期刊文献+
共找到568篇文章
< 1 2 29 >
每页显示 20 50 100
Natural variations and geographical distributions of seed carotenoids and chlorophylls in 1167 Chinese soybean accessions
1
作者 Berhane S.GEBREGZIABHER ZHANG Sheng-rui +7 位作者 Muhammad AZAM QI Jie Kwadwo G.AGYENIM-BOATENG FENG Yue LIU Yi-tian LI Jing LI Bin SUN Jun-ming 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第9期2632-2647,共16页
Understanding the composition and contents of carotenoids in various soybean seed accessions is important for their nutritional assessment.This study investigated the variability in the concentrations of carotenoids a... Understanding the composition and contents of carotenoids in various soybean seed accessions is important for their nutritional assessment.This study investigated the variability in the concentrations of carotenoids and chlorophylls and revealed their associations with other nutritional quality traits in a genetically diverse set of Chinese soybean accessions comprised of cultivars and landraces.Genotype,planting year,accession type,seed cotyledon color,and ecoregion of origin significantly influenced the accumulation of carotenoids and chlorophylls.The mean total carotenoid content was in the range of 8.15–14.72μg g–1 across the ecoregions.The total carotenoid content was 1.2-fold higher in the landraces than in the cultivars.Soybeans with green cotyledons had higher contents of carotenoids and chlorophylls than those with yellow cotyledons.Remarkably,lutein was the most abundant carotenoid in all the germplasms,ranging from 1.35–37.44μg g–1.Carotenoids and chlorophylls showed significant correlations with other quality traits,which will help to set breeding strategies for enhancing soybean carotenoids without affecting the other components.Collectively,our results demonstrate that carotenoids are adequately accumulated in soybean seeds,however,they are strongly influenced by genetic factors,accession type,and germplasm origin.We identified novel germplasms with the highest total carotenoid contents across the various ecoregions of China that could serve as the genetic materials for soybean carotenoid breeding programs,and thereby as the raw materials for food sectors,pharmaceuticals,and the cosmetic industry. 展开更多
关键词 accession type carotenoid CHLOROPHYLL ECOREGION geographical distribution Pearson’s correlation soybean(Glycine max L.Merrill)
下载PDF
The Antioxidant and Free Radical Scavenging Activities of Chlorophylls and Pheophytins 被引量:1
2
作者 Ching-Yun Hsu Pi-Yu Chao +1 位作者 Shene-Pin Hu Chi-Ming Yang 《Food and Nutrition Sciences》 2013年第8期1-8,共8页
Chlorophylls are important antioxidants found in foods. We explored the mechanisms through which the a and b forms of chlorophyll and of pheophytin (the Mg-chelated form of chlorophyll) reduce oxidation: we used comet... Chlorophylls are important antioxidants found in foods. We explored the mechanisms through which the a and b forms of chlorophyll and of pheophytin (the Mg-chelated form of chlorophyll) reduce oxidation: we used comet assay to measure prevention of H2O2 DNA damage;we tested for quenching of 1,1-diphenyl-2-picrylhydrazyl (DPPH);we measured the ability to chelate Fe(II);and, we tested their ability to prevent formation of thiobarbituric acid reactive substances (TBARS) during Cu-mediated peroxidation of low density lipoprotein (LDL) in a chemical assay. All chlorophylls and pheophytins showed significant dose-dependent activity in the assays, with the pheophytins being the strongest antioxidants. Thus, these chemicals can prevent oxidative DNA damage and lipid peroxidation both by reducing reactive oxygen species, such as DPPH, and by chelation of metal ions, such as Fe(II), which can form reactive oxygen species. 展开更多
关键词 CHLOROPHYLL PHEOPHYTIN COMET ASSAY ANTIOXIDATION
下载PDF
The Genetics of Anthocyanin Pigmentation (of Colour) and Chlorophylls Content of <i>G. hirsutum</i>L. Cotton Plant
3
作者 Ya. B. Tursunov M. F. Abzalov 《American Journal of Plant Sciences》 2020年第9期1405-1413,共9页
<p style="text-align:justify;"> <span style="font-family:""><span style="font-family:Verdana;">In the article, the first time genes of anthocyanin pigmentation R<... <p style="text-align:justify;"> <span style="font-family:""><span style="font-family:Verdana;">In the article, the first time genes of anthocyanin pigmentation R</span><sub><span style="font-family:Verdana;">p</span></sub><span style="font-family:Verdana;"> and </span></span><span style="font-family:""><span style="font-family:Verdana;">R</span><sub><span style="font-family:Verdana;">st</span></sub><sup><span style="font-family:Verdana;">v</span></sup><span><span style="font-family:Verdana;"> appeared in cotton </span><span style="font-family:Verdana;">plant</span><span style="font-family:Verdana;"> interacting complementarily. Recessive homozygosis r</span><sub><span style="font-family:Verdana;">p</span></sub><span style="font-family:Verdana;">r</span></span></span><sub><span style="font-family:Verdana;">р</span></sub><span style="font-family:""><span style="font-family:Verdana;">r</span><sub><span style="font-family:Verdana;">st</span></sub><sup><span style="font-family:Verdana;">v</span></sup><span style="font-family:Verdana;">r</span><sub><span style="font-family:Verdana;">st</span></sub><sup><span style="font-family:Verdana;">v</span></sup><span><span style="font-family:Verdana;"> conditions the development of green </span><span style="font-family:Verdana;">colour</span><span style="font-family:Verdana;">. The gen </span></span><span style="font-family:Verdana;">R</span><sub><span style="font-family:Verdana;">p</span></sub><span style="font-family:Verdana;"> conditions the development of anthocyanin in all organs of plants, </span><span style="font-family:Verdana;">R</span><sub><span style="font-family:Verdana;">st</span></sub><sup><span style="font-family:Verdana;">v</span></sup><span><span style="font-family:Verdana;"> only exists on the stalk </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> in the nerves of leaves, the flower is uncolored, the boll is green. The plants’ existence in </span><span style="font-family:Verdana;">genotype</span><span style="font-family:Verdana;"> of both dominant </span><span style="font-family:Verdana;">equilocal</span><span style="font-family:Verdana;"> genes (R</span><sub><span style="font-family:Verdana;">p</span></sub><span style="font-family:Verdana;">, R</span><sub><span style="font-family:Verdana;">st</span></sub><span style="font-family:Verdana;">) provides </span></span></span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">high</span><span style="font-family:Verdana;"> rate of biosynthesis of anthocyanin</span><span style="font-family:""><span style="font-family:Verdana;">—</span><span style="font-family:Verdana;">dark red. </span></span><span style="font-family:Verdana;">Inheritance of the chlorophylls “a” + </span><span style="font-family:Verdana;">“</span><span style="font-family:""><span style="font-family:Verdana;">b” and “a” and “b” quantity in anthocyanin </span><span style="font-family:Verdana;">coloured</span><span style="font-family:Verdana;"> L-2 and L-3 lines of F</span><sub><span style="font-family:Verdana;">1</span></sub><span style="font-family:Verdana;"> and F</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> generations. The </span><span style="font-family:Verdana;">quantity</span><span style="font-family:Verdana;"> of chlorophylls in anthocyanin </span><span style="font-family:Verdana;">coloured</span><span style="font-family:Verdana;"> L-3 line was defined 1.0</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">-</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">1.5 times higher and participation of the gen R</span><sub><span style="font-family:Verdana;">st</span></sub><sup><span style="font-family:Verdana;">v</span></sup><span style="font-family:Verdana;"> responsible for anthocyanin </span><span style="font-family:Verdana;">colour</span><span style="font-family:Verdana;"> in chlorophylls biosynthesis was also defined. Apparently, in </span><span style="font-family:Verdana;">the line</span><span style="font-family:Verdana;"> L-3 in R</span><sub><span style="font-family:Verdana;">st</span></sub><sup><span style="font-family:Verdana;">v</span></sup><span style="font-family:Verdana;"> is localized</span></span><span style="font-family:Verdana;">,</span><span style="font-family:""><span style="font-family:Verdana;"> there are gens </span><span style="font-family:Verdana;">which are</span><span style="font-family:Verdana;"> responsible for the quantity of chlorophyll or R</span><sub><span style="font-family:Verdana;">st</span></sub><sup><span style="font-family:Verdana;">v</span></sup><span style="font-family:Verdana;"> has </span><span style="font-family:Verdana;">pleiotropic</span><span style="font-family:Verdana;"> effect</span></span><span style="font-family:Verdana;">s</span><span style="font-family:""><span style="font-family:Verdana;"> on the quantity of chlorophyll. It is proved with </span><span style="font-family:Verdana;">low</span><span style="font-family:Verdana;"> quantity of chlorophyll in green </span><span style="font-family:Verdana;">coloured</span><span style="font-family:Verdana;"> plants by recessive homozygote condition </span><span><span style="font-family:Verdana;">r</span><sub><span style="font-family:Verdana;">p</span></sub><span style="font-family:Verdana;">r</span><sub><span style="font-family:Verdana;">p</span></sub><span style="font-family:Verdana;">r</span><sub><span style="font-family:Verdana;">st</span></sub><sup><span style="font-family:Verdana;">v</span></sup><span style="font-family:Verdana;">r</span><sub><span style="font-family:Verdana;">st</span></sub><sup><span style="font-family:Verdana;">v</span></sup></span></span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">green </span><span style="font-family:Verdana;">colour</span><span style="font-family:Verdana;">.</span></span> </p> 展开更多
关键词 Gen GENOTYPE Complementary Anthocyanins CHLOROPHYLL DOMINANCE
下载PDF
Genetic Nature of the “Hanthoviresens” Mutation of l - 4 Yellow Line—Transforming into Green and Their Relationship with the Chlorophylls Content
4
作者 Yahyo Bakhodirovich Tursunov Miradham Fuzailovich Abzalov 《American Journal of Plant Sciences》 2019年第11期2047-2051,共5页
It was determined that the yellow colour of Hanthoviresens mutation in L4 line of leaves is the result of genetic transforming into green and correlation of their hybrids on the L3. The yellow color in the leaves of L... It was determined that the yellow colour of Hanthoviresens mutation in L4 line of leaves is the result of genetic transforming into green and correlation of their hybrids on the L3. The yellow color in the leaves of L4 line is the result of recessive mutation relatively to anthocyanin colour in L3 line. This mutation and chlorophylls quantity in L4 line are being controlled by nuclear genes and high quantity of chlorophylls in L3 line is the result of linkage in gene group where gene Rstv is located or the result of the effect of pleiotropia on chlorophylls content. That is why chlorophylls quantity in plants with yellow colour is lower than in L3 line as these plants resulted from expression of rprprst<sup style="margin-left:-6px;">v rst<sup style="margin-left:-6px;">v gene type. 展开更多
关键词 CHLOROPHYLL Experimental PHENOTYPE ONTOGENESIS
下载PDF
Effects of dense planting patterns on photosynthetic traits of different vertical layers and yield of wheat under different nitrogen rates
5
作者 Cuicun Wang Ke Zhang +9 位作者 Qing Liu Xiufeng Zhang Zhikuan Shi Xue Wang Caili Guo Qiang Cao Yongchao Tian Yan Zhu Xiaojun Liu Weixing Cao 《The Crop Journal》 SCIE CSCD 2024年第2期594-604,共11页
A two-year field experiment was conducted to measure the effects of densification methods on photosynthesis and yield of densely planted wheat.Inter-plant and inter-row distances were used to define ratefixed pattern(... A two-year field experiment was conducted to measure the effects of densification methods on photosynthesis and yield of densely planted wheat.Inter-plant and inter-row distances were used to define ratefixed pattern(RR)and row-fixed pattern(RS)density treatments.Meanwhile,four nitrogen(N)rates(0,144,192,and 240 kg N ha-1,termed N0,N144,N192,and N240)were applied with three densities(225,292.5,and 360×10^(4)plants ha^(-1),termed D225,D292.5,and D360).The wheat canopy was clipped into three equal vertical layers(top,middle,and bottom layers),and their chlorophyll density(Ch D)and photosynthetically active radiation interception(FIPAR)were measured.Results showed that the response of Ch D and FIPAR to N rate,density,and pattern varied with different layers.N rate,density,and pattern had significant interaction effects on Ch D.The maximum values of whole-canopy Ch D in the two seasons appeared in N240 combined with D292.5 and D360 under RR,respectively.Across two growing seasons,FIPAR values of RR were higher than those of RS by 29.37%for the top layer and 5.68%for the middle layer,while lower than those of RS by 20.62%for the bottom layer on average.With a low N supply(N0),grain yield was not significantly affected by density for both patterns.At N240,increasing density significantly increased yield under RR,but D360 of RS significantly decreased yield by 3.72%and 9.00%versus D225 in two seasons,respectively.With an appropriate and sufficient N application,RR increased the yield of densely planted wheat more than RS.Additionally,the maximum yield in two seasons appeared in the combination of D360 with N144 or N192 rather than of D225 with N240 under both patterns,suggesting that dense planting combined with an appropriate N-reduction application is feasible to increase photosynthesis capacity and yield. 展开更多
关键词 Chlorophyll density Densification method Nitrogen Photosynthetically active radiation INTERCEPTION WHEAT
下载PDF
Melatonin delays leaf senescence in pak choi(Brassica rapa subsp.chinensis)by regulating biosynthesis of the second messenger cGMP
6
作者 Xuesong Liu Ronghui An +3 位作者 Guofeng Li Shufen Luo Huali Hu Pengxia Li 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第1期145-155,共11页
Melatonin(MT)is a low molecular weight compound with multiple biological functions in plants.It is known to delay leaf senescence in various species.However,no data are available on the MT signaling pathway in posthar... Melatonin(MT)is a low molecular weight compound with multiple biological functions in plants.It is known to delay leaf senescence in various species.However,no data are available on the MT signaling pathway in postharvest vegetables.This study demonstrates that MT increases cGMP concentration and the expression of the cGMP synthesis gene BcGC1 in pak choi.The c GMP inhibitor LY83583 destroys effect of MT delaying the leaf senescence.LY83583 also prevents MT treatment from reducing the expression of chlorophyll metabolism-related genes(BcNYC1,BcNOL,BcPPH1/2,BcSGR1/2,and BcPAO)and senescence genes(BcSAG12 and BcSAG21).It also inhibits MT from reducing the activity of the key chlorophyll catabolism enzymes Mg-dechelatase,pheophytinase,and pheide a oxygenase.Thus,the ability of MT to maintain high levels of chlorophyll metabolites is also destroyed.The Arabidopsis c GMP synthetic gene mutant atgc1 was used to confirm that delayed leaf senescence caused by MT is mediated,at least in part,by the second messenger c GMP. 展开更多
关键词 Pak choi MELATONIN CGMP Chlorophyll degradation Senescence
下载PDF
Rational molecular engineering towards efficient heterojunction solar cells based on organic molecular acceptors
7
作者 张凯彦 宋朋 +1 位作者 马凤才 李源作 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期575-587,共13页
The selection of photoactive layer materials for organic solar cells(OSCs) is essential for the photoelectric conversion process.It is well known that chlorophyll is an abundant pigment in nature and is extremely valu... The selection of photoactive layer materials for organic solar cells(OSCs) is essential for the photoelectric conversion process.It is well known that chlorophyll is an abundant pigment in nature and is extremely valuable for photosynthesis.However,there is little research on how to improve the efficiency of chlorophyll-based OSCs by matching chlorophyll derivatives with excellent non-fullerene acceptors to form heterojunctions.Therefore in this study we utilize a chlorophyll derivative,Ce_(6)Me_(3),as a donor material and investigate the performance of its heterojunction with acceptor materials.Through density functional theory,the photoelectric performances of acceptors,i ncluding the fullerene derivative PC_(71)BM and the terminal halogenated non-fullerene DTBCIC series,are compared in detail.It is found that DTBCIC-C1 has better planarity,light absorption,electron affinity,charge reorganization energy and charge mobility than others.Ce_(6)Me_(3) has good energy level matching and absorption spectral complementarity with the investigated acceptor molecules and also shows good electron donor properties.Furthermore,the designed Ce_(6)Me_(3)/DTBCIC interfaces have improved charge separation and reorganization rates(K_(CS)/K_(CR)) compared with the Ce_(6)Me_(3)/PC_(71)BM interface.This research provides a theoretical basis for the design of photoactive layer materials for chlorophyll-based OSCs. 展开更多
关键词 organic solar cells density functional theory chlorophyll derivative non-fullerene acceptors
下载PDF
Summer Warming Limited Bud Output Drives a Decline in Daughter Shoot Biomass through Reduced Photosynthetis of Parent Shoots in Leymus chinensis Seedlings
8
作者 Song Gao Ruocheng Xu +4 位作者 Lin Li Jiao Wang Nian Liu Johannes M.H.Knops Junfeng Wang 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第7期1667-1675,共9页
Understanding how summer warming influences the parent and daughter shoot production in a perennial clonal grass is vital for comprehending the response of grassland productivity to global warming.Here,we conducted a s... Understanding how summer warming influences the parent and daughter shoot production in a perennial clonal grass is vital for comprehending the response of grassland productivity to global warming.Here,we conducted a simulated experiment using potted Leymus chinensis,to study the relationship between the photosynthetic activ-ity of parent shoots and the production of daughter shoots under a whole(90 days)summer warming scenario(+3°C).The results showed that the biomass of parents and buds decreased by 25.52%and 33.45%,respectively,under warming conditions.The reduction in parent shoot biomass due to warming directly resulted from decreased leaf area(18.03%),chlorophyll a(18.27%),chlorophyll b(29.21%)content,as well as a reduction in net photosynthetic rate(7.32%)and the maximum quantum efficiency of photosystem II(PSII)photochemistry(4.29%).The decline in daughter shoot biomass was linked to a decrease in daughter shoot number(33.33%)by warming.However,the number of belowground buds increased by 46.43%.The results indicated that long-term summer warming reduces biomass accumulation in parent shoot by increasing both limitation of stoma and non-stoma.Consequently,the parent shoot allocates relatively more biomass to the belowground organs to maintain the survival and growth of buds.Overall,buds,as a potential aboveground population,could remedy for the cur-rent loss of parent shoot density by increasing the number of future daughter shoots if summer warming subsides. 展开更多
关键词 Warming parent shoot bud bank photosynthesis chlorophyllfluorescence Leymus chinensis
下载PDF
Spatio-temporal variability of surface chlorophyll a in the Yellow Sea and the East China Sea based on reconstructions of satellite data of 2001-2020
9
作者 Weichen XIE Tao WANG Wensheng JIANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第2期390-407,共18页
Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-20... Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-2020 were investigated by reconstructing the MODIS Level 3 products with the data interpolation empirical orthogonal function(DINEOF)method.The reconstructed results by interpolating the combined MODIS daily+8-day datasets were found better than those merely by interpolating daily or 8-day data.Chl-a concentration in the YS and the ECS reached its maximum in spring,with blooms occurring,decreased in summer and autumn,and increased in late autumn and early winter.By performing empirical orthogonal function(EOF)decomposition of the reconstructed data fields and correlation analysis with several potential environmental factors,we found that the sea surface temperature(SST)plays a significant role in the seasonal variation of Chl a,especially during spring and summer.The increase of SST in spring and the upper-layer nutrients mixed up during the last winter might favor the occurrence of spring blooms.The high sea surface temperature(SST)throughout the summer would strengthen the vertical stratification and prevent nutrients supply from deep water,resulting in low surface Chl-a concentrations.The sea surface Chl-a concentration in the YS was found decreased significantly from 2012 to 2020,which was possibly related to the Pacific Decadal Oscillation(PDO). 展开更多
关键词 chlorophyll a(Chl a) data interpolation empirical orthogonal function(DINEOF) empirical orthogonal function(EOF)analysis Yellow Sea East China Sea
下载PDF
Study on the Photosynthetic Characteristics of Six Varieties(Strains)in Chinese Chestnut
10
作者 Lizhi FU Yong YANG +6 位作者 Xiaoxiao KANG Meng WANG Jing LIU Xuan WANG Dongsheng WANG Liyang YU Hai’e ZHANG 《Agricultural Biotechnology》 2024年第1期9-14,57,共7页
[Objectives]This study was conducted to investigate the differences of photosynthetic physiological characteristics of different varieties(strains),which will provide a theoretical basis for high photosynthesis effici... [Objectives]This study was conducted to investigate the differences of photosynthetic physiological characteristics of different varieties(strains),which will provide a theoretical basis for high photosynthesis efficiency breeding and application in Chinese chestnut.[Methods]Six Chinese chestnut varieties of Castanea mollissima‘Yanbao’,C.mollissima‘Yanqiu’,C.mollissima‘Yanchang’,C.mollissima‘Yanjia’,C.mollissima‘Qianxi 37’,and C.mollissima‘Hybrid 22’were used as the materials.Using the portable photosynthesis system Li-6400,we measured the photosynthetic characteristics and diurnal variation of leaf samples of six different chestnut varieties or strains.We fitted the light response curves and photosynthetic parameters using the leaf floating model.Additionally,we determined the chlorophyll content in the leaves using a UV-visible spectrophotometer.[Results]Among the six chestnut varieties or strains,‘Yanqiu’exhibited a significantly higher photosynthetic light saturation point(P LSP)compared to other five varieties,and‘Hybrid 22’ranked second,indicating that these two varieties had the strongest adaptation to high light intensity.The photosynthetic light compensation point(P LCP)of‘Yanchang’was significantly higher than other five varieties,and"Qianxi 37"ranked second,indicating that these two varieties had the strongest adaptation to low light intensity.Additionally,they exhibited higher chlorophyll content and maintained good photosynthetic characteristics even in shaded environments with weak light stress.Varieties‘Yanbao’and‘Yanjia’showed higher P LSP and lower P LCP,indicating that these two varieties have a wider range of adaptation to light intensity.They were capable of efficiently utilizing light across a broader spectrum of intensities.‘Yanqiu’had the highest maximum net photosynthetic rate(P n,max)and the lowest dark respiration rate(R d),along with the highest chlorophyll content.It indicated that‘Yanqiu’has strong photosynthetic capacity and organic matter accumulation ability.It also had the highest P LSP,enabling it to fully utilize the high light environment of the Yanshan Mountains and possessed high light efficiency characteristics.The P n,max of‘Yanqiu’was significantly higher than other varieties.‘Hybrid 22’and‘Yanbao’also exhibited significantly higher P n,max compared with‘Yanjia’and‘Qianxi 37’.‘Yanchang’had the lowest P n,max.The order of P n,max among the six chestnut varieties or strains was as follows:‘Yanqiu’>‘Hybrid 22’>‘Yanbao’>‘Yanjia’>‘Qianxi 37’>‘Yanchang’.[Conclusions] 展开更多
关键词 Chinese chestnut Diurnal variation of photosynthesis Light response model Light response curve CHLOROPHYLL
下载PDF
Diff erences in pigment circadian rhythmicity in greenand red-leafed tree species in the sun and shade
11
作者 Ermes Lo Piccolo Giulia Lauria +5 位作者 Giulia Bongi Lucia Guidi Marian Brestic Damiano Remorini Rossano Massai Marco Landi 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第3期693-704,共12页
Light fl ux and quality are crucial factor for setting endogenous plant circadian rhythms.Evaluating the daily rhythmicity of leaf chlorophyll content is an eff ective method to monitor the plant physiological endogen... Light fl ux and quality are crucial factor for setting endogenous plant circadian rhythms.Evaluating the daily rhythmicity of leaf chlorophyll content is an eff ective method to monitor the plant physiological endogenous clock in response to environmental signals such as light availability/quality.Here,we used a leaf-clip sensor to monitor diurnal rhythms in the content of chlorophyll and fl avonoids such as fl avonols and anthocyanins in three green-(Ailanthus altissima,Tilia platyphyllos and Platanus×acerifolia)and two red-leafed(Acer platanoides cv.Crimson King and Prunus cerasifera var.pissardii)tree species,adapted to sun(L)or shade(S).Signifi cant diff erences in chlorophyll content(Chl)and its variations during the day were observed among treatments in all the analyzed species.S-plants had more Chl than L-plants irrespective of leaf color,and Chl variations were more distinct during the day than in L-plants.In particular,contents were lowest in the morning(9:00)and in the middle of the day(at 12:00 and 15:00),and the highest at dusk(21:00).The less evident trends in Chl variation in L-plants were attributed to a decrease in Chl content in high light,which likely masked any increases in the shaded counterparts during the afternoon.Daily fl avonol levels did not vary no notably during the day.In sun-exposed red leaves,anthocyanins partially screened mesophyll cells from incident light,and its levels were similar to the Chl dynamics in the shaded counterparts.This study provides new bases for further work on endogenous rhythms of plant pigments and improves our understanding of plant physiology in the context of day/night rhythmicity. 展开更多
关键词 Anthocyanins chlorophylls Circadian clock FLAVONOLS Shade syndrome
下载PDF
GOLDEN 2-LIKE transcription factors regulate chlorophyll biosynthesis and flavonoid accumulation in response to UV-B in tea plants 被引量:3
12
作者 Xuyang Liu Xin Cheng +3 位作者 Jingjie Cao Wenfeng Zhu Xiaochun Wan Linlin Liu 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第5期1055-1066,共12页
Flavonoids are critical secondary metabolites that determine the health benefits and flavor of tea,while chlorophylls are important contributors to the appearance of tea.However,transcription factors(TFs)that can inte... Flavonoids are critical secondary metabolites that determine the health benefits and flavor of tea,while chlorophylls are important contributors to the appearance of tea.However,transcription factors(TFs)that can integrate both chlorophyll biosynthesis and flavonoid accumulation in response to specific light signals are rarely identified.In this study,we report that the GOLDEN 2-LIKE TF pair,CsGLK1 and CsGLK2,orchestrate UV-B-induced responses in the chlorophyll biosynthesis and flavonoid accumulation of tea leaves.The absence of solar UV-B reduced the transcriptional expression of CsGLKs in the tea leaves and was highly correlated with a decrease in flavonoid levels(especially flavonol glycosides)and the expression of genes and TFs involved in chlorophyll biosynthesis and flavonoid accumulation.In vivo and in vitro molecular analyses showed that CsGLKs could be regulated by the UV-B signal mediator CsHY5,and could directly bind to the promoters of gene and TF involved in light-harvesting(CsLhcb),chlorophyll biosynthesis(CsCHLH,CsHEMA1,and CsPORA),and flavonoid accumulation(CsMYB12,CsFLSa,CsDFRa,and CsLARa),eventually leading to UV-B-induced responses in the chlorophylls and flavonoids of tea leaves.Furthermore,UV-B exposure increased the levels of total flavonoids,CsGLK1 protein,and expression of CsGLKs and target genes in the tea leaves.These results indicate that CsGLKs may modulate tea leaf characteristics by regulating chlorophyll biosynthesis and flavonoid accumulation in response to solar UV-B.As the first report on UV-B-induced changes in flavonoid and chlorophyll regulation mediated by CsGLKs,this study improves our understanding of the environmental regulations regarding tea quality and sheds new light on UV-B-induced flavonoid responses in higher plants. 展开更多
关键词 Camellia sinensis GLK Flavonoid CHLOROPHYLL UV-B
下载PDF
A novel single-base mutation in CaSGR1 confers the stay-green phenotype in pepper 被引量:2
13
作者 Yuhua Liu Lijun Ou +9 位作者 Zhoubin Liu Junheng Lyu JingWang Jingshuang Song Bozhi Yang Wenchao Chen Sha Yang Wei Liu Xuexiao Zou Zhuqing Zhang 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第2期293-305,共13页
The stay-green trait is of considerable importance in extending the shelf life of green pepper fruit(Capsicum annuum L.)and in enhancing the appearance of ornamental plants.The study revealed the genetic and regulator... The stay-green trait is of considerable importance in extending the shelf life of green pepper fruit(Capsicum annuum L.)and in enhancing the appearance of ornamental plants.The study revealed the genetic and regulatory mechanisms of the stay-green trait in pepper,which will aid in the selection of ornamental pepper varieties.In this study,a pepper mutant with stay-green fruit named TNX348 was identified from a germplasm resource bank.Two segregating populations were constructed using the stay-green mutant TNX348 and then used in bulked segregant analysis combined with RNA sequencing and linkage analyses.The causal gene of the stay-green trait was mapped to an approximately 131-kb region,and a senescence-induced chloroplast protein gene,CaSGR1(Capana01g000359),was identified as a candidate gene.Sequencing analysis revealed a G→A single-base mutation of CaSGR1 in TNX348 that led to early termination of translation.Based on the single-base mutation,a single nucleotide polymorphism(SNP)marker co-segregating with the stay-green trait was developed.Furthermore,in transcriptome analysis,expression patterns of 11 hormone transduction-related transcription factors,such as abscisic acid-insensitive(ABI),abscisic acidresponsive element-binding factor(ABF),and NAC transcription factor,were similar or opposite to that of CaSGR1.The results indicated that the transcription factors might mediate chlorophyll degradation by regulating the expression of CaSGR1. 展开更多
关键词 PEPPER Stay-green trait Chlorophyll degradation CaSGR1 Hormone transduction-related transcription factors
下载PDF
Variations in chlorophyll content, stomatal conductance, and photosynthesis in Setaria EMS mutants 被引量:1
14
作者 TANG Chan-juan LUO Ming-zhao +5 位作者 ZHANG Shuo JIA Guan-qing TANG Sha JIA Yan-chao ZHI Hui DIAO Xian-min 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第6期1618-1630,共13页
Chlorophyll (Chl) content,especially Chl b content,and stomatal conductance (G_s) are the key factors affecting the net photosynthetic rate (P_n).Setaria italica,a diploid C_4 panicoid species with a simple genome and... Chlorophyll (Chl) content,especially Chl b content,and stomatal conductance (G_s) are the key factors affecting the net photosynthetic rate (P_n).Setaria italica,a diploid C_4 panicoid species with a simple genome and high transformation efficiency,has been widely accepted as a model in photosynthesis and drought-tolerance research.The current study characterized Chl content,G_s,and P_n of 48 Setaria mutants induced by ethyl methanesulfonate.A total of 24,34,and 35 mutants had significant variations in Chl content,G_s,and P_n,respectively.Correlation analysis showed a positive correlation between increased G_s and increased P_n,and a weak correlation between decreased Chl b content and decreased P_n was also found.Remarkably,two mutants behaved with significantly decreased Chl b content but increased P_n compared to Yugu 1.Seven mutants behaved with significantly decreased G_s but did not decrease P_(n )compared to Yugu 1.The current study thus identified various genetic lines,further exploration of which would be beneficial to elucidate the relationship between Chl content,G_s,and P_n and the mechanism underlying why C_4 species are efficient at photosynthesis and water saving. 展开更多
关键词 photosynthetic capacity chlorophyll content stomatal conductance EMS mutant variation Setaria italica
下载PDF
Chlorophyllase is transcriptionally regulated by CsMYB308/CsDOF3 in young leaves of tea plant 被引量:1
15
作者 Weimin Liu Siyan Liu +5 位作者 Kaiyue Zhang Mingwei Xie Haiwei Sun Xiaoqin Huang Lixia Zhang Min Li 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第6期1162-1176,共15页
Chlorophyll contributes to tea coloration, which is an important factor in tea quality. Chlorophyll metabolism is induced by light, but the transcriptional regulation responsible for light-induced chlorophyll metaboli... Chlorophyll contributes to tea coloration, which is an important factor in tea quality. Chlorophyll metabolism is induced by light, but the transcriptional regulation responsible for light-induced chlorophyll metabolism is largely unknown in tea leaves. Here, we characterized a chlorophyllase1 gene CsCLH1 from young tea leaves and showed it is essential for chlorophyll metabolism, using transient overexpression and silencing in tea leaves and ectopic overexpression in Arabidopsis. CsCLH1 was significantly induced by high light. The DOF protein CsDOF3, an upstream direct regulator of CsCLH1, was also identified. Acting as a nuclear-localized transcriptional factor, CsDOF3 responded for light and repressed CsCLH1 transcription and increased chlorophyll content by directly binding to the AAAG cis-element in the CsCLH1 promoter. CsDOF3was able to physically interact with the R2R3-MYB transcription factor CsMYB308 and interfere with transcriptional activity of CsCLH1. In addition, CsMYB308 binds to the CsCLH1 promoter to enhance CsCLH1 expression and decrease chlorophyll content. CsMYB308 and CsDOF3 act as an antagonistic complex to regulate CsCLH1 transcription and chlorophyll in young leaves. Collectively, the study adds to the understanding of the transcriptional regulation of chlorophyll in tea leaves in response to light and provides a basis for improving the appearance of tea. 展开更多
关键词 Tea plant CHLOROPHYLL CsCLH1 CsDOF3 transcription factor CsMYB308 transcription factor
下载PDF
Retrieving chlorophyll content and equivalent water thickness of Moso bamboo(Phyllostachys pubescens) forests under Pantana phyllostachysae Chao-induced stress from Sentinel-2A/B images in a multiple LUTs-based PROSAIL framework 被引量:1
16
作者 Zhanghua Xu Anqi He +10 位作者 Yiwei Zhang Zhenbang Hao Yifan Li Songyang Xiang Bin Li Lingyan Chen Hui Yu Wanling Shen Xuying Huang Xiaoyu Guo Zenglu Li 《Forest Ecosystems》 SCIE CSCD 2023年第2期252-267,共16页
Biochemical components of Moso bamboo(Phyllostachys pubescens)are critical to physiological and ecological processes and play an important role in the material and energy cycles of the ecosystem.The coupled PROSPECT w... Biochemical components of Moso bamboo(Phyllostachys pubescens)are critical to physiological and ecological processes and play an important role in the material and energy cycles of the ecosystem.The coupled PROSPECT with SAIL(PROSAIL)radiative transfer model is widely used for vegetation biochemical component content inversion.However,the presence of leaf-eating pests,such as Pantana phyllostachysae Chao(PPC),weakens the performance of the model for estimating biochemical components of Moso bamboo and thus must be considered.Therefore,this study considered pest-induced stress signals associated with Sentinel-2A/B images and field data and established multiple sets of biochemical canopy reflectance look-up tables(LUTs)based on the PROSAIL framework by setting different parameter ranges according to infestation levels.Quantitative inversions of leaf area index(LAI),leaf chlorophyll content(LCC),and leaf equivalent water thickness(LEWT)were derived.The scale conversions from LCC to canopy chlorophyll content(CCC)and LEWT to canopy equivalent water thickness(CEWT)were calculated.The results showed that LAI,CCC,and CEWT were inversely related with PPC-induced stress.When applying multiple LUTs,the p-values were<0.01;the R2 values for LAI,CCC,and CEWT were 0.71,0.68,and 0.65 with root mean square error(RMSE)(normalized RMSE,NRMSE)values of 0.38(0.16),17.56μg cm-2(0.20),and 0.02 cm(0.51),respectively.Compared to the values obtained for the traditional PROSAIL model,for October,R2 values increased by 0.05 and 0.10 and NRMSE decreased by 0.09 and 0.02 for CCC and CEWT,respectively and RMSE decreased by 0.35μg cm-2 for CCC.The feasibility of the inverse strategy for integrating pest-induced stress factors into the PROSAIL model,while establishing multiple LUTs under different pest-induced damage levels,was successfully demonstrated and can potentially enhance future vegetation parameter inversion and monitoring of bamboo forest health and ecosystems. 展开更多
关键词 Moso bamboo Chlorophyll content Equivalent water thickness PROSAIL model Multiple LUTs Pantana phyllostachysae Chao Sentinel-2A/B images
下载PDF
Analysis of Seasonal Differences of Chlorophyll,Dimethylsulfide,and Ice Between the Greenland Sea and the Barents Sea
17
作者 ZHONG Guangsheng QU Bo 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1592-1604,共13页
Arctic Ocean(AO)climate is closely related to sea ice concentration(ICE)and chlorophyll_a(CHL)concentrations.From 2003–2014,the spatial average concentrations of CHL,ICE,sea surface temperature(SST),wind speed(WIND)i... Arctic Ocean(AO)climate is closely related to sea ice concentration(ICE)and chlorophyll_a(CHL)concentrations.From 2003–2014,the spatial average concentrations of CHL,ICE,sea surface temperature(SST),wind speed(WIND)in the Greenland Sea region(GS)(20˚W–10˚E,70˚–80˚N)and the Barents Sea region(BS)(30˚–50˚E,70˚–80˚N)are analysed and com-pared.Higher CHL was observed in BS,about 60%higher than that in GS.Compared with the northern regions of BS and GS(BSN and GSN),CHL in the southern region of BS and GS(BSS and GSS)increased by 77%and 42%respectively.More ice melting in BSN is the main reason for phytoplankton proliferation.In 2010,there was an unusual peak of CHL concentration in GSN.The sea-sonal peaks of CHL appeared two weeks earlier in BS than in GS.The earlier and more extensive ice melting and the persistent nega-tive North Atlantic Oscillation(NAO)index may be the reasons for higher CHL blooms in 2010.The spatial average ICE concentra-tion of BS in BSN and BSS is 27%and 1.2%respectively.Negative NAO in the previous winter may lead to an increase in ICE in spring.NAO has a great influence on CHL and ICE in GS.Ice melting is positively correlated with CHL,especially in GS in recent decades,CHL has a significant positive correlation with surface mass concentration of dimethylsulfide(DMS),especially in GS.As an indicator of Arctic warming,BS needs more attention from Arctic researchers. 展开更多
关键词 DIMETHYLSULFIDE CHLOROPHYLL ICE North Atlantic Oscillation ARCTIC
下载PDF
Effects of drought treatment on photosystemⅡactivity in the ephemeral plant Erodium oxyrhinchum
18
作者 CHEN Yingying LIN Yajun +3 位作者 ZHOU Xiaobing ZHANG Jing YANG Chunhong ZHANG Yuanming 《Journal of Arid Land》 SCIE CSCD 2023年第6期724-739,共16页
Drought is a critical limiting factor affecting the growth and development of plants in arid and semi-arid areas.Photosynthesis,one of the most important physiological processes of plants,can be significantly inhibite... Drought is a critical limiting factor affecting the growth and development of plants in arid and semi-arid areas.Photosynthesis,one of the most important physiological processes of plants,can be significantly inhibited by drought.PhotosystemⅡ(PSⅡ)is considered the main attack target when photosynthesis is affected by drought.To clarify how PSⅡcomponents of the ephemeral plant Erodium oxyrhinchum(grown in the Gurbantunggut Desert,China)respond to drought treatment,we evaluated the functional activity of PSII by determining chlorophyll fluorescence and gas exchange parameters under different drought treatment levels(control(400 mL),moderate drought(200 mL),and severe drought(100 m L)).Under moderate drought treatment,significant decreases were found in net photosynthetic rate(Pn),effective quantum yield of PSII(Y(Ⅱ)),relative electron transfer rate of PSII(rETR(Ⅱ)),oxygen-releasing complex,probability of an absorbed exciton moving an electron into the electron transport chain beyond primary quinone receptor Q_(A)-(Φ(E_(o))),probability of a trapped exciton moving an electron into the electron transport chain beyond primary quinone receptor Q_(A)-(ψ(E_(o))),and performance index of PSⅡ(PI_(abs)).Compared to control treatment,marked increases were observed in water use efficiency(WUE),relative variable fluorescence at the J step(V_(J)),initial fluorescence(F_(o)),and dissipated energy per active reaction center(DI_(o)/RC)under moderate drought treatment,but there were no substantial changes in semi-saturated light intensity(I_(K)),active reaction centers per cross-section(RC/CS),and total performance index of PSII and PSI(PI_(total),where PSI is the photosystemⅠ).The changes of the above parameters under severe drought treatment were more significant than those under moderate drought treatment.In addition,severe drought treatment significantly increased the absorbed energy per active reaction center(ABS/RC)and trapping energy per active reaction center(TR_(o)/RC)but decreased the energy transmission connectivity of PSⅡcomponents,RC/CS,and PI_(total),compared to moderate drought and control treatments.Principle component analysis(PCA)revealed similar information according to the grouping of parameters.Moderate drought treatment was obviously characterized by RC/CS parameter,and the values of F_(o),V_(J),ABS/RC,DI_(o)/RC,and TR_(o)/RC showed specific reactions to severe drought treatment.These results demonstrated that moderate drought treatment reduced the photochemical activity of PSII to a certain extent but E.oxyrhinchum still showed strong adaptation against drought treatment,while severe drought treatment seriously damaged the structure of PSⅡ.The results of this study are useful for further understanding the adaptations of ephemeral plants to different water conditions and can provide a reference for the selection of relevant parameters for photosynthesis measurements of large samples in the field. 展开更多
关键词 chlorophyll fluorescence drought treatment electron transport PHOTOSYNTHESIS photosystem II Erodium oxyrhinchum Gurbantunggut Desert
下载PDF
Effects of multiple dynamic processes on chlorophyll variation in the Luzon Strait in summer 2019 based on glider observation
19
作者 Xiangpeng WANG Yan DU +1 位作者 Yuhong ZHANG Tianyu WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期469-481,共13页
Luzon Strait is the main channel connecting the South China Sea(SCS)and the western Pacific,with complex atmospheric and oceanic dynamic processes.Based on 44 days of glider measurements and satellite observations,we ... Luzon Strait is the main channel connecting the South China Sea(SCS)and the western Pacific,with complex atmospheric and oceanic dynamic processes.Based on 44 days of glider measurements and satellite observations,we investigated the temporal and vertical variations of chlorophyll-a(Chl-a)concentration in the Luzon Strait from July 25 to September 6,2019.The Chl a was mainly distributed above 200 m and concentrated in the subsurface chlorophyll maximum(SCM)layer.The depth of SCM ranged between 50 m and 110 m,and the magnitude of SCM varied from 0.42 mg/m3 to 1.12 mg/m3.The variation of Chl a was identified with three stages responding to different dynamic processes.Under the influence of Kuroshio intrusion,the SCM depth sharply deepened,and its magnitude decreased in Stage 1.Afterward,a prominent Chl-a bloom was observed in the SCM layer from August 6 to August 16.The Chl-a bloom in Stage 2 was related to the influence of a cyclonic eddy,which uplifted of the thermocline and thus the deep nutrients.During Stage 3,prolonged heavy rainfall in the northeastern SCS resulted in a significant salinity decrease in the upper ocean.The convergence of upper water deepened the thermocline and the mixed layer.Thus,the Chl a decreased in the SCM layer but increased in the surface layer.In particular,a typhoon passed through the Luzon Strait on August 24,which induced the Chl a increase in the upper 50 m.However,there was little change in the depth-integrated Chl a(0-200 m),indicating that the Chl a increase in the surface layer was likely associated with physical entrainment of SCM caused by strong mixing,rather than the phytoplankton bloom in the upper water column.Underwater gliders provide frequent autonomous observations that help us understand the regional ocean’s complex dynamic processes and biological responses. 展开更多
关键词 Luzon Strait glider observations chlorophyll a KUROSHIO cyclonic eddy TYPHOON
下载PDF
Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize
20
作者 WANG Xing-long ZHU Yu-peng +6 位作者 YAN Ye HOU Jia-min WANG Hai-jiang LUO Ning WEI Dan MENG Qing-feng WANG Pu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第8期2370-2383,共14页
Elevating soil water content(SWC)through irrigation was one of the simple mitigation measures to improve crop resilience to heat stress.The response of leaf function,such as photosynthetic capacity based on chlorophyl... Elevating soil water content(SWC)through irrigation was one of the simple mitigation measures to improve crop resilience to heat stress.The response of leaf function,such as photosynthetic capacity based on chlorophyll fluorescence during the mitigation,has received limited attention,especially in field conditions.A two-year field experiment with three treatments(control treatment(CK),high-temperature treatment(H),and high-temperature together with elevating SWC treatment(HW))was carried out during grain filling with two maize hybrids at a typical station in North China Plain.Averagely,the net photosynthetic rate(Pn)was improved by 20%,and the canopy temperature decreased by 1–3℃ in HW compared with in H in both years.Furthermore,the higher SWC in HW significantly improved the actual photosynthetic rate(Phi2),linear electron flow(LEF),variable fluorescence(F_(v)),and the maximal potential quantum efficiency(F_(v)/F_(m))for both hybrids.Meanwhile,different responses in chlorophyll fluorescence between hybrids were also observed.The higher SWC in HW significantly improved thylakoid proton conductivity(g H^(+))and the maximal fluorescence(F_(m))for the hybrid ZD958.For the hybrid XY335,the proton conductivity of chloroplast ATP synthase(v H^(+))and the minimal fluorescence(Fo)was increased by the SWC.The structural equation model(SEM)further showed that SWC had significantly positive relationships with Pn,LEF,and F_(v)/F_(m).The elevating SWC alleviated heat stress with the delayed leaf senescence to prolong the effective period of photosynthesis and enhanced leaf photosynthetic capacity by improving Phi2,LEF,Fv,and F_(v)/F_(m).This research demonstrates that elevating SWC through enhancing leaf photosynthesis during grain filling would be an important mitigation strategy for adapting to the warming climate in maize production. 展开更多
关键词 high temperature soil water content PHOTOSYNTHESIS chlorophyll fluorescence MAIZE
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部