期刊文献+
共找到115篇文章
< 1 2 6 >
每页显示 20 50 100
Effects of Heat Stress during Seed Filling Stage on Brassica napus Seed Oil Accumulation and Chlorophyll Fluorescence Characteristics
1
作者 Ruizhi Huang Huasheng Yu +7 位作者 Yong Yang Heqin Liu Xuelong Wu Zhihong Liu Haiyan He Gengwei Wu Wengjia Wang Hua Wang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第2期333-348,共16页
As global temperature rise,the threat of heat stress to rapeseed production is becoming more obvious.Exploring the response characteristics of two important biological pathways,oil accumulation and photosynthesis,to h... As global temperature rise,the threat of heat stress to rapeseed production is becoming more obvious.Exploring the response characteristics of two important biological pathways,oil accumulation and photosynthesis,to heat stress during B.napus seed filling is helpful in the genetic improvement of heat-tolerant rapeseed.The effects of heat stress on seed oil accumulation and chlorophyll fluorescence characteristics of 29 B.napus germplasms with different oil content and environmental sensitivity,including 6 rapeseed varieties which exhibited environmentsensitive/insensitive and with high,medium or low oil content,were tested by whole plant heat stress or the in vitro silique culture system.Both assay exhibited similar trend on oil content of the rapeseed germplasms.The heat effect on the chlorophyll fluorescence kinetic parameters F_(v)/F_(m),ETR and Y(Ⅱ)were also consistent.Heat stress significantly decreased oil content,although there was abundant genetic variation on heat tolerance among the genotypes.Correlation analysis showed that the decrease rate of F_(v)/F_(m) of silique heat-stressed B.napus developing seed was positive correlative to the decrease rate of mature seed oil content of the whole plant heat-stressed rapeseed(R=0.9214,P-value<0.01).Overall,the results indicated that heat stress inhibited oil accumulation and photosynthesis in B.napus developing seed.The decrease rate of chlorophyll fluorescence parameter F_(v)/F_(m) of heat-stressed developing seed could be used as the index of heat tolerant rapeseed identification.Further,two heat insensitive rapeseed varieties with high oil content were identified. 展开更多
关键词 Brassica napus L. heat stress seed filling stage oil accumulation chlorophyll fluorescence characteristics
下载PDF
Chlorophyll Fluorescence Response of Persimmon Plants under Salt Stress
2
作者 Xining GENG Lihua XIE +1 位作者 Jingwen XU Ruiyuan WANG 《Medicinal Plant》 CAS 2023年第5期42-44,共3页
[Objectives]To study the photosynthetic response mechanism of persimmon seedlings to salt stress.[Methods]The chlorophyll fluorescence parameters of Diospyros virginiana and Diospyros lotus seedlings under 4%salt stre... [Objectives]To study the photosynthetic response mechanism of persimmon seedlings to salt stress.[Methods]The chlorophyll fluorescence parameters of Diospyros virginiana and Diospyros lotus seedlings under 4%salt stress were studied by pot culture salt control method,including the minimal fluorescence(F_(0)),maximum fluorescence(F_(m)),potential activity of PS II(F_(v)/F_(0)),maximum photochemical efficiency of PS II(F_(v)/F_(m)),electron transport rate(ETR),actual photochemical efficiency of PS II(Y II),and photochemical quenching coefficient(q_(p)).[Results]Under 4%salt stress,the maximum fluorescence(F_(m)),maximum photochemical efficiency of PS II(F v/F m),and photochemical quenching coefficient(q_(p))of two persimmon plants decreased with time.The potential activity of PS II(F_(v)/F_(0)),actual photochemical efficiency of PS II(Y_(II)),and electron transport rate(ETR)decreased under salt stress.[Conclusions]This study indicates that the PS II reaction center in the persimmon leaves was damaged and the electron transport at the acceptor side was damaged under salt stress.It is expected to lay a foundation for the analysis of salt-tolerance mechanism of persimmon plants. 展开更多
关键词 chlorophyll fluorescence Salt stress Diospyros virginiana Diospyros lotus
下载PDF
Effects of Nitrogen Application on Chlorophyll Fluorescence Parameters and Leaf Gas Exchange in Naked Oat 被引量:22
3
作者 LIN Ye-chun HU Yue-gao +6 位作者 REN Chang-zhong GUO Lai-chun WANG Chun-long JIANG Ying WANG Xue-jiao Phendukani Hlatshwayo ZENG Zhao-hai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第12期2164-2171,共8页
Naked oat(Avena nuda L.) was originated from China,where soil nitrogen(N) is low availability.The responses of chlorophyll(Chl.) fluorescence parameters and leaf gas exchange to N application were analysed in th... Naked oat(Avena nuda L.) was originated from China,where soil nitrogen(N) is low availability.The responses of chlorophyll(Chl.) fluorescence parameters and leaf gas exchange to N application were analysed in this study.After the N application rate ranged from 60 to 120 kg ha-1,variable fluorescence(F v),the maximal fluorescence(F m),the maximal photochemical efficiency(F v /F m),quantum yield(Φ PS II) of the photosynthetic system II(PS II),electron transport rate(ETR),and photochemical quenching coefficient(qP) increased with N application level,however,non-photochemical quenching coefficient(qN) decreased.Moreover,there was no difference in initial fluorescence(F o) with further more N enhancement.The maximum net photosynthetic rate(P max),apparent dark respiration rate(R d) and light saturation point(LSP) were improved with 40-56 kg N ha-1as basal fertilizer and 24-40 kg N ha-1as top dressing fertilizer applied at jointing stage.Initial quantum yield(α) was decreased with 24 kg N ha-1as basal fertilizer and 56 kg N ha-1as top dressing fertilizer.Flag-leaf net photosynthetic rate(P n) was significantly enhanced at the jointing and heading stages with 40-56 kg N ha-1as basal fertilizer; in addition,increased at grain filling stage of naked oat with 40-56 kg N ha-1as top dressing fertilizer.90 kg N ha-1(50-70% as basal fertilizer and 30-50% as top dressing fertilizer) application is recommended to alleviate photodamage of photosystem and improve the photosynthetic rate in naked oat. 展开更多
关键词 Avena nuda nitrogen fertilizer nitrogen application chlorophyll fluorescence gas exchange
下载PDF
Effect of Light Quality on Photosynthesis and Chlorophyll Fluorescence in Strawberry Leaves 被引量:12
4
作者 XUKai GUOYan-ping +2 位作者 ZHANGShang-long ZHANGLiang-cheng ZHANGLing-xiao 《Agricultural Sciences in China》 CAS CSCD 2004年第9期678-686,共9页
The photosynthetic characteristics of strawberry (Fragariaananassa Duch. cv. Toyonoka)leaves under illumination of identical light intensity(55-57% natural light) withdifferent light quality were studied. It was showe... The photosynthetic characteristics of strawberry (Fragariaananassa Duch. cv. Toyonoka)leaves under illumination of identical light intensity(55-57% natural light) withdifferent light quality were studied. It was showed that the chlorophyll content,maximal photochemical efficiency of PSⅡ(Fv/Fm), Fm/Fo, amount of inactive PSⅡreactioncenters (Fi-Fo) and rate of QA reduction were positively correlated with the red-light/blue-light ratios, but the chlorophyll (a/b) ratios were negatively correlated withthem. Carotenoid content of the leaves was maximum under the blue film, than under greenfilm, red film, white film and yellow film, and negatively correlated with the red/far-red ratios. The apparent quantum yield (AQY), photorespiratory rate (Pr) and carboxylationefficiency (CE) were also strongly affected by light quality. The photosynthetic rate(Pn) in strawberry leaves under green film was significantly lower than under all otherfilm. Our results suggested that light quality is an essential factor regulating thedevelopment of PSⅡ, and phytochrome and an independent blue light photoreceptor,possibly a cryptochrome, can regulate photosynthetic performance. 展开更多
关键词 STRAWBERRY Light quality chlorophyll fluorescence PHOTOSYNTHESIS Red/Far- red Red/Blue
下载PDF
Effects of soil drought stress on photosynthetic gas exchange traits and chlorophyll fluorescence in Forsythia suspensa 被引量:9
5
作者 Ying Lang Ming Wang +1 位作者 Jiangbao Xia Qiankun Zhao 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第1期45-53,共9页
To clarify the changes in plant photosynthesis and mechanisms underlying those responses to gradually increasing soil drought stress and reveal quantitative relationships between photosynthesis and soil moisture,soil ... To clarify the changes in plant photosynthesis and mechanisms underlying those responses to gradually increasing soil drought stress and reveal quantitative relationships between photosynthesis and soil moisture,soil water conditions were controlled in greenhouse pot experiments using 2-year-old seedlings of Forsythia suspensa(Thunb.) Vahl. Photosynthetic gas exchange and chlorophyll fluorescence variables were measured and analyzed under 13 gradients of soil water content. Net photosynthetic rate(PN), stomatal conductance(gs), and water-use efficiency(WUE) in the seedlings exhibited a clear threshold response to the relative soil water content(RSWC). The highest PNand WUEoccurred at RSWCof51.84 and 64.10%, respectively. Both PNand WUEwere higher than the average levels at 39.79% B RSWCB 73.04%. When RSWCdecreased from 51.84 to 37.52%,PN, gs, and the intercellular CO2 concentration(Ci)markedly decreased with increasing drought stress; the corresponding stomatal limitation(Ls) substantially increased, and nonphotochemical quenching(NPQ) also tended to increase, indicating that within this range of soil water content, excessive excitation energy was dispersed from photosystem II(PSII) in the form of heat, and the reduction in PNwas primarily due to stomatal limitation.While RSWCdecreased below 37.52%, there were significant decreases in the maximal quantum yield of PSII photochemistry(Fv/Fm) and the effective quantum yield of PSII photochemistry(UPSII), photochemical quenching(qP), and NPQ; in contrast, minimal fluorescence yield of the dark-adapted state(F0) increased markedly. Thus,the major limiting factor for the PNreduction changed to a nonstomatal limitation due to PSII damage. Therefore, an RSWCof 37.52% is the maximum allowable water deficit for the normal growth of seedlings of F. suspensa, and a water content lower than this level should be avoided in field soil water management. Water contents should be maintained in the range of 39.79% B RSWCB 73.04% to ensure normal function of the photosynthetic apparatus and high levels of photosynthesis and efficiency in F.suspensa. 展开更多
关键词 chlorophyll fluorescence Gas exchange Photosynthetic rate Soil water deficit Stomatal mechanism Water-use efficiency
下载PDF
Effects of Nitrogen Fertilizer Level on Chlorophyll Fluorescence Characteristics in Flag Leaf of Super Hybrid Rice at Late Growth Stage 被引量:11
6
作者 LONG Ji-rui MA Guo-hui +3 位作者 WAN Yi-zheng SONG Chun-fang SUN Jian QIN Rui-jun 《Rice science》 SCIE 2013年第3期220-228,共9页
To compare the effects of slow-release nitrogen fertilizer at six different levels on the flag leaf chlorophyll fluorescence characteristics of super hybrid rice, a field fertilization experiment was conducted with su... To compare the effects of slow-release nitrogen fertilizer at six different levels on the flag leaf chlorophyll fluorescence characteristics of super hybrid rice, a field fertilization experiment was conducted with super hybrid rice Y Liangyou 1 as a test material. The photosynthetic electron transport rate (ETR), effective quantum yield (EQY), photochemical quenching coefficient (qp), and non-photochemical quenching coefficient (NPQ) of flag leaves were measured at the initial heading, full heading, 10 d after full heading and 20 d after full heading stages. Results showed that the values of ETR, EQY and qp increased with rice development from initial heading to 20 d after full heading, whereas the NPQ decreased. During the measured stages, ETR, EQY and qp increased initially and then decreased as nitrogen application amount increased, but they peaked at different nitrogen fertilizer levels. The maximum ETR and EQY values appeared at the treatment of 135 kg/hm2 N. In conclusion, the optimum nitrogen amount for chlorophyll fluorescence characteristics of super hybrid rice was 135-180 kg/hm2. 展开更多
关键词 super hybrid rice slow-release nitrogen fertilizer chlorophyll fluorescence nitrogen-saving cultivation
下载PDF
Effect of Methanol on Photosynthesis and Chlorophyll Fluorescence of Flag Leaves of Winter Wheat 被引量:8
7
作者 ZHENG Yue-jin YANG Yue-qin LIANG Shan-shan YI Xian-feng 《Agricultural Sciences in China》 CAS CSCD 2008年第4期432-437,共6页
Photosynthesis and chlorophyll a fluorescence parameters, photochemical efficiency of PS II (Fv/Fm), photochemical quenching of PS II (qP), nonphotochemical quenching of PS II (NPQ), maximum activity of PS II (... Photosynthesis and chlorophyll a fluorescence parameters, photochemical efficiency of PS II (Fv/Fm), photochemical quenching of PS II (qP), nonphotochemical quenching of PS II (NPQ), maximum activity of PS II (Fv/Fo) as well as electron transport rate (ETR), and quantum yield of PS II (ФPS II) were measured on flag leaves of the winter wheat treated by methanol at different concentrations. The results revealed that photosynthesis was greatly improved by methanol, as indicated by higher photosynthetic rates and stomatal conductance. The enhancement effect of methanol on photosynthesis was maintained for 3-4 days. Different methanol concentration treatments also increased intercellular CO2 concentration and transpiration rates. No significant decline was found in Fv/Fm, Fv/Fo, and ФPS II, which revealed no photoinhibition during methanol application in different methanol concentrations. Methanol showing no apparent inhibitory effects indicated higher potential photosynthetic capacity of flag leaves of winter wheat. However, the increase in photosynthesis was not followed by an increase in the photosynthetic activity (Fv/Fm), and fluorescence parameters did not indicate an improvement in intercellular CO2 concentration and PS II photochemical efficiency compared with the control, thereby encouraging us to propose that lower leaf temperatures caused by applied methanol would reduce both dark respiration and photorespiration (most importantly), thus, increasing net CO2 uptake and photosynthetic rates. 展开更多
关键词 METHANOL photosynthetic activity chlorophyll fluorescence flag leaf winter wheat
下载PDF
Effects of the Spatial Coupling of Water and Fertilizer on the Chlorophyll Fluorescence Parameters of Winter Wheat Leaves 被引量:7
8
作者 SHEN Yu-fang LI Shi-qing 《Agricultural Sciences in China》 CAS CSCD 2011年第12期1923-1931,共9页
Wheat is an important agricultural crop in the Loess region of China, where there is drought stress and low availability of soil nitrogen and phosphorus. Using a pulse modulation fluorometer, we studied the effects of... Wheat is an important agricultural crop in the Loess region of China, where there is drought stress and low availability of soil nitrogen and phosphorus. Using a pulse modulation fluorometer, we studied the effects of water, nitrogen, and phosphorus on the kinetic parameters of chlorophyll fluorescence in winter wheat. The wheat was grown in layered columns of Eum-Orthic Anthrosol (Cinnamon soil), with the water content and nutrient composition of each layer controlled. The results showed that the kinetic parameters of chlorophyll fluorescence were sensitive to water stress. The basic fluorescence (F0) of leaves was higher in the dry treatment (0-30 cm layer at 40-45% of field capacity, 30-90 cm at 75-80% of field capacity) compared to the wet treatment (entire soil column at 75-80% of field capacity). The maximal fluorescence (Fm), the variable fluorescence (Fv), the photochemical efficiency (Fv/Fm) and potential activites (Fv/F0) of photosystem 2 (PS2) were significantly lower in the dry treatment. Although drought stress impaired PS2 function, this effect was significantly ameliorated by applying P or NP fertilizer, but not N alone. P application increased FJFm, both in well-watered and water stressed plants, especially when fertilizer was applied throughout the column or within the top 30 em of soil. A combined fertilizer improved photosynthesis in well watered plants, with Fm and F,fFm being the highest when fertilizer was applied throughout the columns. For drought stressed, plants FJFm was significantly greater when combined fertilizer was added within the top 30 cm of soil. We concluded that, when growing winter wheat in both arid and semi-arid parts of the Loess region of China, it is important to guarantee the nutrient supply in the top 30 cm of the soil. 展开更多
关键词 water stress NUTRIENT spatial coupling chlorophyll fluorescence column experiment
下载PDF
Responses of chlorophyll fluorescence and nitrogen level of Leymus chinensis seedling to changes of soil moisture and temperature 被引量:4
9
作者 XUZhen-zhu ZHOUGuang-sheng LIHui 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第4期666-669,共4页
Controlled experiment of Leymus chinensis seedlings grown in the environmental growth chambers at 3 soil moisture levels and 3 temperature levels was conducted in order to improve the understanding how leaf photosynth... Controlled experiment of Leymus chinensis seedlings grown in the environmental growth chambers at 3 soil moisture levels and 3 temperature levels was conducted in order to improve the understanding how leaf photosynthetic parameters will respond to climatic change. The results indicated that soil drought and high temperature decreased the photochemical efficiency of photosystem(F v/F m), the overall photochemical quantum yield of PSII(yield), the coefficient of photochemical fluorescence quenching(q\-P), but increased the coefficient of non-photochemical fluorescence quenching(q\-N). Severe soil drought would decrease F v/F m and yield by 3.12% and 37.04% under 26℃ condition, respectively, and 6.60% and 73.33% under 32℃ condition, respectively, suggesting that higher temperature may enhance the negative effects of soil drought. All the soil drought treatments resulted in the decline in leaf nitrogen content. There was no significant effect of temperature on leaf nitrogen level, but higher temperature significantly reduced the root nitrogen content and the ratio of root nitrogen to leaf nitrogen, indicating the different strategies of adaptation to soil drought and temperature. It was also implied that higher temperature would enhance the effect of soil drought on leaf photosynthetic capacity, decrease the adaptability of Leymus chinensis to drought. 展开更多
关键词 chlorophyll fluorescence nitrogen level Leymus chinensis soil moisture soil temperature
下载PDF
Temperature and light tolerance of representative brown,green and red algae in tumble culture revealed by chlorophyll fluorescence measurements 被引量:4
10
作者 PANG Shaojun SHAN Tifeng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2008年第4期137-146,共10页
Laminaria japonica, Undaria pinnatifida, Ulva lactuca, Grateloupia turuturu and Palmaria palmata are suitable species that fit the requirements of a seaweed-animal integrated aquaculture system in terms of their viabl... Laminaria japonica, Undaria pinnatifida, Ulva lactuca, Grateloupia turuturu and Palmaria palmata are suitable species that fit the requirements of a seaweed-animal integrated aquaculture system in terms of their viable biomass, rapid growth and promising nutrient uptake rates. In this investigation, the responses of the optimal chlorophyll fluorescence yield of the five algal species in tumble culture were assessed at a temperature range of 10 - 30℃. The results revealed that Ulva lactuca was the most resistant species to high temperature, withstanding 30℃ for 4 h without apparent decline in the optimal chlorophyll fluorescence yield . While the arctic alga Palmaria palmata was the most vulnerable one, showing significant decline in the optimal chlorophyll fluorescence yield at 25℃ for 2 h. The cold-water species Laminaria japonica, however, demonstrated strong ability to cope with higher temperature (24 -26℃ ) for shorter time (within 24 h) without significant decline in the optimal chlorophyll fluorescence yield . Grateloupia turuturu showed a general decrease in the optimal chlorophyll fluorescence yield with the rising temperature from 23 to 30℃ , similar to the temperate kelp Undaria pinnatifida. Changes of chlorophyll fluorescence yields of these algae were characterized differently indicating the existence of species-unique strategy to cope with high light. Measurements of the optimal chlorophyll fluorescence yield after short exposure to direct solar irradiance revealed how long these exposures could be without significant photoinhibition or with promising recovery in photosynthetic activities. Seasonal pattern of alternation of algal species in tank culture in the Northern Hemisphere at the latitude of 36°N was proposed according to these basic measurements. 展开更多
关键词 seaweeds chlorophyll fluorescence measurements Pulse Amplitude Modulation temperature tolerance integrated aquaculture
下载PDF
Effects of Chilling Stress on Photosynthetic Rate and Chlorophyll Fluorescence Parameter in Seedlings of Two Rice Cultivars Differing in Cold Tolerance 被引量:5
11
作者 WANG Guo-li Guo Zhen-fei 《Rice science》 SCIE 2005年第3期187-191,共5页
A cold-tolerant cultivar, Xiangnuo 1, and a cold-sensitive cultivar, IR50, were used to study the influence of chilling on photosynthetic rate and chlorophyll fluorescence parameters in rice seedlings. The photosynthe... A cold-tolerant cultivar, Xiangnuo 1, and a cold-sensitive cultivar, IR50, were used to study the influence of chilling on photosynthetic rate and chlorophyll fluorescence parameters in rice seedlings. The photosynthetic rates declined dramatically during chilling, and decreased by 48.7% and 67.5% in Xiangnuo 1 and IR50 seedlings, respectively, after being subjected to chilling treatment for two days. Chlorophyll fluorescence measurements showed that relatively higher qp and qNP in Xiangnuo 1 were maintained to dissipate the redundant excitation energy and protect the reaction centers from chill injury; accordingly, redundant excitation energy accumulated less in the reaction centers, and antenna systems were less injured by chilling in Xiangnuo 1. On the contrary, in IR50, qp and qNP declined rapidly while Eg increased, as the chilling persisted. This result indicated that the reaction centers and antenna systems in IR50 were damaged severely by chilling, which led to the lower photosynthetic rate. 展开更多
关键词 CHILLING rice photosynthetic rate chlorophyll fluorescence analysis
下载PDF
Cadmium and lead effects on chlorophyll fluorescence,chlorophyll pigments and proline of Robinia pseudoacacia 被引量:3
12
作者 A.Dezhban A.Shirvany +3 位作者 P.Attarod M.Delshad M.Matinizadeh M.Khoshnevis 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第2期323-329,共7页
Heavy metal contamination is one of the most important abiotic stresses affecting physiological activities of plants.We investigated the effects of cadmium(Cd) and lead(Pb) on chlorophyll fluorescence(Fv/Fm,Fo,an... Heavy metal contamination is one of the most important abiotic stresses affecting physiological activities of plants.We investigated the effects of cadmium(Cd) and lead(Pb) on chlorophyll fluorescence(Fv/Fm,Fo,and Fm),photosynthetic pigments(chlorophyll a and b),and proline in one-year-old seedlings of Robinia pseudoacacia.The seedlings were treated twice over a period of 10 days with Cd and Pb at concentrations of 0,250,500,1000 and2000 mg L-1.Saline solution containing Cd and Pb was sprayed on the leaves.Chlorophyll and proline contents were measured after 10 days.Chlorophyll fluorescence of R.pseudoacacia was affected slightly by high concentrations(1000,2000 mg L-1) of Cd and Pb.Chlorophyll a and a/b increased at 1000 and 2000 mg L-1of Cd and proline content of leaves was similar in all treatments of Cd and Pb.Our results indicated that photosynthetic sensitivity of R.pseudoacacia to Cd and Pb contamination was weak.Photosystem II chlorophyll pigments were not damaged by Pb and Cd stress.We conclude that chlorophyll fluorescence along with chlorophyll and proline contents are useful indicators of Cd and Pb stresses in R.pseudoacacia which widely planted in urban polluted regions in Iran. 展开更多
关键词 Robinia pseudoacacia CADMIUM LEAD chlorophyll fluorescence chlorophyll PROLINE
下载PDF
Effect of Nitrogen Fertilization on Leaf Chlorophyll Fluorescence in Field-Grown Winter Wheat Under Rainfed Conditions 被引量:4
13
作者 SHANGGUANZhou-ping ZHENGShu-xia +1 位作者 ZHANGLei-ming XUEQing-wu 《Agricultural Sciences in China》 CAS CSCD 2005年第1期15-20,共6页
The effect of nitrogen fertilization on leaf chlorophyll fluorescence was studied in field-grown winter wheat during grain filling underrainfed conditions in Loess Plateau. Results showed that the actual photochemical... The effect of nitrogen fertilization on leaf chlorophyll fluorescence was studied in field-grown winter wheat during grain filling underrainfed conditions in Loess Plateau. Results showed that the actual photochemical efficiency of PSⅡ reaction center (F PSⅡ)decreased significantly as leaf water stress progressed, however, the F PS was increased by nitrogen fertilization. The F PSⅡ of 0, 90 and180 kg ha-1 nitrogen treatments at noon were 0.197, 0.279 and 0.283, respectively, which decreased by 57.7, 56.4 and 40.2% as comparedto those in the morning. In the afternoon, the F PSⅡ partialy or completely recovered to the levels in the morning. The values of F PS Ⅱin 0 and 90kgha-1 treatments recovered to 87.3 and 81.5% of those in the morning. In 180kgha-1 treatment, the F PSⅡ in the afternoonwas even higher than that in the morning. Application of nitrogen fertilizer significantly increased maximum photochemical efficiency(Fv/Fm), photochemical quenching coefficient (qP) and non-photochemical quenching coefficient (qNP). These results indicated thatapplication of nitrogen fertilizer could increase the light energy conversion efficiency, the potential activity of photosynthetic reactioncenter, and the non-photochemical dissipation of excess light energy, which can prevent leaf photosynthetic apparatus from damage ofenvironmental stress. However, there was no significant difference in the values of F PSⅡbetween 90 and 180kgha-1 nitrogentreatments, indicating that the excess nitrogen was unfavorable to photosynthesis. 展开更多
关键词 Nitrogen fertilizer chlorophyll fluorescence Winter wheat DRYLAND
下载PDF
Use of chlorophyll fluorescence and P700 absorbance to rapidly detect glyphosate resistance in goosegrass(Eleusine indica) 被引量:3
14
作者 ZHANG Tai-jie FENG Li +2 位作者 TIAN Xing-shan YANG Cai-hong GAO Jia-dong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第4期714-723,共10页
The rapid detection of glyphosate resistance in goosegrass(Eleusine indica) will enhance our ability to respond to new resistant populations of this major weed. Chlorophyll fluorescence(Fluo) and P700(reaction ce... The rapid detection of glyphosate resistance in goosegrass(Eleusine indica) will enhance our ability to respond to new resistant populations of this major weed. Chlorophyll fluorescence(Fluo) and P700(reaction center chlorophyll of photosystem I) absorbance were analyzed in one biotype of goosegrass that is resistant to glyphosate and in another that remains sensitive to the herbicide. Both biotypes were treated with a foliar spray of glyphosate. Differences in photosystem II maximum quantum yield(Fv/Fm), effective photochemical quantum yield(Y(II)), and non-photochemical quenching(NPQ) between the biotypes increased over time. Values for Fv/Fm and Y(II) differed between the two biotypes 24 h after treatment(HAT). Differentiated activities and energy dissipation processes of photosystem II(PSII) and energy dissipation processes of photosystem I(PSI) were manifested in the two biotypes 24 HAT with 20 mmol L–1 glyphosate. Differentiated energy dissipation processes of PSI were still apparent 24 HAT with 200 mmol L–1 glyphosate. These results indicate that the Fluo parameters related to PSII activity and energy dissipation and the P700 parameters related to energy dissipation are suitable indicators that enable rapid detection of glyphosate resistance in goosegrass. 展开更多
关键词 Eleusine indica GLYPHOSATE RESISTANCE chlorophyll fluorescence P700
下载PDF
A New Global Solar-induced Chlorophyll Fluorescence(SIF)Data Product from TanSat Measurements 被引量:3
15
作者 Lu YAO Dongxu YANG +9 位作者 Yi LIU Jing WANG Liangyun LIU Shanshan DU Zhaonan CAI Naimeng LU Daren LYU Maohua WANG Zengshan YIN Yuquan ZHENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第3期341-345,共5页
The Chinese Carbon Dioxide Observation Satellite Mission(TanSat)is the third satellite for global CO2 monitoring and is capable of detecting weak solar-induced chlorophyll fluorescence(SIF)signals with its advanced te... The Chinese Carbon Dioxide Observation Satellite Mission(TanSat)is the third satellite for global CO2 monitoring and is capable of detecting weak solar-induced chlorophyll fluorescence(SIF)signals with its advanced technical characteristics.Based on the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing(IAPCAS)platform,we successfully retrieved the TanSat global SIF product spanning the period of March 2017 to February 2018 with a physically based algorithm.This paper introduces the new TanSat SIF dataset and shows the global seasonal SIF maps.A brief comparison between the IAPCAS TanSat SIF product and the data-driven SVD(singular value decomposition)SIF product is also performed for follow-up algorithm optimization.The comparative results show that there are regional biases between the two SIF datasets and the linear correlations between them are above 0.73 for all seasons.The future SIF data product applications and requirements for SIF space observation are discussed. 展开更多
关键词 TanSat solar-induced chlorophyll fluorescence retrieval algorithm remote sensing
下载PDF
Improvement in winter wheat productivity through regulating PSⅡ photochemistry,photosynthesis and chlorophyll fluorescence under deficit irrigation conditions 被引量:2
16
作者 Shahzad ALI XU Yue-yue +2 位作者 MA Xiang-cheng JIA Qian-min JIA Zhi-kuan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第3期654-665,共12页
Deficit irrigation is critical to global food production,particularly in arid and semi-arid regions with low precipitation.Given water shortage has threatened agricultural sustainability under the dry-land farming sys... Deficit irrigation is critical to global food production,particularly in arid and semi-arid regions with low precipitation.Given water shortage has threatened agricultural sustainability under the dry-land farming system in China,there is an urgent need to develop effective water-saving technologies.We carried out a field study under two cultivation techniques:(1) the ridge and furrow cultivation model(R);and(2) the conventional flat farming model(F),and three simulated precipitation levels(1,275 mm;2,200 mm;3,125 mm) with two deficit irrigation levels(150 and 75 mm).We demonstrated that under the ridge furrow(R) model,rainfall harvesting planting under 150 mm deficit irrigation combined with 200 mm simulated precipitation can considerably increase net photosynthesis rate(P_(n)),quantum yield of PSII(ΦPSⅡ),electron transport rate(ETR),performance index of photosynthetic PSII(F_(v)/F_(m)′),and transformation energy potential of PSII(F_(v)/F_(o)).In addition,during the jointing,anthesis and grain-filling stages,the grain and biomass yield in the R model are 18.9 and 11.1% higher than those in the flat cultivation model,respectively,primarily due to improved soil water contents.The winter wheat fluorescence parameters were significantly positively associated with the photosynthesis,biomass and wheat production.The result suggests that the R cultivation model with irrigation of 150 mm and simulated precipitation of 200 mm is an effective planting method for enhancing P_(n),biomass,wheat production,and chlorophyll fluorescence parameters in dry-land farming areas. 展开更多
关键词 chlorophyll fluorescence deficit irrigation PHOTOSYNTHESIS production planting models soil moisture content
下载PDF
Transcriptome analysis reveals effects of red and blue lightemitting diodes(LEDs)on the growth,chlorophyll fluorescence and endogenous plant hormones of potato(Solanum tuberosum L.)plantlets cultured in vitro 被引量:2
17
作者 CHEN Li-li WANG Hao-ying +3 位作者 GONG Xiao-chen ZENG Zhao-hai XUE Xu-zhang HU Yue-gao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第11期2914-2931,共18页
Red and blue light illumination has been reported to significantly affect plantlet growth.Potato is an important food and feed crop in the world and potato plantlet cultured in vitro plays an important role in potato ... Red and blue light illumination has been reported to significantly affect plantlet growth.Potato is an important food and feed crop in the world and potato plantlet cultured in vitro plays an important role in potato production.However,few studies have documented the effects of red and blue light on the growth of potato plantlets revealed at the transcriptome level.The objective of this study was to determine the growth and physiological responses of potato plantlets cultured in vitro under monochromatic red(RR),monochromatic blue(BB)as well as combined red and blue(RB)LEDs using the RNA-Seq technique.In total,3150 and 814 differentially expressed genes(DEGs)were detected in potato plantlets under RR and BB,respectively,compared to RB(used as control).Compared to the control,the DEGs enriched in"photosynthesis"and"photosynthesis-antenna proteins"metabolic pathways were up-regulated and down-regulated by BB and RR,respectively,which might be responsible for the increases and decreases of maximum quantum yield(F_(v)/F_(m)),photochemical quantum yield(φ_(PSII)),photochemical quenching(q_(P))and electron transfer rate(ETR)in BB and RR,respectively.Potato plantlets exhibited dwarfed stems and extended leaves under BB,whereas elongated stems and small leaves were induced under RR.These dramatically altered plantlet phenotypes were associated with variable levels of endogenous plant hormones gibberellin(GAs),indoleacetic acid(IAA)and cytokinins(CKs),as assessed in stems and leaves of potato plantlets.In addition,monochromatic red and blue LEDs trigged the opposite expression profiles of DEGs identified in the"plant hormone signal transduction"metabolic pathway,which were closely related to the endogenous plant hormone levels in potato plantlets.Our results provide insights into the responses of potato plantlets cultured in vitro to red and blue LEDs at the transcriptomic level and may contribute to improvements in the micro-propagation of potato plantlets cultured in vitro from the light spectrum aspect. 展开更多
关键词 potato(Solanum tuberosum L.)plantlets in vitro red/blue LEDs light sources RNA-seq chlorophyll fluorescence plant hormone
下载PDF
Differences in chlorophyll fluorescence parameters and water content in heteromorphic leaves of Populus euphratica from Inner Mongolia, China 被引量:2
18
作者 HAO Jian-qing ZHANG Li +2 位作者 ZHENG Cai-xia BAI Xue LI Wen-hai 《Forestry Studies in China》 CAS 2011年第1期52-56,共5页
We studied three typical heteromorphic leaves of Populus euphratica trees growing in the Wuhai region of Inner Mongolia,China,i.e.,lanceolate,broad-ovate and dentate broad-ovate leaves and mainly focused on the change... We studied three typical heteromorphic leaves of Populus euphratica trees growing in the Wuhai region of Inner Mongolia,China,i.e.,lanceolate,broad-ovate and dentate broad-ovate leaves and mainly focused on the changes in chlorophyll fluorescence parameters and free water and bound water content.The results show that the values of Fm(maximal fluorescence yield),Fv/Fm(maximum photochemical quantum yield of PSII) and Fv/F0(potential quantum efficiency of PSII) of lanceolate leaves were the least on young trees,while these parameters were the least on the ovate leaves of old trees.Compared with young trees,the free water content of heteromorphic leaves of old trees increased significantly,i.e.,by 78.94% in lanceolate leaves and in the leaves of broad-ovate and dentate broad-ovate by 10.99% and 10.60%,respectively.Correlation analysis showed that free water content is significantly related to Fv/Fm and Fv/F0 in young trees,while the relationship of total water content with Fv/Fm and Fv/F0 is positive in old trees. 展开更多
关键词 chlorophyll fluorescence free water bound water water status Populus euphratica heteromorphic leaves
下载PDF
Vegetation Phenology in Permafrost Regions of Northeastern China Based on MODIS and Solar-induced Chlorophyll Fluorescence 被引量:1
19
作者 WEN Lixiang GUO Meng +3 位作者 YIN Shuai HUANG Shubo LI Xingli YU Fangbing 《Chinese Geographical Science》 SCIE CSCD 2021年第3期459-473,共15页
Vegetation phenology is an indicator of vegetation response to natural environmental changes and is of great significance for the study of global climate change and its impact on terrestrial ecosystems.The normalized ... Vegetation phenology is an indicator of vegetation response to natural environmental changes and is of great significance for the study of global climate change and its impact on terrestrial ecosystems.The normalized difference vegetation index(NDVI)and enhanced vegetation index(EVI),extracted from the Moderate Resolution Imaging Spectrometer(MODIS),are widely used to monitor phenology by calculating land surface reflectance.However,the applicability of the vegetation index based on‘greenness'to monitor photosynthetic activity is hindered by poor observation conditions(e.g.,ground shadows,snow,and clouds).Recently,satellite measurements of solar-induced chlorophyll fluorescence(SIF)from OCO-2 sensors have shown great potential for studying vegetation phenology.Here,we tested the feasibility of SIF in extracting phenological metrics in permafrost regions of the northeastern China,exploring the characteristics of SIF in the study of vegetation phenology and the differences between NDVI and EVI.The results show that NDVI has obvious SOS advance and EOS lag,and EVI is closer to SIF.The growing season length based on SIF is often the shortest,while it can represent the true phenology of vegetation because it is closely related to photosynthesis.SIF is more sensitive than the traditional remote sensing indices in monitoring seasonal changes in vegetation phenology and can compensate for the shortcomings of traditional vegetation indices.We also used the time series data of MODIS NDVI and EVI to extract phenological metrics in different permafrost regions.The results show that the length of growing season of vegetation in predominantly continuous permafrost(zone I)is longer than in permafrost with isolated taliks(zone II).Our results have certain significance for understanding the response of ecosystems in cold regions to global climate change. 展开更多
关键词 vegetation phenology PERMAFROST Moderate Resolution Imaging Spectrometer(MODIS) solar-induced chlorophyll fluorescence(SIF) northeastern China
下载PDF
Changes in Chlorophyll Fluorescence of Rice Mutants Induced by High Hydrostatic Pressure 被引量:1
20
作者 BAI Cheng-ke, LI Gui-shuang, PENG Chang-lian, DUAN Jun (South China Institute of Botany, Chinese Academy of Sciences, Guangzhou 510650, China) 《Rice science》 SCIE 2003年第1期29-32,共4页
Three mutants of rice (Oryza sativa L. ), Mutant 1, Mutant 2 and Mutant 3, which were selected by high hydrostatic pressure (75 MPa), and their parent Yuexiangzhan were used to study the changes in chlorophyll fluores... Three mutants of rice (Oryza sativa L. ), Mutant 1, Mutant 2 and Mutant 3, which were selected by high hydrostatic pressure (75 MPa), and their parent Yuexiangzhan were used to study the changes in chlorophyll fluorescence during different growth stages. In all the three mutants, the function of PSⅡ was improved, F_v/F_m ratio of mutants increased compared to their parent at tillering and heading stage, and ΦPSⅡ also improved except for Mutant 2 at heading stage. Similar to their parent, the mutants exhibited slight photoinhibition at noon and almost complete recovery to initial levels of 6:00 after 18:00 at heading stage. At milking stage, the photoinhibition in the mutants was obvious, and recovered rapidly compared to the parent. Yields of individual plant and grain/straw ratio were also higher in three mutants than the parent. Results indicated that characteristics of chlorophyll fluorescence in leaves of mutants and their photoinhibition in the field had changed. It is suggested that high hydrostatic pressure induction could be applied as a new effective approach in high-yield rice breeding in the future. 展开更多
关键词 high hydrostatic pressure RICE MUTANT chlorophyll fluorescence dynamics parameter
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部