The responses of photosynthesis of phosphoenopyruvate carboxylase (PEPC), pyrurate dikinase (PPDK), NADP-malic enzyme (NADP-ME) and PPDK+PEPC transgenic rice (Oryza saltiva L.) plant to light, temperature, CO 2 and t...The responses of photosynthesis of phosphoenopyruvate carboxylase (PEPC), pyrurate dikinase (PPDK), NADP-malic enzyme (NADP-ME) and PPDK+PEPC transgenic rice (Oryza saltiva L.) plant to light, temperature, CO 2 and the characteristics of chlorophyll fluorescence under photoinhibition conditions were studied. The results were as follows: 1. The light-saturated photosynthetic rates of transgenic rice plants were higher than that of wild type, in which the light-saturated point of PEPC and PPDK+PEPC transgenic rice plants was 200 μmol·m -2·s -1 higher than that of untransformed rice and the light-saturated photosynthetic rates were 51.6% and 58.5% respectively. The carboxylation efficiency of PEPC transgenic rice plant increased by 49.3% and the CO 2 compensation point decreased by 26.2% than that of untransformed rice. Under high temperature (35 ℃), the photosynthetic rate of PEPC transgenic rice plant was higher over 17.5% than that of untransformed rice. 2. On the 8th day after photoinhibition treatment, the PSⅡ photochemical efficiency (F v/F m) and photochemical quenching (qP) of PEPC and PPDK+PEPC transgenic rice plants decreased by about 20%-30% while the non-photochemical quenching (qN) increased by approximately 30%. But F v/F m and qP of untransformed rice decreased by over 50% while qN increased by less than 10%. The result suggested that transgenic rice plants were more tolerant to photoinhibition.展开更多
Using various high-yield rices (Oryza sativa L.) such as japonica cultivar 9516, two parental line hybrid rice between subspecies with more japonica element Peiai 64/E32, Liangyoupeijiu (Peiai 64/9311), and indica hyb...Using various high-yield rices (Oryza sativa L.) such as japonica cultivar 9516, two parental line hybrid rice between subspecies with more japonica element Peiai 64/E32, Liangyoupeijiu (Peiai 64/9311), and indica hybrid rices X07S/Zihui 100, Gangyou 881, Shanyou 63 as the materials, the characteristics of chlorophyll fluorescence and membrane-lipid peroxidation of detached leaves at booting stage under photooxidation conditions were studied. In comparison with indica hybrid rice, after the photooxidation treatment, the primary photochemical efficiency of PS II (F-v/F-m), quantum yield of linear electron transport of PS II (Phi(PSII)) and photochemical quenching coefficient (qP) in japonica cultivar and hybrid rice with japonica decreased less. This indicated that high-yield rice with japonica was able to maintain higher capability of light energy conversion, resulting in the alleviation of photoinhibition. Meanwhile, the higher activities of protective enzymes such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) led to the less accumulation of endogenous active oxygen (O-(2)(radical anion), H2O2) and less content of the malondialdehyde (MDA) and the less decline of chlorophyll and protein contents, indicating a stronger tolerance to photooxidation. The changes in contents of chlorophyll and protein among various nee cultivars during photooxidation treatment were consistent with the decline of chlorophyll content from heading stage to maturation stage under natural conditions. Statistical analysis showed that there was a significant correlation between the indexes of tolerance to photooxidation and the rate of seed setting, implying that the cultivar tolerated to photooxidation had higher resistance to early aging of leaf. These results suggested that from a view of superhigh-yield breeding, considering both the utilization of heterosis and the resistance to early aging of leaf, introduction of japonica element tolerating to photooxidation into the rice sterile line (maternal plant) is a breeding strategy worthy to pay great attention to.展开更多
Effects of water and heat stress treatments on chlorophyll fluorescence of Chinese fir (Cunninghamia lanceolata), Masson pine (Pinus massoniana) and western redcedar (Thuja plicata D. Don)_seedlings were monitored dur...Effects of water and heat stress treatments on chlorophyll fluorescence of Chinese fir (Cunninghamia lanceolata), Masson pine (Pinus massoniana) and western redcedar (Thuja plicata D. Don)_seedlings were monitored during a three-cycle stress period. It was shown that ratio of variable to maximal chlorophyll fluorescence (Fv/Fm) of these three species responded differently to water stress treatments. The Fv/Fm ratio of western redcedar decreased dramatically after water stress, while that of Chinese fir had only a slight reduction and that of Masson pine had no significant change. The experiment also showed that the Fv/Fm ratio of all three species differed significantly under heat stress treatments. Concerning three different water plus heat stress cycles, it was found that the Fv/Fm ratios of Chinese fir and Masson pine measured at the end of each water plus heat stress cycle were not significantly different. However, the Fv/Fm ratio of western redcedar was diminished significantly in response to an increase of stress time. Keywords Chinese fir - Chlorophyll fluorescence - Heat stress - Masson pine - Water stress - Western redcedar CLC number Q945.17 - S791.248 Document code A Biography: Yu Fang-yuan (1965-), male, Ph. Doctor. Associate professor in College of Forest Resources and Environment, Nanjing, Forestry University, Nanjing 210037, P. R. China.Responsible editor: Zhu Hong展开更多
[Objective] This study aimed to test whether salicylic acid (SA) can im-prove the physiological functions of flue-cured tobacco under subdued light condition, and to determine the mechanism of its action. [Method] T...[Objective] This study aimed to test whether salicylic acid (SA) can im-prove the physiological functions of flue-cured tobacco under subdued light condition, and to determine the mechanism of its action. [Method] The tobacco plants under subdued light were foliar-sprayed with 100 mg/L of SA. Then, the physiological in-dices such as plant fresh weight and dry weight, chlorophyl content, photosynthetic parameters and chlorophyl fluorescence parameters were measured. SPSS17.0 and Excellwere adopted for variance analysis and significance test. [Result] The leaf photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) of tobacco plants in subdued light were al decreased while the intercellular CO2 con-centration (Ci) was increased, suggesting that non-stomatal limitation led to the de-crease of Pn under weak light intensity stress. SA released the inhibition of tobacco plant growth in weak light, as it elevated the leaf photosynthetic rate, the maximum photochemical efficiency of PSⅡ, potential activity of PSⅡ, effective photochemical efficiency of PSⅡ and photochemical quenching coefficient in weak light significant-ly, and reduced the non-photochemical quenching coefficient. [Conclusion] SA has significant effects on the photosynthetic characteristics of flue-cured tobacco in weak light, and it can improve the synthesis or distribution of photosynthesis product, and the efficiency of light energy, conducive to plant growth and development.展开更多
[ Objective ] Study on the changes of chlorophyll fluorescence parameters in Cinnamomumjaponicum var. chenii under NaCl stress. [ Method ] The seedling growth increment, chlorophyll content and chlorophyll fluorescenc...[ Objective ] Study on the changes of chlorophyll fluorescence parameters in Cinnamomumjaponicum var. chenii under NaCl stress. [ Method ] The seedling growth increment, chlorophyll content and chlorophyll fluorescence parameters in leaves of 1-year old Cinnamomum japonicum var. chenii were investigated in field experiment. [ Result] Under NaC1 stress, seedling growth increment reduced and the chlorophyll content decreased to a stable value ; changes of Fv/Fm and Fv/Fo showed identical increasing trend and double peak type. With the aggravation of salt stress, most variations were observed in Fo, correlations among chlorophyll fluorescence parameters presented "rise-drop" trend (in.the treatment of 7 g/L NaCl). [ Conclusion] Cirmamomum japonicum vat. chenii is endowed with strong salt resistance and wide adaptability.展开更多
[Objective] The aim was to explore the dynamic change laws of chlorophyll fluorescence parameters in different parts of leaves of Ginkgo biloba.[Method] The G.biloba cultivated in North China was used as materials in ...[Objective] The aim was to explore the dynamic change laws of chlorophyll fluorescence parameters in different parts of leaves of Ginkgo biloba.[Method] The G.biloba cultivated in North China was used as materials in this study to explore the law of daily change and ten-day change of the chlorophyll fluorescence parameters of leaves in different parts of leaves.[Result] The daily change of Fm(maximal fluorescence),Fv(variable fluorescence),Fv/Fm,Fm/Fo(electron transfer rate),Fv/Fo(potential activity of PSⅡ)in leaves of G.biloba obviously presented a descending-ascending trend,the lowest value was at 12:00 and the NPQ(non-photochemical quenching)of sunny leaves arrived at the maximum at noon.The values of Fm,Fv,Fv/Fm,Fm/Fo,Fv/Fo in shade leaves of G.biloba were obviously higher than those in sunny leaves,but the peak value of NPQ of shade leaves presented earlier and higher,suggesting that the shade leaves might have more sensitive hot dissipation mechanism.Comparing to sunny leaves,shade leaves had the higher PSⅡ potential activity and inner light energy translation efficiency.[Conclusion] This study had provided theoretical basis for the protection of G.biloba resources.展开更多
[Objective] The aim was to study response of chlorophyll fluorescence parameters in Trifolium repens L.leaves to water stress from perspective of physiology.[Method] With T.repens cultivar "Haifa" as tested material...[Objective] The aim was to study response of chlorophyll fluorescence parameters in Trifolium repens L.leaves to water stress from perspective of physiology.[Method] With T.repens cultivar "Haifa" as tested material,three soil water content levels were set to culture plants,including 75% (no stress,CK),50% (moderate stress,LD) and 25% (severe stress,HD),the effects of water stress on chlorophyll fluorescence parameters were determined.[Result] The results showed that the chlorophyll fluorescence parameters changed a little when the relative soil moisture content was 75% and 50%,while the chlorophyll fluorescence parameters such as conversion efficiency of primary light energy (Fv/Fm) of PS Ⅱ,the photochemical quenching coefficient (qP) and the quantum yield of PS Ⅱ electron transport (φPS Ⅱ) decreased respectively when the relative soil moisture content was 25%.[Conclusion] When T.repens in severe drought conditions,the physiological functions were damaged,showing symptoms of drought injury.展开更多
Naked oat(Avena nuda L.) was originated from China,where soil nitrogen(N) is low availability.The responses of chlorophyll(Chl.) fluorescence parameters and leaf gas exchange to N application were analysed in th...Naked oat(Avena nuda L.) was originated from China,where soil nitrogen(N) is low availability.The responses of chlorophyll(Chl.) fluorescence parameters and leaf gas exchange to N application were analysed in this study.After the N application rate ranged from 60 to 120 kg ha-1,variable fluorescence(F v),the maximal fluorescence(F m),the maximal photochemical efficiency(F v /F m),quantum yield(Φ PS II) of the photosynthetic system II(PS II),electron transport rate(ETR),and photochemical quenching coefficient(qP) increased with N application level,however,non-photochemical quenching coefficient(qN) decreased.Moreover,there was no difference in initial fluorescence(F o) with further more N enhancement.The maximum net photosynthetic rate(P max),apparent dark respiration rate(R d) and light saturation point(LSP) were improved with 40-56 kg N ha-1as basal fertilizer and 24-40 kg N ha-1as top dressing fertilizer applied at jointing stage.Initial quantum yield(α) was decreased with 24 kg N ha-1as basal fertilizer and 56 kg N ha-1as top dressing fertilizer.Flag-leaf net photosynthetic rate(P n) was significantly enhanced at the jointing and heading stages with 40-56 kg N ha-1as basal fertilizer; in addition,increased at grain filling stage of naked oat with 40-56 kg N ha-1as top dressing fertilizer.90 kg N ha-1(50-70% as basal fertilizer and 30-50% as top dressing fertilizer) application is recommended to alleviate photodamage of photosystem and improve the photosynthetic rate in naked oat.展开更多
The photosynthetic characteristics of strawberry (Fragariaananassa Duch. cv. Toyonoka)leaves under illumination of identical light intensity(55-57% natural light) withdifferent light quality were studied. It was showe...The photosynthetic characteristics of strawberry (Fragariaananassa Duch. cv. Toyonoka)leaves under illumination of identical light intensity(55-57% natural light) withdifferent light quality were studied. It was showed that the chlorophyll content,maximal photochemical efficiency of PSⅡ(Fv/Fm), Fm/Fo, amount of inactive PSⅡreactioncenters (Fi-Fo) and rate of QA reduction were positively correlated with the red-light/blue-light ratios, but the chlorophyll (a/b) ratios were negatively correlated withthem. Carotenoid content of the leaves was maximum under the blue film, than under greenfilm, red film, white film and yellow film, and negatively correlated with the red/far-red ratios. The apparent quantum yield (AQY), photorespiratory rate (Pr) and carboxylationefficiency (CE) were also strongly affected by light quality. The photosynthetic rate(Pn) in strawberry leaves under green film was significantly lower than under all otherfilm. Our results suggested that light quality is an essential factor regulating thedevelopment of PSⅡ, and phytochrome and an independent blue light photoreceptor,possibly a cryptochrome, can regulate photosynthetic performance.展开更多
To clarify the changes in plant photosynthesis and mechanisms underlying those responses to gradually increasing soil drought stress and reveal quantitative relationships between photosynthesis and soil moisture,soil ...To clarify the changes in plant photosynthesis and mechanisms underlying those responses to gradually increasing soil drought stress and reveal quantitative relationships between photosynthesis and soil moisture,soil water conditions were controlled in greenhouse pot experiments using 2-year-old seedlings of Forsythia suspensa(Thunb.) Vahl. Photosynthetic gas exchange and chlorophyll fluorescence variables were measured and analyzed under 13 gradients of soil water content. Net photosynthetic rate(PN), stomatal conductance(gs), and water-use efficiency(WUE) in the seedlings exhibited a clear threshold response to the relative soil water content(RSWC). The highest PNand WUEoccurred at RSWCof51.84 and 64.10%, respectively. Both PNand WUEwere higher than the average levels at 39.79% B RSWCB 73.04%. When RSWCdecreased from 51.84 to 37.52%,PN, gs, and the intercellular CO2 concentration(Ci)markedly decreased with increasing drought stress; the corresponding stomatal limitation(Ls) substantially increased, and nonphotochemical quenching(NPQ) also tended to increase, indicating that within this range of soil water content, excessive excitation energy was dispersed from photosystem II(PSII) in the form of heat, and the reduction in PNwas primarily due to stomatal limitation.While RSWCdecreased below 37.52%, there were significant decreases in the maximal quantum yield of PSII photochemistry(Fv/Fm) and the effective quantum yield of PSII photochemistry(UPSII), photochemical quenching(qP), and NPQ; in contrast, minimal fluorescence yield of the dark-adapted state(F0) increased markedly. Thus,the major limiting factor for the PNreduction changed to a nonstomatal limitation due to PSII damage. Therefore, an RSWCof 37.52% is the maximum allowable water deficit for the normal growth of seedlings of F. suspensa, and a water content lower than this level should be avoided in field soil water management. Water contents should be maintained in the range of 39.79% B RSWCB 73.04% to ensure normal function of the photosynthetic apparatus and high levels of photosynthesis and efficiency in F.suspensa.展开更多
To compare the effects of slow-release nitrogen fertilizer at six different levels on the flag leaf chlorophyll fluorescence characteristics of super hybrid rice, a field fertilization experiment was conducted with su...To compare the effects of slow-release nitrogen fertilizer at six different levels on the flag leaf chlorophyll fluorescence characteristics of super hybrid rice, a field fertilization experiment was conducted with super hybrid rice Y Liangyou 1 as a test material. The photosynthetic electron transport rate (ETR), effective quantum yield (EQY), photochemical quenching coefficient (qp), and non-photochemical quenching coefficient (NPQ) of flag leaves were measured at the initial heading, full heading, 10 d after full heading and 20 d after full heading stages. Results showed that the values of ETR, EQY and qp increased with rice development from initial heading to 20 d after full heading, whereas the NPQ decreased. During the measured stages, ETR, EQY and qp increased initially and then decreased as nitrogen application amount increased, but they peaked at different nitrogen fertilizer levels. The maximum ETR and EQY values appeared at the treatment of 135 kg/hm2 N. In conclusion, the optimum nitrogen amount for chlorophyll fluorescence characteristics of super hybrid rice was 135-180 kg/hm2.展开更多
Photosynthesis and chlorophyll a fluorescence parameters, photochemical efficiency of PS II (Fv/Fm), photochemical quenching of PS II (qP), nonphotochemical quenching of PS II (NPQ), maximum activity of PS II (...Photosynthesis and chlorophyll a fluorescence parameters, photochemical efficiency of PS II (Fv/Fm), photochemical quenching of PS II (qP), nonphotochemical quenching of PS II (NPQ), maximum activity of PS II (Fv/Fo) as well as electron transport rate (ETR), and quantum yield of PS II (ФPS II) were measured on flag leaves of the winter wheat treated by methanol at different concentrations. The results revealed that photosynthesis was greatly improved by methanol, as indicated by higher photosynthetic rates and stomatal conductance. The enhancement effect of methanol on photosynthesis was maintained for 3-4 days. Different methanol concentration treatments also increased intercellular CO2 concentration and transpiration rates. No significant decline was found in Fv/Fm, Fv/Fo, and ФPS II, which revealed no photoinhibition during methanol application in different methanol concentrations. Methanol showing no apparent inhibitory effects indicated higher potential photosynthetic capacity of flag leaves of winter wheat. However, the increase in photosynthesis was not followed by an increase in the photosynthetic activity (Fv/Fm), and fluorescence parameters did not indicate an improvement in intercellular CO2 concentration and PS II photochemical efficiency compared with the control, thereby encouraging us to propose that lower leaf temperatures caused by applied methanol would reduce both dark respiration and photorespiration (most importantly), thus, increasing net CO2 uptake and photosynthetic rates.展开更多
Wheat is an important agricultural crop in the Loess region of China, where there is drought stress and low availability of soil nitrogen and phosphorus. Using a pulse modulation fluorometer, we studied the effects of...Wheat is an important agricultural crop in the Loess region of China, where there is drought stress and low availability of soil nitrogen and phosphorus. Using a pulse modulation fluorometer, we studied the effects of water, nitrogen, and phosphorus on the kinetic parameters of chlorophyll fluorescence in winter wheat. The wheat was grown in layered columns of Eum-Orthic Anthrosol (Cinnamon soil), with the water content and nutrient composition of each layer controlled. The results showed that the kinetic parameters of chlorophyll fluorescence were sensitive to water stress. The basic fluorescence (F0) of leaves was higher in the dry treatment (0-30 cm layer at 40-45% of field capacity, 30-90 cm at 75-80% of field capacity) compared to the wet treatment (entire soil column at 75-80% of field capacity). The maximal fluorescence (Fm), the variable fluorescence (Fv), the photochemical efficiency (Fv/Fm) and potential activites (Fv/F0) of photosystem 2 (PS2) were significantly lower in the dry treatment. Although drought stress impaired PS2 function, this effect was significantly ameliorated by applying P or NP fertilizer, but not N alone. P application increased FJFm, both in well-watered and water stressed plants, especially when fertilizer was applied throughout the column or within the top 30 em of soil. A combined fertilizer improved photosynthesis in well watered plants, with Fm and F,fFm being the highest when fertilizer was applied throughout the columns. For drought stressed, plants FJFm was significantly greater when combined fertilizer was added within the top 30 cm of soil. We concluded that, when growing winter wheat in both arid and semi-arid parts of the Loess region of China, it is important to guarantee the nutrient supply in the top 30 cm of the soil.展开更多
Heavy metal contamination is one of the most important abiotic stresses affecting physiological activities of plants.We investigated the effects of cadmium(Cd) and lead(Pb) on chlorophyll fluorescence(Fv/Fm,Fo,an...Heavy metal contamination is one of the most important abiotic stresses affecting physiological activities of plants.We investigated the effects of cadmium(Cd) and lead(Pb) on chlorophyll fluorescence(Fv/Fm,Fo,and Fm),photosynthetic pigments(chlorophyll a and b),and proline in one-year-old seedlings of Robinia pseudoacacia.The seedlings were treated twice over a period of 10 days with Cd and Pb at concentrations of 0,250,500,1000 and2000 mg L-1.Saline solution containing Cd and Pb was sprayed on the leaves.Chlorophyll and proline contents were measured after 10 days.Chlorophyll fluorescence of R.pseudoacacia was affected slightly by high concentrations(1000,2000 mg L-1) of Cd and Pb.Chlorophyll a and a/b increased at 1000 and 2000 mg L-1of Cd and proline content of leaves was similar in all treatments of Cd and Pb.Our results indicated that photosynthetic sensitivity of R.pseudoacacia to Cd and Pb contamination was weak.Photosystem II chlorophyll pigments were not damaged by Pb and Cd stress.We conclude that chlorophyll fluorescence along with chlorophyll and proline contents are useful indicators of Cd and Pb stresses in R.pseudoacacia which widely planted in urban polluted regions in Iran.展开更多
Controlled experiment of Leymus chinensis seedlings grown in the environmental growth chambers at 3 soil moisture levels and 3 temperature levels was conducted in order to improve the understanding how leaf photosynth...Controlled experiment of Leymus chinensis seedlings grown in the environmental growth chambers at 3 soil moisture levels and 3 temperature levels was conducted in order to improve the understanding how leaf photosynthetic parameters will respond to climatic change. The results indicated that soil drought and high temperature decreased the photochemical efficiency of photosystem(F v/F m), the overall photochemical quantum yield of PSII(yield), the coefficient of photochemical fluorescence quenching(q\-P), but increased the coefficient of non-photochemical fluorescence quenching(q\-N). Severe soil drought would decrease F v/F m and yield by 3.12% and 37.04% under 26℃ condition, respectively, and 6.60% and 73.33% under 32℃ condition, respectively, suggesting that higher temperature may enhance the negative effects of soil drought. All the soil drought treatments resulted in the decline in leaf nitrogen content. There was no significant effect of temperature on leaf nitrogen level, but higher temperature significantly reduced the root nitrogen content and the ratio of root nitrogen to leaf nitrogen, indicating the different strategies of adaptation to soil drought and temperature. It was also implied that higher temperature would enhance the effect of soil drought on leaf photosynthetic capacity, decrease the adaptability of Leymus chinensis to drought.展开更多
Deficit irrigation is critical to global food production,particularly in arid and semi-arid regions with low precipitation.Given water shortage has threatened agricultural sustainability under the dry-land farming sys...Deficit irrigation is critical to global food production,particularly in arid and semi-arid regions with low precipitation.Given water shortage has threatened agricultural sustainability under the dry-land farming system in China,there is an urgent need to develop effective water-saving technologies.We carried out a field study under two cultivation techniques:(1) the ridge and furrow cultivation model(R);and(2) the conventional flat farming model(F),and three simulated precipitation levels(1,275 mm;2,200 mm;3,125 mm) with two deficit irrigation levels(150 and 75 mm).We demonstrated that under the ridge furrow(R) model,rainfall harvesting planting under 150 mm deficit irrigation combined with 200 mm simulated precipitation can considerably increase net photosynthesis rate(P_(n)),quantum yield of PSII(ΦPSⅡ),electron transport rate(ETR),performance index of photosynthetic PSII(F_(v)/F_(m)′),and transformation energy potential of PSII(F_(v)/F_(o)).In addition,during the jointing,anthesis and grain-filling stages,the grain and biomass yield in the R model are 18.9 and 11.1% higher than those in the flat cultivation model,respectively,primarily due to improved soil water contents.The winter wheat fluorescence parameters were significantly positively associated with the photosynthesis,biomass and wheat production.The result suggests that the R cultivation model with irrigation of 150 mm and simulated precipitation of 200 mm is an effective planting method for enhancing P_(n),biomass,wheat production,and chlorophyll fluorescence parameters in dry-land farming areas.展开更多
The Chinese Carbon Dioxide Observation Satellite Mission(TanSat)is the third satellite for global CO2 monitoring and is capable of detecting weak solar-induced chlorophyll fluorescence(SIF)signals with its advanced te...The Chinese Carbon Dioxide Observation Satellite Mission(TanSat)is the third satellite for global CO2 monitoring and is capable of detecting weak solar-induced chlorophyll fluorescence(SIF)signals with its advanced technical characteristics.Based on the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing(IAPCAS)platform,we successfully retrieved the TanSat global SIF product spanning the period of March 2017 to February 2018 with a physically based algorithm.This paper introduces the new TanSat SIF dataset and shows the global seasonal SIF maps.A brief comparison between the IAPCAS TanSat SIF product and the data-driven SVD(singular value decomposition)SIF product is also performed for follow-up algorithm optimization.The comparative results show that there are regional biases between the two SIF datasets and the linear correlations between them are above 0.73 for all seasons.The future SIF data product applications and requirements for SIF space observation are discussed.展开更多
Laminaria japonica, Undaria pinnatifida, Ulva lactuca, Grateloupia turuturu and Palmaria palmata are suitable species that fit the requirements of a seaweed-animal integrated aquaculture system in terms of their viabl...Laminaria japonica, Undaria pinnatifida, Ulva lactuca, Grateloupia turuturu and Palmaria palmata are suitable species that fit the requirements of a seaweed-animal integrated aquaculture system in terms of their viable biomass, rapid growth and promising nutrient uptake rates. In this investigation, the responses of the optimal chlorophyll fluorescence yield of the five algal species in tumble culture were assessed at a temperature range of 10 - 30℃. The results revealed that Ulva lactuca was the most resistant species to high temperature, withstanding 30℃ for 4 h without apparent decline in the optimal chlorophyll fluorescence yield . While the arctic alga Palmaria palmata was the most vulnerable one, showing significant decline in the optimal chlorophyll fluorescence yield at 25℃ for 2 h. The cold-water species Laminaria japonica, however, demonstrated strong ability to cope with higher temperature (24 -26℃ ) for shorter time (within 24 h) without significant decline in the optimal chlorophyll fluorescence yield . Grateloupia turuturu showed a general decrease in the optimal chlorophyll fluorescence yield with the rising temperature from 23 to 30℃ , similar to the temperate kelp Undaria pinnatifida. Changes of chlorophyll fluorescence yields of these algae were characterized differently indicating the existence of species-unique strategy to cope with high light. Measurements of the optimal chlorophyll fluorescence yield after short exposure to direct solar irradiance revealed how long these exposures could be without significant photoinhibition or with promising recovery in photosynthetic activities. Seasonal pattern of alternation of algal species in tank culture in the Northern Hemisphere at the latitude of 36°N was proposed according to these basic measurements.展开更多
A cold-tolerant cultivar, Xiangnuo 1, and a cold-sensitive cultivar, IR50, were used to study the influence of chilling on photosynthetic rate and chlorophyll fluorescence parameters in rice seedlings. The photosynthe...A cold-tolerant cultivar, Xiangnuo 1, and a cold-sensitive cultivar, IR50, were used to study the influence of chilling on photosynthetic rate and chlorophyll fluorescence parameters in rice seedlings. The photosynthetic rates declined dramatically during chilling, and decreased by 48.7% and 67.5% in Xiangnuo 1 and IR50 seedlings, respectively, after being subjected to chilling treatment for two days. Chlorophyll fluorescence measurements showed that relatively higher qp and qNP in Xiangnuo 1 were maintained to dissipate the redundant excitation energy and protect the reaction centers from chill injury; accordingly, redundant excitation energy accumulated less in the reaction centers, and antenna systems were less injured by chilling in Xiangnuo 1. On the contrary, in IR50, qp and qNP declined rapidly while Eg increased, as the chilling persisted. This result indicated that the reaction centers and antenna systems in IR50 were damaged severely by chilling, which led to the lower photosynthetic rate.展开更多
Red and blue light illumination has been reported to significantly affect plantlet growth.Potato is an important food and feed crop in the world and potato plantlet cultured in vitro plays an important role in potato ...Red and blue light illumination has been reported to significantly affect plantlet growth.Potato is an important food and feed crop in the world and potato plantlet cultured in vitro plays an important role in potato production.However,few studies have documented the effects of red and blue light on the growth of potato plantlets revealed at the transcriptome level.The objective of this study was to determine the growth and physiological responses of potato plantlets cultured in vitro under monochromatic red(RR),monochromatic blue(BB)as well as combined red and blue(RB)LEDs using the RNA-Seq technique.In total,3150 and 814 differentially expressed genes(DEGs)were detected in potato plantlets under RR and BB,respectively,compared to RB(used as control).Compared to the control,the DEGs enriched in"photosynthesis"and"photosynthesis-antenna proteins"metabolic pathways were up-regulated and down-regulated by BB and RR,respectively,which might be responsible for the increases and decreases of maximum quantum yield(F_(v)/F_(m)),photochemical quantum yield(φ_(PSII)),photochemical quenching(q_(P))and electron transfer rate(ETR)in BB and RR,respectively.Potato plantlets exhibited dwarfed stems and extended leaves under BB,whereas elongated stems and small leaves were induced under RR.These dramatically altered plantlet phenotypes were associated with variable levels of endogenous plant hormones gibberellin(GAs),indoleacetic acid(IAA)and cytokinins(CKs),as assessed in stems and leaves of potato plantlets.In addition,monochromatic red and blue LEDs trigged the opposite expression profiles of DEGs identified in the"plant hormone signal transduction"metabolic pathway,which were closely related to the endogenous plant hormone levels in potato plantlets.Our results provide insights into the responses of potato plantlets cultured in vitro to red and blue LEDs at the transcriptomic level and may contribute to improvements in the micro-propagation of potato plantlets cultured in vitro from the light spectrum aspect.展开更多
文摘The responses of photosynthesis of phosphoenopyruvate carboxylase (PEPC), pyrurate dikinase (PPDK), NADP-malic enzyme (NADP-ME) and PPDK+PEPC transgenic rice (Oryza saltiva L.) plant to light, temperature, CO 2 and the characteristics of chlorophyll fluorescence under photoinhibition conditions were studied. The results were as follows: 1. The light-saturated photosynthetic rates of transgenic rice plants were higher than that of wild type, in which the light-saturated point of PEPC and PPDK+PEPC transgenic rice plants was 200 μmol·m -2·s -1 higher than that of untransformed rice and the light-saturated photosynthetic rates were 51.6% and 58.5% respectively. The carboxylation efficiency of PEPC transgenic rice plant increased by 49.3% and the CO 2 compensation point decreased by 26.2% than that of untransformed rice. Under high temperature (35 ℃), the photosynthetic rate of PEPC transgenic rice plant was higher over 17.5% than that of untransformed rice. 2. On the 8th day after photoinhibition treatment, the PSⅡ photochemical efficiency (F v/F m) and photochemical quenching (qP) of PEPC and PPDK+PEPC transgenic rice plants decreased by about 20%-30% while the non-photochemical quenching (qN) increased by approximately 30%. But F v/F m and qP of untransformed rice decreased by over 50% while qN increased by less than 10%. The result suggested that transgenic rice plants were more tolerant to photoinhibition.
文摘Using various high-yield rices (Oryza sativa L.) such as japonica cultivar 9516, two parental line hybrid rice between subspecies with more japonica element Peiai 64/E32, Liangyoupeijiu (Peiai 64/9311), and indica hybrid rices X07S/Zihui 100, Gangyou 881, Shanyou 63 as the materials, the characteristics of chlorophyll fluorescence and membrane-lipid peroxidation of detached leaves at booting stage under photooxidation conditions were studied. In comparison with indica hybrid rice, after the photooxidation treatment, the primary photochemical efficiency of PS II (F-v/F-m), quantum yield of linear electron transport of PS II (Phi(PSII)) and photochemical quenching coefficient (qP) in japonica cultivar and hybrid rice with japonica decreased less. This indicated that high-yield rice with japonica was able to maintain higher capability of light energy conversion, resulting in the alleviation of photoinhibition. Meanwhile, the higher activities of protective enzymes such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) led to the less accumulation of endogenous active oxygen (O-(2)(radical anion), H2O2) and less content of the malondialdehyde (MDA) and the less decline of chlorophyll and protein contents, indicating a stronger tolerance to photooxidation. The changes in contents of chlorophyll and protein among various nee cultivars during photooxidation treatment were consistent with the decline of chlorophyll content from heading stage to maturation stage under natural conditions. Statistical analysis showed that there was a significant correlation between the indexes of tolerance to photooxidation and the rate of seed setting, implying that the cultivar tolerated to photooxidation had higher resistance to early aging of leaf. These results suggested that from a view of superhigh-yield breeding, considering both the utilization of heterosis and the resistance to early aging of leaf, introduction of japonica element tolerating to photooxidation into the rice sterile line (maternal plant) is a breeding strategy worthy to pay great attention to.
文摘Effects of water and heat stress treatments on chlorophyll fluorescence of Chinese fir (Cunninghamia lanceolata), Masson pine (Pinus massoniana) and western redcedar (Thuja plicata D. Don)_seedlings were monitored during a three-cycle stress period. It was shown that ratio of variable to maximal chlorophyll fluorescence (Fv/Fm) of these three species responded differently to water stress treatments. The Fv/Fm ratio of western redcedar decreased dramatically after water stress, while that of Chinese fir had only a slight reduction and that of Masson pine had no significant change. The experiment also showed that the Fv/Fm ratio of all three species differed significantly under heat stress treatments. Concerning three different water plus heat stress cycles, it was found that the Fv/Fm ratios of Chinese fir and Masson pine measured at the end of each water plus heat stress cycle were not significantly different. However, the Fv/Fm ratio of western redcedar was diminished significantly in response to an increase of stress time. Keywords Chinese fir - Chlorophyll fluorescence - Heat stress - Masson pine - Water stress - Western redcedar CLC number Q945.17 - S791.248 Document code A Biography: Yu Fang-yuan (1965-), male, Ph. Doctor. Associate professor in College of Forest Resources and Environment, Nanjing, Forestry University, Nanjing 210037, P. R. China.Responsible editor: Zhu Hong
基金Suported by the Special Fund of China National Flue-Cured Tobacco Corporation for Development of Specifc and High-quality Tobbaco Leaf[110201101001(TS-01)]~~
文摘[Objective] This study aimed to test whether salicylic acid (SA) can im-prove the physiological functions of flue-cured tobacco under subdued light condition, and to determine the mechanism of its action. [Method] The tobacco plants under subdued light were foliar-sprayed with 100 mg/L of SA. Then, the physiological in-dices such as plant fresh weight and dry weight, chlorophyl content, photosynthetic parameters and chlorophyl fluorescence parameters were measured. SPSS17.0 and Excellwere adopted for variance analysis and significance test. [Result] The leaf photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) of tobacco plants in subdued light were al decreased while the intercellular CO2 con-centration (Ci) was increased, suggesting that non-stomatal limitation led to the de-crease of Pn under weak light intensity stress. SA released the inhibition of tobacco plant growth in weak light, as it elevated the leaf photosynthetic rate, the maximum photochemical efficiency of PSⅡ, potential activity of PSⅡ, effective photochemical efficiency of PSⅡ and photochemical quenching coefficient in weak light significant-ly, and reduced the non-photochemical quenching coefficient. [Conclusion] SA has significant effects on the photosynthetic characteristics of flue-cured tobacco in weak light, and it can improve the synthesis or distribution of photosynthesis product, and the efficiency of light energy, conducive to plant growth and development.
基金Key Scientific Research Project of Zhejiang Province (2005G12004)~~
文摘[ Objective ] Study on the changes of chlorophyll fluorescence parameters in Cinnamomumjaponicum var. chenii under NaCl stress. [ Method ] The seedling growth increment, chlorophyll content and chlorophyll fluorescence parameters in leaves of 1-year old Cinnamomum japonicum var. chenii were investigated in field experiment. [ Result] Under NaC1 stress, seedling growth increment reduced and the chlorophyll content decreased to a stable value ; changes of Fv/Fm and Fv/Fo showed identical increasing trend and double peak type. With the aggravation of salt stress, most variations were observed in Fo, correlations among chlorophyll fluorescence parameters presented "rise-drop" trend (in.the treatment of 7 g/L NaCl). [ Conclusion] Cirmamomum japonicum vat. chenii is endowed with strong salt resistance and wide adaptability.
基金Supported by Forestry Scientific and Technological Supporting Project of State Forestry Administration~~
文摘[Objective] The aim was to explore the dynamic change laws of chlorophyll fluorescence parameters in different parts of leaves of Ginkgo biloba.[Method] The G.biloba cultivated in North China was used as materials in this study to explore the law of daily change and ten-day change of the chlorophyll fluorescence parameters of leaves in different parts of leaves.[Result] The daily change of Fm(maximal fluorescence),Fv(variable fluorescence),Fv/Fm,Fm/Fo(electron transfer rate),Fv/Fo(potential activity of PSⅡ)in leaves of G.biloba obviously presented a descending-ascending trend,the lowest value was at 12:00 and the NPQ(non-photochemical quenching)of sunny leaves arrived at the maximum at noon.The values of Fm,Fv,Fv/Fm,Fm/Fo,Fv/Fo in shade leaves of G.biloba were obviously higher than those in sunny leaves,but the peak value of NPQ of shade leaves presented earlier and higher,suggesting that the shade leaves might have more sensitive hot dissipation mechanism.Comparing to sunny leaves,shade leaves had the higher PSⅡ potential activity and inner light energy translation efficiency.[Conclusion] This study had provided theoretical basis for the protection of G.biloba resources.
基金Supported by Doctor Foundation of Shanghai Institute of Technology~~
文摘[Objective] The aim was to study response of chlorophyll fluorescence parameters in Trifolium repens L.leaves to water stress from perspective of physiology.[Method] With T.repens cultivar "Haifa" as tested material,three soil water content levels were set to culture plants,including 75% (no stress,CK),50% (moderate stress,LD) and 25% (severe stress,HD),the effects of water stress on chlorophyll fluorescence parameters were determined.[Result] The results showed that the chlorophyll fluorescence parameters changed a little when the relative soil moisture content was 75% and 50%,while the chlorophyll fluorescence parameters such as conversion efficiency of primary light energy (Fv/Fm) of PS Ⅱ,the photochemical quenching coefficient (qP) and the quantum yield of PS Ⅱ electron transport (φPS Ⅱ) decreased respectively when the relative soil moisture content was 25%.[Conclusion] When T.repens in severe drought conditions,the physiological functions were damaged,showing symptoms of drought injury.
基金the study grants from the Special Fund for Agro-Scientific Research in the Public Interest,China(nyhyzx07-009-2)the Earmarked Fund for China Agriculture Research System(CARS-08-B-1)
文摘Naked oat(Avena nuda L.) was originated from China,where soil nitrogen(N) is low availability.The responses of chlorophyll(Chl.) fluorescence parameters and leaf gas exchange to N application were analysed in this study.After the N application rate ranged from 60 to 120 kg ha-1,variable fluorescence(F v),the maximal fluorescence(F m),the maximal photochemical efficiency(F v /F m),quantum yield(Φ PS II) of the photosynthetic system II(PS II),electron transport rate(ETR),and photochemical quenching coefficient(qP) increased with N application level,however,non-photochemical quenching coefficient(qN) decreased.Moreover,there was no difference in initial fluorescence(F o) with further more N enhancement.The maximum net photosynthetic rate(P max),apparent dark respiration rate(R d) and light saturation point(LSP) were improved with 40-56 kg N ha-1as basal fertilizer and 24-40 kg N ha-1as top dressing fertilizer applied at jointing stage.Initial quantum yield(α) was decreased with 24 kg N ha-1as basal fertilizer and 56 kg N ha-1as top dressing fertilizer.Flag-leaf net photosynthetic rate(P n) was significantly enhanced at the jointing and heading stages with 40-56 kg N ha-1as basal fertilizer; in addition,increased at grain filling stage of naked oat with 40-56 kg N ha-1as top dressing fertilizer.90 kg N ha-1(50-70% as basal fertilizer and 30-50% as top dressing fertilizer) application is recommended to alleviate photodamage of photosystem and improve the photosynthetic rate in naked oat.
基金supported by the National Natura1 Science Foundation of China(39730340)
文摘The photosynthetic characteristics of strawberry (Fragariaananassa Duch. cv. Toyonoka)leaves under illumination of identical light intensity(55-57% natural light) withdifferent light quality were studied. It was showed that the chlorophyll content,maximal photochemical efficiency of PSⅡ(Fv/Fm), Fm/Fo, amount of inactive PSⅡreactioncenters (Fi-Fo) and rate of QA reduction were positively correlated with the red-light/blue-light ratios, but the chlorophyll (a/b) ratios were negatively correlated withthem. Carotenoid content of the leaves was maximum under the blue film, than under greenfilm, red film, white film and yellow film, and negatively correlated with the red/far-red ratios. The apparent quantum yield (AQY), photorespiratory rate (Pr) and carboxylationefficiency (CE) were also strongly affected by light quality. The photosynthetic rate(Pn) in strawberry leaves under green film was significantly lower than under all otherfilm. Our results suggested that light quality is an essential factor regulating thedevelopment of PSⅡ, and phytochrome and an independent blue light photoreceptor,possibly a cryptochrome, can regulate photosynthetic performance.
基金supported by the National Natural Science Foundation of China(Nos.41621061,31500511)the Natural Science Foundation of Shandong Province of China(No.ZR2015CL044)
文摘To clarify the changes in plant photosynthesis and mechanisms underlying those responses to gradually increasing soil drought stress and reveal quantitative relationships between photosynthesis and soil moisture,soil water conditions were controlled in greenhouse pot experiments using 2-year-old seedlings of Forsythia suspensa(Thunb.) Vahl. Photosynthetic gas exchange and chlorophyll fluorescence variables were measured and analyzed under 13 gradients of soil water content. Net photosynthetic rate(PN), stomatal conductance(gs), and water-use efficiency(WUE) in the seedlings exhibited a clear threshold response to the relative soil water content(RSWC). The highest PNand WUEoccurred at RSWCof51.84 and 64.10%, respectively. Both PNand WUEwere higher than the average levels at 39.79% B RSWCB 73.04%. When RSWCdecreased from 51.84 to 37.52%,PN, gs, and the intercellular CO2 concentration(Ci)markedly decreased with increasing drought stress; the corresponding stomatal limitation(Ls) substantially increased, and nonphotochemical quenching(NPQ) also tended to increase, indicating that within this range of soil water content, excessive excitation energy was dispersed from photosystem II(PSII) in the form of heat, and the reduction in PNwas primarily due to stomatal limitation.While RSWCdecreased below 37.52%, there were significant decreases in the maximal quantum yield of PSII photochemistry(Fv/Fm) and the effective quantum yield of PSII photochemistry(UPSII), photochemical quenching(qP), and NPQ; in contrast, minimal fluorescence yield of the dark-adapted state(F0) increased markedly. Thus,the major limiting factor for the PNreduction changed to a nonstomatal limitation due to PSII damage. Therefore, an RSWCof 37.52% is the maximum allowable water deficit for the normal growth of seedlings of F. suspensa, and a water content lower than this level should be avoided in field soil water management. Water contents should be maintained in the range of 39.79% B RSWCB 73.04% to ensure normal function of the photosynthetic apparatus and high levels of photosynthesis and efficiency in F.suspensa.
基金financially supported by the National Key Technology Support Program(Grant No.2006BAD02A13)the Dedicated Fund 511th for Agricultural Development of Hunan,China(Grant No.2006NK1001)
文摘To compare the effects of slow-release nitrogen fertilizer at six different levels on the flag leaf chlorophyll fluorescence characteristics of super hybrid rice, a field fertilization experiment was conducted with super hybrid rice Y Liangyou 1 as a test material. The photosynthetic electron transport rate (ETR), effective quantum yield (EQY), photochemical quenching coefficient (qp), and non-photochemical quenching coefficient (NPQ) of flag leaves were measured at the initial heading, full heading, 10 d after full heading and 20 d after full heading stages. Results showed that the values of ETR, EQY and qp increased with rice development from initial heading to 20 d after full heading, whereas the NPQ decreased. During the measured stages, ETR, EQY and qp increased initially and then decreased as nitrogen application amount increased, but they peaked at different nitrogen fertilizer levels. The maximum ETR and EQY values appeared at the treatment of 135 kg/hm2 N. In conclusion, the optimum nitrogen amount for chlorophyll fluorescence characteristics of super hybrid rice was 135-180 kg/hm2.
文摘Photosynthesis and chlorophyll a fluorescence parameters, photochemical efficiency of PS II (Fv/Fm), photochemical quenching of PS II (qP), nonphotochemical quenching of PS II (NPQ), maximum activity of PS II (Fv/Fo) as well as electron transport rate (ETR), and quantum yield of PS II (ФPS II) were measured on flag leaves of the winter wheat treated by methanol at different concentrations. The results revealed that photosynthesis was greatly improved by methanol, as indicated by higher photosynthetic rates and stomatal conductance. The enhancement effect of methanol on photosynthesis was maintained for 3-4 days. Different methanol concentration treatments also increased intercellular CO2 concentration and transpiration rates. No significant decline was found in Fv/Fm, Fv/Fo, and ФPS II, which revealed no photoinhibition during methanol application in different methanol concentrations. Methanol showing no apparent inhibitory effects indicated higher potential photosynthetic capacity of flag leaves of winter wheat. However, the increase in photosynthesis was not followed by an increase in the photosynthetic activity (Fv/Fm), and fluorescence parameters did not indicate an improvement in intercellular CO2 concentration and PS II photochemical efficiency compared with the control, thereby encouraging us to propose that lower leaf temperatures caused by applied methanol would reduce both dark respiration and photorespiration (most importantly), thus, increasing net CO2 uptake and photosynthetic rates.
基金supported by the National Natural Science Foundation of China (NSFC 50809068)the foundation of the State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,China (10502)+1 种基金the China Postdoctoral Science Foundation (20080441196)the West Light Foundation of the Chinese Academy of Science
文摘Wheat is an important agricultural crop in the Loess region of China, where there is drought stress and low availability of soil nitrogen and phosphorus. Using a pulse modulation fluorometer, we studied the effects of water, nitrogen, and phosphorus on the kinetic parameters of chlorophyll fluorescence in winter wheat. The wheat was grown in layered columns of Eum-Orthic Anthrosol (Cinnamon soil), with the water content and nutrient composition of each layer controlled. The results showed that the kinetic parameters of chlorophyll fluorescence were sensitive to water stress. The basic fluorescence (F0) of leaves was higher in the dry treatment (0-30 cm layer at 40-45% of field capacity, 30-90 cm at 75-80% of field capacity) compared to the wet treatment (entire soil column at 75-80% of field capacity). The maximal fluorescence (Fm), the variable fluorescence (Fv), the photochemical efficiency (Fv/Fm) and potential activites (Fv/F0) of photosystem 2 (PS2) were significantly lower in the dry treatment. Although drought stress impaired PS2 function, this effect was significantly ameliorated by applying P or NP fertilizer, but not N alone. P application increased FJFm, both in well-watered and water stressed plants, especially when fertilizer was applied throughout the column or within the top 30 em of soil. A combined fertilizer improved photosynthesis in well watered plants, with Fm and F,fFm being the highest when fertilizer was applied throughout the columns. For drought stressed, plants FJFm was significantly greater when combined fertilizer was added within the top 30 cm of soil. We concluded that, when growing winter wheat in both arid and semi-arid parts of the Loess region of China, it is important to guarantee the nutrient supply in the top 30 cm of the soil.
基金supported by Iran Research Institute of Forests and Rangelandsthe Laboratory of Horticultural Sciences of the University of Tehran
文摘Heavy metal contamination is one of the most important abiotic stresses affecting physiological activities of plants.We investigated the effects of cadmium(Cd) and lead(Pb) on chlorophyll fluorescence(Fv/Fm,Fo,and Fm),photosynthetic pigments(chlorophyll a and b),and proline in one-year-old seedlings of Robinia pseudoacacia.The seedlings were treated twice over a period of 10 days with Cd and Pb at concentrations of 0,250,500,1000 and2000 mg L-1.Saline solution containing Cd and Pb was sprayed on the leaves.Chlorophyll and proline contents were measured after 10 days.Chlorophyll fluorescence of R.pseudoacacia was affected slightly by high concentrations(1000,2000 mg L-1) of Cd and Pb.Chlorophyll a and a/b increased at 1000 and 2000 mg L-1of Cd and proline content of leaves was similar in all treatments of Cd and Pb.Our results indicated that photosynthetic sensitivity of R.pseudoacacia to Cd and Pb contamination was weak.Photosystem II chlorophyll pigments were not damaged by Pb and Cd stress.We conclude that chlorophyll fluorescence along with chlorophyll and proline contents are useful indicators of Cd and Pb stresses in R.pseudoacacia which widely planted in urban polluted regions in Iran.
文摘Controlled experiment of Leymus chinensis seedlings grown in the environmental growth chambers at 3 soil moisture levels and 3 temperature levels was conducted in order to improve the understanding how leaf photosynthetic parameters will respond to climatic change. The results indicated that soil drought and high temperature decreased the photochemical efficiency of photosystem(F v/F m), the overall photochemical quantum yield of PSII(yield), the coefficient of photochemical fluorescence quenching(q\-P), but increased the coefficient of non-photochemical fluorescence quenching(q\-N). Severe soil drought would decrease F v/F m and yield by 3.12% and 37.04% under 26℃ condition, respectively, and 6.60% and 73.33% under 32℃ condition, respectively, suggesting that higher temperature may enhance the negative effects of soil drought. All the soil drought treatments resulted in the decline in leaf nitrogen content. There was no significant effect of temperature on leaf nitrogen level, but higher temperature significantly reduced the root nitrogen content and the ratio of root nitrogen to leaf nitrogen, indicating the different strategies of adaptation to soil drought and temperature. It was also implied that higher temperature would enhance the effect of soil drought on leaf photosynthetic capacity, decrease the adaptability of Leymus chinensis to drought.
基金supported by the National Key Technologies R&D Program of China (2012BAD09B03)the China Postdoctoral Science Foundation Project Funding (2018M642614)+2 种基金the Special Fund for Agro-scientific Research, China (201303104)the Natural Science Foundation of Shandong Province, China (ZR2017ZB0422)the “Taishan Scholar” Project of Shandong Province, China。
文摘Deficit irrigation is critical to global food production,particularly in arid and semi-arid regions with low precipitation.Given water shortage has threatened agricultural sustainability under the dry-land farming system in China,there is an urgent need to develop effective water-saving technologies.We carried out a field study under two cultivation techniques:(1) the ridge and furrow cultivation model(R);and(2) the conventional flat farming model(F),and three simulated precipitation levels(1,275 mm;2,200 mm;3,125 mm) with two deficit irrigation levels(150 and 75 mm).We demonstrated that under the ridge furrow(R) model,rainfall harvesting planting under 150 mm deficit irrigation combined with 200 mm simulated precipitation can considerably increase net photosynthesis rate(P_(n)),quantum yield of PSII(ΦPSⅡ),electron transport rate(ETR),performance index of photosynthetic PSII(F_(v)/F_(m)′),and transformation energy potential of PSII(F_(v)/F_(o)).In addition,during the jointing,anthesis and grain-filling stages,the grain and biomass yield in the R model are 18.9 and 11.1% higher than those in the flat cultivation model,respectively,primarily due to improved soil water contents.The winter wheat fluorescence parameters were significantly positively associated with the photosynthesis,biomass and wheat production.The result suggests that the R cultivation model with irrigation of 150 mm and simulated precipitation of 200 mm is an effective planting method for enhancing P_(n),biomass,wheat production,and chlorophyll fluorescence parameters in dry-land farming areas.
基金This study was supported by the National Key R&D Program of China(No.2016YFA0600203)the Key Research Program of the Chinese Academy of Sciences(ZDRW-ZS-2019-1&ZDRW-ZS-2019-2)the Youth Program of the National Natural Science Foundation of China(41905029).The TanSat L1B data service was provided by the International Reanalysis Cooperation on Carbon Satellite Data(IRCSD)(131211KYSB20180002)and the Cooperation on the Analysis of Carbon Satellite Data(CASA).The authors thank the OCO-2 team for providing the Level-2 SIF data products.
文摘The Chinese Carbon Dioxide Observation Satellite Mission(TanSat)is the third satellite for global CO2 monitoring and is capable of detecting weak solar-induced chlorophyll fluorescence(SIF)signals with its advanced technical characteristics.Based on the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing(IAPCAS)platform,we successfully retrieved the TanSat global SIF product spanning the period of March 2017 to February 2018 with a physically based algorithm.This paper introduces the new TanSat SIF dataset and shows the global seasonal SIF maps.A brief comparison between the IAPCAS TanSat SIF product and the data-driven SVD(singular value decomposition)SIF product is also performed for follow-up algorithm optimization.The comparative results show that there are regional biases between the two SIF datasets and the linear correlations between them are above 0.73 for all seasons.The future SIF data product applications and requirements for SIF space observation are discussed.
基金The"863"Hi-Tech Research and Development Program of China under contract Nos2006AA10A412 and 2006AA10A416a projectfrom the National Natural Science Foundation of China under contract No.30671596+1 种基金a project from the Chinese Academy of Sciences under contract No.KSCX2-YW-N-47-07a project from the Ministry of Science and technology of China under contract No.2006GB24910469
文摘Laminaria japonica, Undaria pinnatifida, Ulva lactuca, Grateloupia turuturu and Palmaria palmata are suitable species that fit the requirements of a seaweed-animal integrated aquaculture system in terms of their viable biomass, rapid growth and promising nutrient uptake rates. In this investigation, the responses of the optimal chlorophyll fluorescence yield of the five algal species in tumble culture were assessed at a temperature range of 10 - 30℃. The results revealed that Ulva lactuca was the most resistant species to high temperature, withstanding 30℃ for 4 h without apparent decline in the optimal chlorophyll fluorescence yield . While the arctic alga Palmaria palmata was the most vulnerable one, showing significant decline in the optimal chlorophyll fluorescence yield at 25℃ for 2 h. The cold-water species Laminaria japonica, however, demonstrated strong ability to cope with higher temperature (24 -26℃ ) for shorter time (within 24 h) without significant decline in the optimal chlorophyll fluorescence yield . Grateloupia turuturu showed a general decrease in the optimal chlorophyll fluorescence yield with the rising temperature from 23 to 30℃ , similar to the temperate kelp Undaria pinnatifida. Changes of chlorophyll fluorescence yields of these algae were characterized differently indicating the existence of species-unique strategy to cope with high light. Measurements of the optimal chlorophyll fluorescence yield after short exposure to direct solar irradiance revealed how long these exposures could be without significant photoinhibition or with promising recovery in photosynthetic activities. Seasonal pattern of alternation of algal species in tank culture in the Northern Hemisphere at the latitude of 36°N was proposed according to these basic measurements.
文摘A cold-tolerant cultivar, Xiangnuo 1, and a cold-sensitive cultivar, IR50, were used to study the influence of chilling on photosynthetic rate and chlorophyll fluorescence parameters in rice seedlings. The photosynthetic rates declined dramatically during chilling, and decreased by 48.7% and 67.5% in Xiangnuo 1 and IR50 seedlings, respectively, after being subjected to chilling treatment for two days. Chlorophyll fluorescence measurements showed that relatively higher qp and qNP in Xiangnuo 1 were maintained to dissipate the redundant excitation energy and protect the reaction centers from chill injury; accordingly, redundant excitation energy accumulated less in the reaction centers, and antenna systems were less injured by chilling in Xiangnuo 1. On the contrary, in IR50, qp and qNP declined rapidly while Eg increased, as the chilling persisted. This result indicated that the reaction centers and antenna systems in IR50 were damaged severely by chilling, which led to the lower photosynthetic rate.
基金funded by the Scientific Research Fund of College of Science&Technology,Ningbo University for the Introduction of High-level Talents,China(RC190006)。
文摘Red and blue light illumination has been reported to significantly affect plantlet growth.Potato is an important food and feed crop in the world and potato plantlet cultured in vitro plays an important role in potato production.However,few studies have documented the effects of red and blue light on the growth of potato plantlets revealed at the transcriptome level.The objective of this study was to determine the growth and physiological responses of potato plantlets cultured in vitro under monochromatic red(RR),monochromatic blue(BB)as well as combined red and blue(RB)LEDs using the RNA-Seq technique.In total,3150 and 814 differentially expressed genes(DEGs)were detected in potato plantlets under RR and BB,respectively,compared to RB(used as control).Compared to the control,the DEGs enriched in"photosynthesis"and"photosynthesis-antenna proteins"metabolic pathways were up-regulated and down-regulated by BB and RR,respectively,which might be responsible for the increases and decreases of maximum quantum yield(F_(v)/F_(m)),photochemical quantum yield(φ_(PSII)),photochemical quenching(q_(P))and electron transfer rate(ETR)in BB and RR,respectively.Potato plantlets exhibited dwarfed stems and extended leaves under BB,whereas elongated stems and small leaves were induced under RR.These dramatically altered plantlet phenotypes were associated with variable levels of endogenous plant hormones gibberellin(GAs),indoleacetic acid(IAA)and cytokinins(CKs),as assessed in stems and leaves of potato plantlets.In addition,monochromatic red and blue LEDs trigged the opposite expression profiles of DEGs identified in the"plant hormone signal transduction"metabolic pathway,which were closely related to the endogenous plant hormone levels in potato plantlets.Our results provide insights into the responses of potato plantlets cultured in vitro to red and blue LEDs at the transcriptomic level and may contribute to improvements in the micro-propagation of potato plantlets cultured in vitro from the light spectrum aspect.