This paper introduces a pioneering application of secondary ion mass spectrometry(SIMS)for estimating the electronic properties of Pb_(1-x)Sn_(x)Te,a compound categorized as a topological crystalline insulator.The pro...This paper introduces a pioneering application of secondary ion mass spectrometry(SIMS)for estimating the electronic properties of Pb_(1-x)Sn_(x)Te,a compound categorized as a topological crystalline insulator.The proposed approach marks the first application of SIMS for such estimations and focuses on investigating variations in ionization probabilities and shifts in the energy distribution of secondary ions.The ionization probabilities are influenced by pivotal parameters such as the material's work function and electron affinity.The derivation of these parameters hinges upon the energy gap's positioning relative to the vacuum level for varying values of within the Pb_(1-x)Sn_(x)Te compound.The findings elucidate noteworthy alterations in SIMS signals,particularly near the critical point of band-gap closing.展开更多
Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by ...Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by developing the Ne Train Sim simulator for heavy long-haul freight trains on a network of multiple intersecting tracks. The main objective of this simulator is to enable a comprehensive analysis of energy consumption and the associated carbon footprint for the entire train system. Four case studies were conducted to demonstrate the simulator's performance. The first case study validates the model by comparing Ne Train Sim output to empirical trajectory data. The results demonstrate that the simulated trajectory is precise enough to estimate the train energy consumption and carbon dioxide emissions. The second application demonstrates the train-following model considering six trains following each other. The results showcase the model ability to maintain safefollowing distances between successive trains. The next study highlights the simulator's ability to resolve train conflicts for different scenarios. Finally, the suitability of the Ne Train Sim for modeling realistic railroad networks is verified through the modeling of the entire US network and comparing alternative powertrains on the fleet energy consumption.展开更多
Mg of Gap doping characteristics in MOCVD have been studied by using SIMS (Secondary Ion Mass Spectrometry) measurement. The experimental results show that the Mg incorporation is considered to be limited by Mg revapo...Mg of Gap doping characteristics in MOCVD have been studied by using SIMS (Secondary Ion Mass Spectrometry) measurement. The experimental results show that the Mg incorporation is considered to be limited by Mg revaporization from the growth surface under the higher temperature and the Mg electrical activity decreases with increasing cP2Mg flow-rate. The activation energy of Mg in GaP is also respectively obtained.展开更多
文摘This paper introduces a pioneering application of secondary ion mass spectrometry(SIMS)for estimating the electronic properties of Pb_(1-x)Sn_(x)Te,a compound categorized as a topological crystalline insulator.The proposed approach marks the first application of SIMS for such estimations and focuses on investigating variations in ionization probabilities and shifts in the energy distribution of secondary ions.The ionization probabilities are influenced by pivotal parameters such as the material's work function and electron affinity.The derivation of these parameters hinges upon the energy gap's positioning relative to the vacuum level for varying values of within the Pb_(1-x)Sn_(x)Te compound.The findings elucidate noteworthy alterations in SIMS signals,particularly near the critical point of band-gap closing.
基金funded in part by the Advanced Research Projects AgencyEnergy (ARPA-E), U.S. Department of Energy, under award number DE-AR0001471。
文摘Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by developing the Ne Train Sim simulator for heavy long-haul freight trains on a network of multiple intersecting tracks. The main objective of this simulator is to enable a comprehensive analysis of energy consumption and the associated carbon footprint for the entire train system. Four case studies were conducted to demonstrate the simulator's performance. The first case study validates the model by comparing Ne Train Sim output to empirical trajectory data. The results demonstrate that the simulated trajectory is precise enough to estimate the train energy consumption and carbon dioxide emissions. The second application demonstrates the train-following model considering six trains following each other. The results showcase the model ability to maintain safefollowing distances between successive trains. The next study highlights the simulator's ability to resolve train conflicts for different scenarios. Finally, the suitability of the Ne Train Sim for modeling realistic railroad networks is verified through the modeling of the entire US network and comparing alternative powertrains on the fleet energy consumption.
文摘Mg of Gap doping characteristics in MOCVD have been studied by using SIMS (Secondary Ion Mass Spectrometry) measurement. The experimental results show that the Mg incorporation is considered to be limited by Mg revaporization from the growth surface under the higher temperature and the Mg electrical activity decreases with increasing cP2Mg flow-rate. The activation energy of Mg in GaP is also respectively obtained.