者 Hongmei Duan Fei Hao Wen Zhao Yudan Gao Zhaoyang Yang Kwok-Fai So Xiaoguang Li 《Neural Regeneration Research》 SCIE CAS 2025年第10期2923-2937,共15页
The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate ne... The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries. 展开更多
关键词 adult endogenous neurogenesis basic fibroblast growth factor-hyaluronic acid collagen gel cortical remodeling functional recovery migration motor cortex injury neural circuits neural stem cells newborn neurons proliferation
下载PDF
Activation of endogenous neurogenesis and angiogenesis by basic fibroblast growth factor-chitosan gel in an adult rat model of ischemic stroke 被引量:6
3
作者 Hongmei Duan Shulun Li +11 位作者 Peng Hao Fei Hao Wen Zhao Yudan Gao Hui Qiao Yiming Gu Yang Lv Xinjie Bao Kin Chiu Kwok-Fai So Zhaoyang Yang Xiaoguang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期409-415,共7页
Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactiv... Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown.In this study,we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats.The gel slowly released basic fibroblast growth factor,which improved the local microenvironment,activated endogenous neural stem/progenitor cells,and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons,while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery.This study revealed the mechanism by which bioactive materials repair ischemic strokes,thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke. 展开更多
关键词 adult endogenous neurogenesis ANGIOGENESIS basic fibroblast growth factor-chitosan gel CHITOSAN functional recovery ischemic stroke neural stem cell newborn neuron
下载PDF
Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable,Safe,and High‑Performance Li‑Ion Batteries 被引量:2
4
作者 Donghwan Ji Jaeyun Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期17-34,共18页
Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery... Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern.Water-based(aqueous)electrolytes have been receiving attention as an alternative to organic electrolytes.However,a narrow electrochemicalstability window,water decomposition,and the consequent low battery operating voltage and energy density hinder the practical use of aqueous electrolytes.Therefore,developing novel aqueous electrolytes for sustainable,safe,high-performance LIBs remains challenging.This Review first commences by summarizing the roles and requirements of electrolytes–separators and then delineates the progression of aqueous electrolytes for LIBs,encompassing aqueous liquid and gel electrolyte development trends along with detailed principles of the electrolytes.These aqueous electrolytes are progressed based on strategies using superconcentrated salts,concentrated diluents,polymer additives,polymer networks,and artificial passivation layers,which are used for suppressing water decomposition and widening the electrochemical stability window of water of the electrolytes.In addition,this Review discusses potential strategies for the implementation of aqueous Li-metal batteries with improved electrolyte–electrode interfaces.A comprehensive understanding of each strategy in the aqueous system will assist in the design of an aqueous electrolyte and the development of sustainable and safe high-performance batteries. 展开更多
关键词 Lithium-ion battery(LIB) Aqueous electrolyte gel electrolyte Electrochemical stability window Li dendrite
下载PDF
Gel-Based Triboelectric Nanogenerators for Flexible Sensing:Principles,Properties,and Applications 被引量:1
5
作者 Peng Lu Xiaofang Liao +7 位作者 Xiaoyao Guo Chenchen Cai Yanhua Liu Mingchao Chi Guoli Du Zhiting Wei Xiangjiang Meng Shuangxi Nie 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期257-303,共47页
The rapid development of the Internet of Things and artificial intelligence technologies has increased the need for wearable,portable,and self-powered flexible sensing devices.Triboelectric nanogenerators(TENGs)based ... The rapid development of the Internet of Things and artificial intelligence technologies has increased the need for wearable,portable,and self-powered flexible sensing devices.Triboelectric nanogenerators(TENGs)based on gel materials(with excellent conductivity,mechanical tunability,environmental adaptability,and biocompatibility)are considered an advanced approach for developing a new generation of flexible sensors.This review comprehensively summarizes the recent advances in gel-based TENGs for flexible sensors,covering their principles,properties,and applications.Based on the development requirements for flexible sensors,the working mechanism of gel-based TENGs and the characteristic advantages of gels are introduced.Design strategies for the performance optimization of hydrogel-,organogel-,and aerogel-based TENGs are systematically summarized.In addition,the applications of gel-based TENGs in human motion sensing,tactile sensing,health monitoring,environmental monitoring,human-machine interaction,and other related fields are summarized.Finally,the challenges of gel-based TENGs for flexible sensing are discussed,and feasible strategies are proposed to guide future research. 展开更多
关键词 Triboelectric nanogenerators gel materials Triboelectric materials Flexible sensing
下载PDF
Effect of sodium starch octenyl succinate-based Pickering emulsion on the physicochemical properties of hairtail myofibrillar protein gel subjected to multiple freeze-thaw cycles 被引量:1
6
作者 Huinan Wang Jiaxin Zhang +3 位作者 Xinran Liu Jinxiang Wang Xuepeng Li Jianrong Li 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期1018-1028,共11页
A Pickering emulsion based on sodium starch octenyl succinate(SSOS)was prepared and its effects on the physicochemical properties of hairtail myofibrillar protein gels(MPGs)subjected to multiple freeze-thaw(F-T)cycles... A Pickering emulsion based on sodium starch octenyl succinate(SSOS)was prepared and its effects on the physicochemical properties of hairtail myofibrillar protein gels(MPGs)subjected to multiple freeze-thaw(F-T)cycles were investigated.The whiteness,water-holding capacity,storage modulus(G')and texture properties of the MPGs were significantly improved by adding 1%-2%Pickering emulsion(P<0.05).Meanwhile,Raman spectral analysis demonstrated that Pickering emulsion promoted the transformation of secondary structure,enhanced hydrogen bonds and hydrophobic interactions,and promoted the transition of disulfide bond conformation from g-g-g to g-g-t and t-g-t.At an emulsion concentration of 2%,theα-helix content decreased by 10.37%,while theβ-sheet content increased by 7.94%,compared to the control.After F-T cycles,the structure of the MPGs was destroyed,with an increase in hardness and a decrease in whiteness and water-holding capacity,however,the quality degradation of MPGs was reduced with 1%-2%Pickering emulsion.These findings demonstrated that SSOS-Pickering emulsions,as potential fat substitutes,can enhance the gel properties and the F-T stability of MPGs. 展开更多
关键词 Pickering emulsion Myofibrillar protein gel properties Freeze-thaw stability Intermolecular interactions
下载PDF
Bifunctional TiO_(2-x)nanofibers enhanced gel polymer electrolyte for high performance lithium metal batteries 被引量:1
7
作者 Yixin Wu Zhen Chen +6 位作者 Yang Wang Yu Li Chunxing Zhang Yihui Zhu Ziyu Yue Xin Liu Minghua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期437-448,I0011,共13页
Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(L... Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(LMBs).Despite this,the application of GPEs is still hindered by inadequate ionic conductivity,low Li^(+)transference number,and subpar physicochemical properties.Herein,Ti O_(2-x)nanofibers(NF)with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs.Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of Ti O_(2-x)NF accelerate the dissociation of Li PF_6,promote the rapid transfer of free Li^(+),and influence the formation of Li F-enriched solid electrolyte interphase.Consequently,the composite GPEs demonstrate enhanced ionic conductivity(1.90m S cm^(-1)at room temperature),higher lithium-ion transference number(0.70),wider electrochemical stability window(5.50 V),superior mechanical strength,excellent thermal stability(210℃),and improved compatibility with lithium,resulting in superior cycling stability and rate performance in both Li||Li,Li||Li Fe PO_(4),and Li||Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2)cells.Overall,the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated,thus,it is anticipated to shed new light on designing high-performance GPEs LMBs. 展开更多
关键词 Nanofibers fillers Oxygen vacancies gel polymer electrolytes Lithium metal batteries
下载PDF
Metal–Organic Gel Leading to Customized Magnetic‑Coupling Engineering in Carbon Aerogels for Excellent Radar Stealth and Thermal Insulation Performances 被引量:1
8
作者 Xin Li Ruizhe Hu +7 位作者 Zhiqiang Xiong Dan Wang Zhixia Zhang Chongbo Liu Xiaojun Zeng Dezhi Chen Renchao Che Xuliang Nie 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期36-52,共17页
Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic h... Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings. 展开更多
关键词 Metal-organic gels Heterometallic magnetic coupling Radar stealth Thermal insulation Computer simulation technology
下载PDF
Alleviation of the plastic deformation of gel ink under strong stress through an esterification of xanthan gum reinforcing its double helix structure
9
作者 Xiaokun Li Mingyi Wang +5 位作者 Zilu Liu Song Yang Na Xu Wei Zhao Gan Luo Shoujun Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期49-57,共9页
As a natural organic polymer,xanthan gum(XG)can alleviate the plastic deformation of gel ink under strong stress and realize the reasonable regulation of the rheological properties of gel ink.However,as the double-hel... As a natural organic polymer,xanthan gum(XG)can alleviate the plastic deformation of gel ink under strong stress and realize the reasonable regulation of the rheological properties of gel ink.However,as the double-helix structure connected by hydrogen bonds cannot resist the mechanical environment of strong stress,XG shows poor shear resistance.In this study,a polymer gel with interpenetrating polymer network structure was prepared by esterifying XG,taking polystyrene maleic anhydride(SMA)as the modifier.In addition to retaining the excellent rheological properties of XG,the generated polymer gel also exhibited high shear resistance.The optimal addition amount of the esterification reaction modifier was determined as mXG:mSMA=5:3 according to the gel ink standard.With this amount,the viscosity of the modified xanthan gum(SXG)gel increased to 1578.8 mPa·s and 100.7 mPa·s at shear rates of 4 s1 and 383 s1,respectively,and the shear resistance increased more than 2 times compared to the unmodified one.It is because of the ester bond formed by esterification that the reaction strengthens the interaction between molecular segments,enabling the new gel to resist to strong mechanical stress.The new polymer gel studied in this paper and the proposed mechanism of action provide new insights for the development of high-end gel ink and also provide theoretical support for the study of rheological properties of non-Newtonian fluids. 展开更多
关键词 gel ink Xanthan gum ESTERIFICATION Simulation Shear resistance gelS
下载PDF
A Gel-Based Solidification Technology for Large Fracture Plugging
10
作者 Kunjian Wang Ruibin He +3 位作者 Qianhua Liao Kun Xu Wen Wang Kan Chen 《Fluid Dynamics & Materials Processing》 EI 2024年第3期563-578,共16页
Fault fractures usually have large openings and considerable extension. Accordingly, cross-linked gel materials aregenerally considered more suitable plugging agents than water-based gels because the latter often unde... Fault fractures usually have large openings and considerable extension. Accordingly, cross-linked gel materials aregenerally considered more suitable plugging agents than water-based gels because the latter often undergo contaminationvia formation water, which prevents them from being effective over long times. Hence, in this study, aset of oil-based composite gels based on waste grease and epoxy resin has been developed. These materials havebeen observed to possess high compressive strength and resistance to the aforementioned contamination, therebyleading to notable increase in plugging success rate. The compressive strength, thickening time, and resistance toformation water pollution of these gels have been evaluated indoors. The results show that the compressivestrength of the gel can reach 11 MPa;additionally, the related gelation time can be controlled to be more than3 h, thereby providing a safe construction time;Invasion of formation water has a small effect on the gel strengthand does not shorten the thickening time. All considered performance indicators of the oil-based gel confirm itssuitability as a plugging agent for fault fractures. 展开更多
关键词 Drilling loss fault fracture oil-based gel compressive strength gel plugging
下载PDF
A novel profile modification HPF-Co gel satisfied with fractured low permeability reservoirs in high temperature and high salinity
11
作者 Ya-Kai Li Ji-Rui Hou +6 位作者 Wei-Peng Wu Ming Qu Tuo Liang Wei-Xin Zhong Yu-Chen Wen Hai-Tong Sun Yi-Nuo Pan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期683-693,共11页
Conformance control and water plugging are a widely used EOR method in mature oilfields.However,majority of conformance control and water plugging agents are unavoidable dehydrated situation in high-temperature and hi... Conformance control and water plugging are a widely used EOR method in mature oilfields.However,majority of conformance control and water plugging agents are unavoidable dehydrated situation in high-temperature and high-salinity low permeability reservoirs.Consequently,a novel conformance control system HPF-Co gel,based on high-temperature stabilizer(CoCl_(2)·H_(2)O,CCH)is developed.The HPF-Co bulk gel has better performances with high temperature(120℃)and high salinity(1×10^(5)mg/L).According to Sydansk coding system,the gel strength of HPF-Co with CCH is increased to code G.The dehydration rate of HPF-Co gel is 32.0%after aging for 150 d at 120℃,showing excellent thermal stability.The rheological properties of HPF gel and HPF-Co gel are also studied.The results show that the storage modulus(G′)of HPF-Co gel is always greater than that of HPF gel.The effect of CCH on the microstructure of the gel is studied.The results show that the HPF-Co gel with CCH has a denser gel network,and the diameter of the three-dimensional network skeleton is 1.5-3.5μm.After 90 d of aging,HPF-Co gel still has a good three-dimensional structure.Infrared spectroscopy results show that CCH forms coordination bonds with N and O atoms in the gel amide group,which can suppress the vibration of cross-linked sites and improve the stability at high temperature.Fractured core plugging test determines the optimized polymer gel injection strategy and injection velocity with HPF-Co bulk gel system,plugging rate exceeding 98%.Moreover,the results of subsequent waterflooding recovery can be improved by 17%. 展开更多
关键词 Low permeability reservoir High-temperature resistant gel Complexation reaction Polymer gel injection strategy Plugging rate Enhanced oil recovery
下载PDF
Gypsum-based Silica Gel Humidity-controlling Composite Materials:Preparation,Characterization,and Performance
12
作者 李曦 冉茂宇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期337-344,共8页
Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based compos... Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based composites were compared with adding different silica gel particle size and proportion.The morphological characteristics,the isothermal equilibrium moisture content curve,moisture absorption and desorption rate,moisture absorption and desorption stability,and humidity-conditioning performance were tested and analyzed.The experimental results show that,compared with pure-gypsum,the surface structure of the gypsum-based composites is relatively loose,the quantity,density and aperture of the pores in the structure increase.The absorption and desorption capacity increase along with the increase of silica gel particle size and silica gel proportion.When 3 mm silica gel particle size is added with a mass ratio of 40%,the maximum equilibrium moisture content of humidity-controlling composites is 0.161 g/g at 98% relative humidity(RH),3.22 times that of pure-gypsum.The moisture absorption and desorption rates are increased,the equilibrium moisture absorption and desorption rates are 2.68 times and 1.61 times that of pure-gypsum at 58.5% RH,respectively.The gypsum-based composites have a good stability,which has better timely response to dynamic humidity changes and can effectively regulate indoor humidity under natural conditions. 展开更多
关键词 humidity controlling composite materials GYPSUM silica gel
下载PDF
Engineering graphene oxide and hydrogel coatings on fabrics for smart Janus textiles with superior thermal regulation
13
作者 Weidong Wu Yukun Zeng +2 位作者 Chen Zhou Xin Zhou Shengyang Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第10期1-12,共12页
Fabric multifunctionality offers resource savings and enhanced human comfort.This study innovatively integrates cooling,heating,and antimicrobial properties within a Janus fabric,surpassing previous research focused s... Fabric multifunctionality offers resource savings and enhanced human comfort.This study innovatively integrates cooling,heating,and antimicrobial properties within a Janus fabric,surpassing previous research focused solely on cooling or heating.Different effects are achieved by applying distinct coatings to each side of the fabric.One graphene oxide(GO)coating exhibits exceptional light-to-heat conversion,absorbing and transforming light energy into heat,thereby elevating fabric temperature by 15.4℃,22.7℃,and 43.7℃ under 0.2,0.5,and 1 sun irradiation,respectively.Conversely,a hydrogel coating on one side absorbs water,facilitating heat dissipation through evaporation upon light exposure,reducing fabric temperature by 5.9℃,8.4℃,and 7.1℃ in 0.2,0.5,and 1 sun irradiation,respectively.Moreover,both sides of Janus fabric exhibit potent antimicrobial properties,ensuring fabric hygiene.This work presents a feasible solution to address crucial challenges in fabric thermal regulation,providing a smart approach for intelligent adjustment of body comfort in both summer and winter.By integrating heating and cooling capabilities along with antimicrobial properties,this study promotes sustainable development in textile techniques. 展开更多
关键词 Janus fabric Heat transfer Membranes gelS EVAPORATION Bacterial resistance
下载PDF
Compliant Iontronic Triboelectric Gels with Phase-Locked Structure Enabled by Competitive Hydrogen Bonding
14
作者 Guoli Du Yuzheng Shao +11 位作者 Bin Luo Tao Liu Jiamin Zhao Ying Qin Jinlong Wang Song Zhang Mingchao Chi Cong Gao Yanhua Liu Chenchen Cai Shuangfei Wang Shuangxi Nie 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期180-194,共15页
Rapid advancements in flexible electronics technology propel soft tactile sensing devices toward high-level biointegration,even attaining tactile perception capabilities surpassing human skin.However,the inherent mech... Rapid advancements in flexible electronics technology propel soft tactile sensing devices toward high-level biointegration,even attaining tactile perception capabilities surpassing human skin.However,the inherent mechanical mismatch resulting from deficient biomimetic mechanical properties of sensing materials poses a challenge to the application of wearable tactile sensing devices in human-machine interaction.Inspired by the innate biphasic structure of human subcutaneous tissue,this study discloses a skin-compliant wearable iontronic triboelectric gel via phase separation induced by competitive hydrogen bonding.Solvent-nonsolvent interactions are used to construct competitive hydrogen bonding systems to trigger phase separation,and the resulting soft-hard alternating phase-locked structure confers the iontronic triboelectric gel with Young’s modulus(6.8-281.9 kPa)and high tensile properties(880%)compatible with human skin.The abundance of reactive hydroxyl groups gives the gel excellent tribopositive and self-adhesive properties(peel strength>70 N m^(−1)).The self-powered tactile sensing skin based on this gel maintains favorable interface and mechanical stability with the working object,which greatly ensures the high fidelity and reliability of soft tactile sensing signals.This strategy,enabling skin-compliant design and broad dynamic tunability of the mechanical properties of sensing materials,presents a universal platform for broad applications from soft robots to wearable electronics. 展开更多
关键词 Triboelectric nanogenerator CELLULOSE Triboelectric gel Self-powered sensor Energy harvesting
下载PDF
Bacterial Cellulose/Zwitterionic Dual-network Porous Gel Polymer Electrolytes with High Ionic Conductivity
15
作者 侯朝霞 WANG Haoran QU Chenying 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期596-605,共10页
Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with... Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with high ionic conductivity.The dual network structure BC/P(AM-co-SBMA)gels were formed by a simple one-step polymerization method.The results show that ionic conductivity of BC/P(AM-co-SBMA)GPEs at the room temperature are 3.2×10^(-2) S/cm@1 M H_(2)SO_(4),4.5×10^(-2) S/cm@4 M KOH,and 3.6×10^(-2) S/cm@1 M NaCl,respectively.Using active carbon(AC)as the electrodes,BC/P(AM-co-SBMA)GPEs as both separator and electrolyte matrix,and 4 M KOH as the electrolyte,a symmetric solid supercapacitors(SSC)(AC-GPE-KOH)was assembled and testified.The specific capacitance of AC electrode is 173 F/g and remains 95.0%of the initial value after 5000 cycles and 86.2%after 10,000 cycles. 展开更多
关键词 bacterial cellulose ZWITTERION gel polymer electrolytes ionic conductivity dual-network structure
下载PDF
In Situ Polymer Gel Electrolyte in Boosting Scalable Fibre Lithium Battery Applications
16
作者 Jie Luo Qichong Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期170-173,共4页
The poor interfacial stability not only deteriorates fibre lithium-ion batteries(FLBs)performance but also impacts their scalable applications.To efficiently address these challenges,Prof.Huisheng Peng team proposed a... The poor interfacial stability not only deteriorates fibre lithium-ion batteries(FLBs)performance but also impacts their scalable applications.To efficiently address these challenges,Prof.Huisheng Peng team proposed a generalized channel structures strategy with optimized in situ polymerization technology in their recent study.The resultant FLBs can be woven into different-sized powering textiles,providing a high energy density output of 128 Wh kg^(-1) and simultaneously demonstrating good durability even under harsh conditions.Such a promising strategy expands the horizon in developing FLB with particular polymer gel electrolytes,and significantly ever-deepening understanding of the scaled wearable energy textile system toward a sustainable future. 展开更多
关键词 High-performance fibre lithium batteries gel electrolytes Channel structures Stable interface Scalable application
下载PDF
Supramolecular polymer-based gel fracturing fluid with a double network applied in ultra-deep hydraulic fracturing
17
作者 Yong-Ping Huang Yong Hu +5 位作者 Chang-Long Liu Yi-Ning Wu Chen-Wei Zou Li-Yuan Zhang Ming-Wei Zhao Cai-Li Dai 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1875-1888,共14页
A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores... A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores.High viscosity/viscoelasticity of the fracturing fluid was required to maintain excellent proppant suspension properties before gelling.Taking into account both the cost and the potential damage to reservoirs,polymers with lower concentrations and molecular weights are generally preferred.In this work,the supramolecular action was integrated into the polymer,resulting in significant increases in the viscosity and viscoelasticity of the synthesized supramolecular polymer system.The double network gel,which is formed by the combination of the supramolecular polymer system and a small quantity of Zr-crosslinker,effectively resists temperature while minimizing permeability damage to the reservoir.The results indicate that the supramolecular polymer system with a molecular weight of(268—380)×10^(4)g/mol can achieve the same viscosity and viscoelasticity at 0.4 wt%due to the supramolecular interaction between polymers,compared to the 0.6 wt%traditional polymer(hydrolyzed polyacrylamide,molecular weight of 1078×10^(4)g/mol).The supramolecular polymer system possessed excellent proppant suspension properties with a 0.55 cm/min sedimentation rate at 0.4 wt%,whereas the0.6 wt%traditional polymer had a rate of 0.57 cm/min.In comparison to the traditional gel with a Zrcrosslinker concentration of 0.6 wt%and an elastic modulus of 7.77 Pa,the double network gel with a higher elastic modulus(9.00 Pa)could be formed only at 0.1 wt%Zr-crosslinker,which greatly reduced the amount of residue of the fluid after gel-breaking.The viscosity of the double network gel was66 m Pa s after 2 h shearing,whereas the traditional gel only reached 27 m Pa s. 展开更多
关键词 Ultra-deep reservoir gel fracturing fluid Double network Supramolecular polymer system Proppant suspension property
下载PDF
Study of deep transportation and plugging performance of deformable gel particles in porous media
18
作者 Wen-Jing Zhao Jing Wang +1 位作者 Zhong-Yang Qi Hui-Qing Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期962-973,共12页
Deformable gel particles(DGPs) possess the capability of deep profile control and flooding. However, the deep migration behavior and plugging mechanism along their path remain unclear. Breakage, an inevitable phenomen... Deformable gel particles(DGPs) possess the capability of deep profile control and flooding. However, the deep migration behavior and plugging mechanism along their path remain unclear. Breakage, an inevitable phenomenon during particle migration, significantly impacts the deep plugging effect. Due to the complexity of the process, few studies have been conducted on this subject. In this paper, we conducted DGP flow experiments using a physical model of a multi-point sandpack under various injection rates and particle sizes. Particle size and concentration tests were performed at each measurement point to investigate the transportation behavior of particles in the deep part of the reservoir. The residual resistance coefficient and concentration changes along the porous media were combined to analyze the plugging performance of DGPs. Furthermore, the particle breakage along their path was revealed by analyzing the changes in particle size along the way. A mathematical model of breakage and concentration changes along the path was established. The results showed that the passage after breakage is a significant migration behavior of particles in porous media. The particles were reduced to less than half of their initial size at the front of the porous media. Breakage is an essential reason for the continuous decreases in particle concentration, size, and residual resistance coefficient. However, the particles can remain in porous media after breakage and play a significant role in deep plugging. Higher injection rates or larger particle sizes resulted in faster breakage along the injection direction, higher degrees of breakage, and faster decreases in residual resistance coefficient along the path. These conditions also led to a weaker deep plugging ability. Smaller particles were more evenly retained along the path, but more particles flowed out of the porous media, resulting in a poor deep plugging effect. The particle size is a function of particle size before injection, transport distance, and different injection parameters(injection rate or the diameter ratio of DGP to throat). Likewise, the particle concentration is a function of initial concentration, transport distance, and different injection parameters. These models can be utilized to optimize particle injection parameters, thereby achieving the goal of fine-tuning oil displacement. 展开更多
关键词 Physical simulation Deformable gel particle BREAKAGE Particle size Residual resistance coefficient
下载PDF
Silica Gel Supported Trifluoromethanesulfonic Acid Catalyzed Beckmann Rearrangement of Cyclohexanone Oxime in Liquid Phase
19
作者 Cheng Tian Hanming Chen +2 位作者 Shihua Wu Dong Xie Mingqiao Zhu 《Advances in Chemical Engineering and Science》 CAS 2024年第4期202-220,共19页
The liquid phase Beckmann rearrangement of cyclohexanone oxime (CHO) using fuming sulfuric acid as a catalyst is a traditional method for preparing ε-caprolactam (CPL). This process has drawbacks, such as environment... The liquid phase Beckmann rearrangement of cyclohexanone oxime (CHO) using fuming sulfuric acid as a catalyst is a traditional method for preparing ε-caprolactam (CPL). This process has drawbacks, such as environmental pollution, corrosion of equipment, and low added value of by-product ammonium sulfate. This article designed and prepared a green silica gel-supported trifluoromethanesulfonic acid catalyst for the liquid-phase Beckmann rearrangement of CHO to prepare (CPL). The influencing factors of catalyst preparation and the optimal reaction conditions for Beckmann rearrangement were investigated. It was found that the optimal conditions for catalyst preparation were as follows: raw material silica gel:trifluoromethanesulfonic acid = 1:0.2 (mass ratio), room temperature, stirring time of 2.5 hours, and solvent of acetonitrile, silica gel mesh size is 100 - 200. The optimal reaction conditions for Beckmann rearrangement are CHO: catalyst = 1:2 (mass ratio), temperature of 130˚C, solvent of benzonitrile, volume of 30 mL/g CHO, and reaction time of 4 hours. Under the above conditions, the conversion of CHO is 90%, and the selectivity of CPL is 90%. 展开更多
关键词 Beckmann Rearrangement Silica gel Trifluoromethanesulfonic Acid Cyclohexanone Oxime
下载PDF
In Situ High-performance Gel Polymer Electrolyte with Dual-reactive Cross-linking for Lithium Metal Batteries
20
作者 Fuhe Wang Honghao Liu +6 位作者 Yaqing Guo Qigao Han Ping Lou Long Li Jianjie Jiang Shijie Cheng Yuancheng Cao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期51-59,共9页
Lithium metal batteries have been considered as one of the most promising next-generation power-support devices due to their high specific energy and output voltage.However,the uncontrollable side-reaction and lithium... Lithium metal batteries have been considered as one of the most promising next-generation power-support devices due to their high specific energy and output voltage.However,the uncontrollable side-reaction and lithium dendrite growth lead to the limited serving life and hinder the practical application of lithium metal batteries.Here,a tri-monomer copolymerized gel polymer electrolyte(TGPE)with a cross-linked reticulation structure was prepared by introducing a cross-linker(polyurethane group)into the acrylate-based in situ polymerization system.The soft segment of polyurethane in TGPE enables the far migration of lithium ions,and the-NH forms hydrogen bonds in the hard segment to build a stable cross-linked framework.This system hinders anion migration and leads to a high Li^(+)migration number(t_(Li^(+))=0.65),which achieves uniform lithium deposition and effectively inhibits lithium dendrite growth.As a result,the assembled symmetric cell shows robust reversibility over 5500 h at a current density of 1 mA cm^(-2).The LFP∷TGPE∷Li cell has a capacity retention of 89.8%after cycling 800 times at a rate of 1C.In summary,in situ polymerization of TGPE electrolytes is expected to be a candidate material for high-energy-density lithium metal batteries. 展开更多
关键词 gel polymer electrolytes hydrogen bonds in situ polymerization lithium metal batteries POLYURETHANE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部