[Objective] The mitigative effect of antioxidase system of a rice mutant with low chlorophyll b on photooxidative damage was studied.[Method] A rice mutant with low chlorophyll b and its wild type were taken as experi...[Objective] The mitigative effect of antioxidase system of a rice mutant with low chlorophyll b on photooxidative damage was studied.[Method] A rice mutant with low chlorophyll b and its wild type were taken as experimental materials to comparatively research their peroxide (H2O2) contents, the activity and isozymes of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in chloroplast.[Result] Compared with the wild type, there were many kinds of SOD, POD and CAT isozymes in leaf cells and chloroplast cell of mutant, and the activity of SOD, POD and CAT isozymes in leaf cells and chloroplast cell of mutant was also correspondingly higher. Under intense light condition, the H2O2 content of chloroplast in mutant was less than that in the wild type. [Conclusion] The higher activity of scavenging active oxygen can relieve the photooxidative damage made by excessive light energy of intense light on photosynthetic membrane, which is an important reason for higher photosystem Ⅱ (PS II) stability of this mutant.展开更多
A high yielding rice mutant ( Oryza sativa L. cv. Zhenhui 249) with low chlorophyll b was recently discovered in the field. The mutant was mainly characterized by the decrease of the content of extrinsic antennae c...A high yielding rice mutant ( Oryza sativa L. cv. Zhenhui 249) with low chlorophyll b was recently discovered in the field. The mutant was mainly characterized by the decrease of the content of extrinsic antennae complex. This variation was shown in the stage when the leaves were expanding. When the leaves are at the final developmental stage, the content would approach to that of the wild type. It was discovered that only moderate amount of chlorophyll b decreased in this mutant. The photosynthetic apparatus of the mutant was rather stable in the whole life span of the leaf. The extrinsic antennae complex of the mutant might make efficient use of light and meanwhile reduce the production of O -· 2.展开更多
Biochemical components of Moso bamboo(Phyllostachys pubescens)are critical to physiological and ecological processes and play an important role in the material and energy cycles of the ecosystem.The coupled PROSPECT w...Biochemical components of Moso bamboo(Phyllostachys pubescens)are critical to physiological and ecological processes and play an important role in the material and energy cycles of the ecosystem.The coupled PROSPECT with SAIL(PROSAIL)radiative transfer model is widely used for vegetation biochemical component content inversion.However,the presence of leaf-eating pests,such as Pantana phyllostachysae Chao(PPC),weakens the performance of the model for estimating biochemical components of Moso bamboo and thus must be considered.Therefore,this study considered pest-induced stress signals associated with Sentinel-2A/B images and field data and established multiple sets of biochemical canopy reflectance look-up tables(LUTs)based on the PROSAIL framework by setting different parameter ranges according to infestation levels.Quantitative inversions of leaf area index(LAI),leaf chlorophyll content(LCC),and leaf equivalent water thickness(LEWT)were derived.The scale conversions from LCC to canopy chlorophyll content(CCC)and LEWT to canopy equivalent water thickness(CEWT)were calculated.The results showed that LAI,CCC,and CEWT were inversely related with PPC-induced stress.When applying multiple LUTs,the p-values were<0.01;the R2 values for LAI,CCC,and CEWT were 0.71,0.68,and 0.65 with root mean square error(RMSE)(normalized RMSE,NRMSE)values of 0.38(0.16),17.56μg cm-2(0.20),and 0.02 cm(0.51),respectively.Compared to the values obtained for the traditional PROSAIL model,for October,R2 values increased by 0.05 and 0.10 and NRMSE decreased by 0.09 and 0.02 for CCC and CEWT,respectively and RMSE decreased by 0.35μg cm-2 for CCC.The feasibility of the inverse strategy for integrating pest-induced stress factors into the PROSAIL model,while establishing multiple LUTs under different pest-induced damage levels,was successfully demonstrated and can potentially enhance future vegetation parameter inversion and monitoring of bamboo forest health and ecosystems.展开更多
Rapid simultaneous determination of chlorophyll a and chlorophyll b by reverse variable-angle synchronous spectrofluorimetry has been studied on a laboratory-constructed microcomputer-controlled versatile spectrofluor...Rapid simultaneous determination of chlorophyll a and chlorophyll b by reverse variable-angle synchronous spectrofluorimetry has been studied on a laboratory-constructed microcomputer-controlled versatile spectrofluorimeter.A method in estimation of scan parameters for the determination of two-component system by variable-angle synchronous spectrofluorimetry has been suggested展开更多
文摘[Objective] The mitigative effect of antioxidase system of a rice mutant with low chlorophyll b on photooxidative damage was studied.[Method] A rice mutant with low chlorophyll b and its wild type were taken as experimental materials to comparatively research their peroxide (H2O2) contents, the activity and isozymes of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in chloroplast.[Result] Compared with the wild type, there were many kinds of SOD, POD and CAT isozymes in leaf cells and chloroplast cell of mutant, and the activity of SOD, POD and CAT isozymes in leaf cells and chloroplast cell of mutant was also correspondingly higher. Under intense light condition, the H2O2 content of chloroplast in mutant was less than that in the wild type. [Conclusion] The higher activity of scavenging active oxygen can relieve the photooxidative damage made by excessive light energy of intense light on photosynthetic membrane, which is an important reason for higher photosystem Ⅱ (PS II) stability of this mutant.
文摘A high yielding rice mutant ( Oryza sativa L. cv. Zhenhui 249) with low chlorophyll b was recently discovered in the field. The mutant was mainly characterized by the decrease of the content of extrinsic antennae complex. This variation was shown in the stage when the leaves were expanding. When the leaves are at the final developmental stage, the content would approach to that of the wild type. It was discovered that only moderate amount of chlorophyll b decreased in this mutant. The photosynthetic apparatus of the mutant was rather stable in the whole life span of the leaf. The extrinsic antennae complex of the mutant might make efficient use of light and meanwhile reduce the production of O -· 2.
基金funded by the National Natural Science Foundation of China(42071300)the Fujian Province Natural Science(2020J01504)+4 种基金the China Postdoctoral Science Foundation(2018M630728)the Open Fund of Fujian Provincial Key Laboratory of Resources and Environment Monitoring&Sustainable Management and Utilization(ZD202102)the Program for Innovative Research Team in Science and Technology in Fujian Province University(KC190002)the Open Fund of University Key Lab of Geomatics Technology and Optimize Resources Utilization in Fujian Province(fafugeo201901)supported by the Research Project of Jinjiang Fuda Science and Education Park Development Center(2019-JJFDKY-17)。
文摘Biochemical components of Moso bamboo(Phyllostachys pubescens)are critical to physiological and ecological processes and play an important role in the material and energy cycles of the ecosystem.The coupled PROSPECT with SAIL(PROSAIL)radiative transfer model is widely used for vegetation biochemical component content inversion.However,the presence of leaf-eating pests,such as Pantana phyllostachysae Chao(PPC),weakens the performance of the model for estimating biochemical components of Moso bamboo and thus must be considered.Therefore,this study considered pest-induced stress signals associated with Sentinel-2A/B images and field data and established multiple sets of biochemical canopy reflectance look-up tables(LUTs)based on the PROSAIL framework by setting different parameter ranges according to infestation levels.Quantitative inversions of leaf area index(LAI),leaf chlorophyll content(LCC),and leaf equivalent water thickness(LEWT)were derived.The scale conversions from LCC to canopy chlorophyll content(CCC)and LEWT to canopy equivalent water thickness(CEWT)were calculated.The results showed that LAI,CCC,and CEWT were inversely related with PPC-induced stress.When applying multiple LUTs,the p-values were<0.01;the R2 values for LAI,CCC,and CEWT were 0.71,0.68,and 0.65 with root mean square error(RMSE)(normalized RMSE,NRMSE)values of 0.38(0.16),17.56μg cm-2(0.20),and 0.02 cm(0.51),respectively.Compared to the values obtained for the traditional PROSAIL model,for October,R2 values increased by 0.05 and 0.10 and NRMSE decreased by 0.09 and 0.02 for CCC and CEWT,respectively and RMSE decreased by 0.35μg cm-2 for CCC.The feasibility of the inverse strategy for integrating pest-induced stress factors into the PROSAIL model,while establishing multiple LUTs under different pest-induced damage levels,was successfully demonstrated and can potentially enhance future vegetation parameter inversion and monitoring of bamboo forest health and ecosystems.
基金The Project Supported by National Natural Science Foundation of China.
文摘Rapid simultaneous determination of chlorophyll a and chlorophyll b by reverse variable-angle synchronous spectrofluorimetry has been studied on a laboratory-constructed microcomputer-controlled versatile spectrofluorimeter.A method in estimation of scan parameters for the determination of two-component system by variable-angle synchronous spectrofluorimetry has been suggested