期刊文献+
共找到200,319篇文章
< 1 2 250 >
每页显示 20 50 100
CmbHLH110,a novel bHLH transcription factor,accelerates flowering in chrysanthemum
1
作者 Yaoyao Huang Xiaojuan Xing +7 位作者 Jinyu Jin Yun Tang Lian Ding Aiping Song Sumei Chen Fadi Chen Jiafu Jiang Weimin Fang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第6期1437-1448,共12页
Basic helix-loop-helix(bHLH)transcription factor gene family in plants controls various growth and development aspects;however,the actual roles of these genes in flowering plants are not well known.In this study,a nov... Basic helix-loop-helix(bHLH)transcription factor gene family in plants controls various growth and development aspects;however,the actual roles of these genes in flowering plants are not well known.In this study,a novel bHLH protein CmbHLH110 was found to interact with CmERF110 by in vitro and in vivo experiments,a chrysanthemum ERF110 homolog that acts as a positive flowering regulator.In addition,CmbHLH110 was also found to regulate the flowering of chrysanthemums,overexpression of CmbHLH110 causes chrysanthemums to flower earlier,and suppressed CmbHLH110 leads to delayed flowering.Furthermore,the loss-of-function Arabidopsis mutant of its homologue PERICYCLE FACTOR TYPE-A 5(PFA5)had a noticeable late flowering phenotype,and CmbHLH110 completely complemented the late flowering phenotype of the pfa5 mutant,whereas heterologous overexpression of CmbHLH110 in Arabidopsis Col-0 caused early flowering.Transcriptome sequencing revealed significant differential expression of flowering-related and circadian clock-related genes in transgenic chrysanthemum.Therefore,we concluded that CmbHLH110,as a novel flowering regulator,could interact with CmERF110 to regulate flowering in chrysanthemum. 展开更多
关键词 chrysanthemum CmbHLH110 PFA5 FLOWERING Circadian clock
下载PDF
Transcriptomic Analysis Reveals the Formation Mechanism of Anthocyanins Light-Independent Synthesis in Chrysanthemum
2
作者 Fangye Liu Jiaping Qu +6 位作者 Yajun Li Jiawei Fan Yumeng Cui Jingwen Wu Xueqi Gu Xia Li He Huang 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第7期1599-1621,共23页
Chrysanthemum×morifolium is a horticultural crop which plays a vital role in theflower industry with signifi-cant economic value and has a cultivation history of over three thousand years in China.The accumulation ... Chrysanthemum×morifolium is a horticultural crop which plays a vital role in theflower industry with signifi-cant economic value and has a cultivation history of over three thousand years in China.The accumulation of anthocyanins is always affected by light.Here,we revealed that anthocyanin accumulation is highly dependent on light in‘2021135’genotype chrysanthemum,while it is light-independent in‘2001402’genotype chrysanthe-mum.However,no literature has been reported regarding the non-photosensitive chrysanthemum in anthocya-nins light-independent synthesis pathways.Through the phenotype analysis of 44 F1 generations,we found that light-independence is a dominant trait which can be stable inherited by progeny.The transcriptome of the rayflorets of‘2021135’and‘2001402’under light and bagging treatment were sequenced and analyzed.Based on weighted gene co-expression network analysis(WGCNA),K-means analysis,and Real-Time Quantitative Poly-merase Chain Reaction(RT-qPCR)analysis,16 genes were highly correlated with the anthocyanin content.The anthocyanin content of rayflorets treated with different light-quality conditions indicated that blue light signifi-cantly affected anthocyanin accumulations.Through Yeast one-hybrid analysis,CmBIC1.1 and CmBIC1.2 can directly regulate the anthocyanin structural gene CmCHS2.In our study,we revealed the important characteristics of light-independent anthocyanin synthesis in chrysanthemums and screened regulatory factors in light-depen-dent and light-independent anthocyanin synthesis pathways.The results laid the groundwork for subsequent ana-lysis of the molecular mechanism involved in the light-independent synthesis of anthocyanins in chrysanthemums. 展开更多
关键词 chrysanthemum non-photosensitive TRANsCRIPTOME anthocyanin biosynthesis
下载PDF
Flavonoid extracts from chrysanthemum with appropriate anthocyanins turn blue when exposed to iron ions
3
作者 Yanfei Li Jiaying Wang +8 位作者 Chenfei Lu Zhongman Wang Chengyan Deng Kang Gao Jingjing Li Zhijun Fang Hao Liu Yan Hong Silan Dai 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期837-852,共16页
Although some species that accumulate only cyanidin(Cy)in nature can produce blue flowers through iron ions,there has been no evidence of blue chrysanthemums being generated in this manner.This study revealed that fla... Although some species that accumulate only cyanidin(Cy)in nature can produce blue flowers through iron ions,there has been no evidence of blue chrysanthemums being generated in this manner.This study revealed that flavonoid extracts from the ray florets of the chrysanthemum cultivar‘Wandai Fengguang’turned blue when exposed to Fe^(3+).Samples that could turn blue were labeled as CB(Cy-determined blue flowers),while samples that did not turn blue were labeled as CN(Cy-determined non-blue flowers).After a series of experiments,a stable screening system was established using flavonoid extracts containing NaAc buffer at pH 5.5 and a total anthocyanin concentration(TAC)of 30 μmol·L^(-1),and the addition of Fe^(3+)from 0 to 0.25 μmol·L^(-1)allowed for the selection of five CB samples from 39 chrysanthemum cultivars.All five CB samples exhibited flower color phenotypes that belonged to Cluster-I with redness(a*)values ranging from 29.03 to 45.99,yellowness(b*)values from-11.31 to 3.77,and brightness(L*)values from 29.07 to 45.99.Additionally,the ratio of TAC to total luteolin concentration(TLC)was found to be a critical factor for distinguishing between CB and CN samples.To realize the desired blue hue in the flavonoid extracts with the participation of Fe^(3+),a TAC to TLC ratio of 2.25 and above is required.Moreover,the protoplasts and ray florets of CB samples that turned blue with the involvement of Fe^(2+)showed great potential for cultivating blue chrysanthemums through ferric-anthocyanin chelate.Overall,this study reveals that blue flowers can be cultivated through the increase in the iron ion concentration,combined with the accumulation of Cy. 展开更多
关键词 chrysanthemum×morifolium CYANIDIN Copigment Ferric-anthocyanin chelate Blue flower
下载PDF
FLOWERING LOCUS T(FT)in Photosensitive Type Chrysanthemum Accelerates Flowering in Arabidopsis
4
作者 Fenglan Wang Zhenyuan Cai +5 位作者 Zhimei Li Shilong Zhang Honghui Luo Qing Wu Hanhan Xia Yanhong Guo 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第4期819-830,共12页
FLOWERING LOCUS T(FT)is an important factor for integrating flowering signals through the photoperiod pathway,which significantly promotes flowering.Most chrysanthemum varieties are short-day plants,sensitive to the p... FLOWERING LOCUS T(FT)is an important factor for integrating flowering signals through the photoperiod pathway,which significantly promotes flowering.Most chrysanthemum varieties are short-day plants,sensitive to the photoperiod,which limits their ornamental and annual production supply.In this study,we aim to analyze the nutrients and flowering-related genes of chrysanthemums with different photoperiod types and to clone and verify the function of the flowering-related gene CmFT.We found that the formation of floral buds requires the accumulation of starch while consuming soluble sugars and the expression patterns of flowering-related genes GIGANTEA(GI),CONSTANS(CO),and FT in C.morifolium‘Zilian’and C.morifolium‘Zihongtuogui’had a certain synchronization during floral buds differentiation according to our quantitative validation,and the expression levels of CmGI,CmCO and CmFT in C.morifolium‘Zihongtuogui’were higher than those in C.morifolium.‘Zilian’in the later stage of differentiation.CmFT was cloned from photosensitive chrysanthemums-C.morifolium‘Zihongtuogui’and polypeptide alignment and phylogenetic analysis showed that CmFT was clustered in FT-like subfamily.In further functional verification,we obtained two Arabidopsis transgenic lines.Our results showed that CmFT transgenic ft mutant lines can significantly accelerate flowering in Arabidopsis.Thus,we can initially confirm that CmFT plays an important role in promoting flowering,which may be the key reason for the photosensitivity of C.morifolium‘Zihongtuogui’.Overall,the results of this study are of great importance in revealing the flowering mechanism of different photoperiod types of chrysanthemums. 展开更多
关键词 chrysanthemum morifolium flowering-related genes CmFT photoperiod pathway heterologous expression
下载PDF
Pharmacological effects of volatile oil from chrysanthemum and its associated mechanisms:a review
5
作者 Jing Zhang Weiqiang Su +6 位作者 Nina Filipczak Ying Luo Anping Wan Yao He Shijuan Yan Xiang Li Ming Yang 《Acupuncture and Herbal Medicine》 2024年第1期79-91,共13页
Volatile oil(VO)is the main chemical component of common plants in Chrysanthemum genus,and it possesses several beneficial pharmacological properties,including bacteriostatic,antioxidant,anti-tumor,anti-inflammatory,a... Volatile oil(VO)is the main chemical component of common plants in Chrysanthemum genus,and it possesses several beneficial pharmacological properties,including bacteriostatic,antioxidant,anti-tumor,anti-inflammatory,antipyretic,analgesic,antiosteoporotic,antihypertensive,sedative,and hypnotic effects.To date,research on the effective components of Chrysanthemum extract has mainly focused on flavonoids,whereas limited data are available on the chemical constituents and underlying mechanisms of action of the VO components.In this review,the pharmacological activities and mechanisms of VO are comprehensively reviewed with the aim of providing a foundation for further development for medicinal,aromatherapy,and diet therapy applications. 展开更多
关键词 Action mechanisms chrysanthemum Pharmacological activity Volatile oil
下载PDF
CmMYB3-like negatively regulates anthocyanin biosynthesis and flower color formation during the post-flowering stage in Chrysanthemum morifolium
6
作者 Lijie Zhou Shenhui Liu +6 位作者 Yiguang Wang Yuxi Wang Aiping Song Jiafu Jiang Sumei Chen Zhiyong Guan Fadi Chen 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第1期194-204,共11页
Color fading caused by a decrease in anthocyanin accumulation during the post-flowering stage significantly affects postharvest quality of chrysanthemum.However,the underlying mechanism by which anthocyanin accumulati... Color fading caused by a decrease in anthocyanin accumulation during the post-flowering stage significantly affects postharvest quality of chrysanthemum.However,the underlying mechanism by which anthocyanin accumulation decreases during the post-flowering stage still unclear,which greatly restricts design of molecular breeding in chrysanthemum.Here,a chrysanthemum SG7 R2R3 MYB transcription factor(TF),CmMYB3-like,was identified to have a function in regulating anthocyanin biosynthesis during the post-flowering stage.Quantitative real time PCR(qRT-PCR)assays showed that the expression of CmMYB3-like was gradually downregulated when anthocyanin content increased during the flowering stage and was significantly upregulated during the post-flowering stage.Genetic transformation of chrysanthemum and dual-luciferase assays in N.benthamiana leaves showed that CmMYB3-like suppressed anthocyanin accumulation by inhibiting the transcription of CmCHS and CmANS directly and that of CmF3H indirectly.However,overexpression or suppression of CmMYB3-like did not affect the biosynthesis of flavones or flavonols.Genetic transformation of chrysanthemum revealed that the overexpression of CmMYB3-like inhibited anthocyanin accumulation,but its suppression prevented the decrease in anthocyanin accumulation during the post-flowering stage.Our results revealed a crucial role of CmMYB3-like in regulating the color of petals during the post-flowering stage and provided a target gene for molecular design breeding to improve the postharvest quality of chrysanthemum. 展开更多
关键词 Post-flowering stage Color fading Anthocyanins CmMYB3-like chrysanthemum Molecular breeding
下载PDF
SphK1/S1P/S1PR2信号通路促进肌生成:运动改善骨骼肌健康的新视角
7
作者 张文华 李荀 +3 位作者 张伟超 李欣颖 马帼澳 王孝强 《中国组织工程研究》 CAS 北大核心 2025年第6期1265-1275,共11页
背景:近年来,运动改善骨骼肌的健康已成为学者们关注的一个重要研究内容,适宜的运动对骨骼肌具有积极的作用,其中在运动激活鞘氨醇激酶1(sphingosine kinase1,SphK1)/鞘氨醇-1-磷酸(sphingosine-1-phosphate,S1P)/鞘氨醇-1-磷酸受体2(sp... 背景:近年来,运动改善骨骼肌的健康已成为学者们关注的一个重要研究内容,适宜的运动对骨骼肌具有积极的作用,其中在运动激活鞘氨醇激酶1(sphingosine kinase1,SphK1)/鞘氨醇-1-磷酸(sphingosine-1-phosphate,S1P)/鞘氨醇-1-磷酸受体2(sphingosine-1-phosphate receptor2,S1PR2)信号通路如何改善骨骼肌的健康,正受到科研人员的重视。目的:研究运动经SphK1/S1P/S1PR2信号通路如何改善骨骼肌的健康,探索治疗相关肌肉疾病的新方法,以改善人的骨骼肌健康。方法:检索Web of Science、PubMed、中国知网、万方和维普数据库从建库至今与文章主题相关的文献,以“signaling pathway,SphK1,S1P,S1PR2,skeletal muscle,satellite cell,myogenesis,exercise”为英文检索词,以“信号通路,SphK1,S1P,S1PR2,骨骼肌,卫星细胞,肌生成,运动”为中文检索词,最终纳入69篇文献进行分析。结果与结论:①SphK1/S1P/S1PR2信号通路是一个复杂的调控网络,通过SphK1催化产生的S1P,与S1PR2等受体的相互作用,触发下游信号转导过程,进而调控细胞、组织、器官和系统的多种生物学功能。②SphK1/S1P/S1PR2信号通路能调控卫星细胞增殖和成肌细胞分化,改善肌生成。③文章通过文献资料调研法分析了SphK1/S1P/S1PR2信号通路的生理基础以及运动对其影响的可能性。急性有氧运动可提高骨骼肌中SphK1的表达,人体和动物研究中已证实急性和长期运动均可提高骨骼肌中S1P水平,另外研究表明长期抗阻运动可提高S1PR2在骨骼肌中的表达,部分实验结果表明急性和长期运动对肌肉或者血液中S1P水平无显著影响,出现不同结果的原因可能是选择的研究对象、方式、强度及频率不同,而具体机制尚不明确。④研究认为,运动能够促进SphK1/S1P/S1PR2信号通路在骨骼肌中的表达,调控下游相关信号通路,并且针对这一信号通路的研究可能为骨骼肌疾病的治疗提供新的策略和方法,从而改善骨骼肌健康。⑤未来应深化对SphK1/S1P/S1PR2信号通路与骨骼肌健康关联的研究,进一步揭示其与卫星细胞、成肌细胞的调控关系及与上下游通路的相互作用,挖掘其临床应用价值,制定康复方案时考虑该通路变化,探索不同运动对该通路的影响机制,并将其作为潜在治疗靶点,结合人体肌肉模型提升研究深度和准确性。 展开更多
关键词 sphK1/s1P/s1PR2信号通路 骨骼肌 运动 肌生成 卫星细胞 成肌细胞 机制
下载PDF
Gut microbiota-astrocyte axis: new insights into age-related cognitive decline
8
作者 Lan Zhang Jingge Wei +5 位作者 Xilei Liu Dai Li Xiaoqi Pang Fanglian Chen Hailong Cao Ping Lei 《Neural Regeneration Research》 SCIE CAS 2025年第4期990-1008,共19页
With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterati... With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota,microbial metabolites,and the functions of astrocytes.The microbiota–gut–brain axis has been the focus of multiple studies and is closely associated with cognitive function.This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases.This article also summarizes the gut microbiota components that affect astrocyte function,mainly through the vagus nerve,immune responses,circadian rhythms,and microbial metabolites.Finally,this article summarizes the mechanism by which the gut microbiota–astrocyte axis plays a role in Alzheimer’s and Parkinson’s diseases.Our findings have revealed the critical role of the microbiota–astrocyte axis in age-related cognitive decline,aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition. 展开更多
关键词 age aging Alzheimer’s disease AsTROCYTEs cognitive decline dementia gut microbiota gut–brain axis microbial metabolites NEUROINFLAMMATION Parkinson’s disease
下载PDF
Role of metabolic dysfunction and inflammation along the liver-brain axis in animal models with obesity-induced neurodegeneration
9
作者 Evridiki Asimakidou Eka Norfaishanty Saipuljumri +1 位作者 Chih Hung Lo Jialiu Zeng 《Neural Regeneration Research》 SCIE CAS 2025年第4期1069-1076,共8页
The interaction between metabolic dysfunction and inflammation is central to the development of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.Obesity-related conditions like type 2 d... The interaction between metabolic dysfunction and inflammation is central to the development of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.Obesity-related conditions like type 2 diabetes and non-alcoholic fatty liver disease exacerbate this relationship.Peripheral lipid accumulation,particularly in the liver,initiates a cascade of inflammatory processes that extend to the brain,influencing critical metabolic regulatory regions.Ceramide and palmitate,key lipid components,along with lipid transporters lipocalin-2 and apolipoprotein E,contribute to neuroinflammation by disrupting blood–brain barrier integrity and promoting gliosis.Peripheral insulin resistance further exacerbates brain insulin resistance and neuroinflammation.Preclinical interventions targeting peripheral lipid metabolism and insulin signaling pathways have shown promise in reducing neuroinflammation in animal models.However,translating these findings to clinical practice requires further investigation into human subjects.In conclusion,metabolic dysfunction,peripheral inflammation,and insulin resistance are integral to neuroinflammation and neurodegeneration.Understanding these complex mechanisms holds potential for identifying novel therapeutic targets and improving outcomes for neurodegenerative diseases. 展开更多
关键词 Alzheimer’s disease inflammatory cytokines insulin resistance LIPID
下载PDF
Differential distribution of PINK1 and Parkin in the primate brain implies distinct roles
10
作者 Yanting Liu Wei Huang +8 位作者 Jiayi Wen Xin Xiong Ting Xu Qi Wang Xiusheng Chen Xianxian Zhao Shihua Li Xiaojiang Li Weili Yang 《Neural Regeneration Research》 SCIE CAS 2025年第4期1124-1134,共11页
The vast majority of in vitro studies have demonstrated that PINK1 phosphorylates Parkin to work together in mitophagy to protect against neuronal degeneration.However,it remains largely unclear how PINK1 and Parkin a... The vast majority of in vitro studies have demonstrated that PINK1 phosphorylates Parkin to work together in mitophagy to protect against neuronal degeneration.However,it remains largely unclear how PINK1 and Parkin are expressed in mammalian brains.This has been difficult to address because of the intrinsically low levels of PINK1 and undetectable levels of phosphorylated Parkin in small animals.Understanding this issue is critical for elucidating the in vivo roles of PINK1 and Parkin.Recently,we showed that the PINK1 kinase is selectively expressed as a truncated form(PINK1–55)in the primate brain.In the present study,we used multiple antibodies,including our recently developed monoclonal anti-PINK1,to validate the selective expression of PINK1 in the primate brain.We found that PINK1 was stably expressed in the monkey brain at postnatal and adulthood stages,which is consistent with the findings that depleting PINK1 can cause neuronal loss in developing and adult monkey brains.PINK1 was enriched in the membrane-bound fractionations,whereas Parkin was soluble with a distinguishable distribution.Immunofluorescent double staining experiments showed that PINK1 and Parkin did not colocalize under physiological conditions in cultured monkey astrocytes,though they did colocalize on mitochondria when the cells were exposed to mitochondrial stress.These findings suggest that PINK1 and Parkin may have distinct roles beyond their well-known function in mitophagy during mitochondrial damage. 展开更多
关键词 NEURODEGENERATION PARKIN Parkinson’s disease PINK1 subcellular distribution
下载PDF
Comparative proteomic analysis of plasma exosomes reveals the functional contribution of N-acetyl-alpha-glucosaminidase to Parkinson’s disease
11
作者 Yuan Zhao Yidan Zhang +6 位作者 Xin Liu Jian Zhang Ya Gao Shuyue Li Cui Chang Xiang Liu Guofeng Yang 《Neural Regeneration Research》 SCIE CAS 2025年第10期2998-3012,共15页
Parkinson’s disease is the second most common progressive neurodegenerative disorder,and few reliable biomarkers are available to track disease progression.The proteins,DNA,mRNA,and lipids carried by exosomes reflect... Parkinson’s disease is the second most common progressive neurodegenerative disorder,and few reliable biomarkers are available to track disease progression.The proteins,DNA,mRNA,and lipids carried by exosomes reflect intracellular changes,and thus can serve as biomarkers for a variety of conditions.In this study,we investigated alterations in the protein content of plasma exosomes derived from patients with Parkinson’s disease and the potential therapeutic roles of these proteins in Parkinson’s disease.Using a tandem mass tag-based quantitative proteomics approach,we characterized the proteomes of plasma exosomes derived from individual patients,identified exosomal protein signatures specific to patients with Parkinson’s disease,and identified N-acetyl-alpha-glucosaminidase as a differentially expressed protein.N-acetyl-alpha-glucosaminidase expression levels in exosomes from the plasma of patients and healthy controls were validated by enzyme-linked immunosorbent assay and western blot.The results demonstrated that the exosomal N-acetyl-alpha-glucosaminidase concentration was not only lower in Parkinson’s disease,but also decreased with increasing Hoehn-Yahr stage,suggesting that N-acetyl-alpha-glucosaminidase could be used to rapidly evaluate Parkinson’s disease severity.Furthermore,western blot and immunohistochemistry analysis showed that N-acetyl-alpha-glucosaminidase levels were markedly reduced both in cells treated with 1-methyl-4-phenylpyridinium and cells overexpressingα-synuclein compared with control cells.Additionally,N-acetyl-alpha-glucosaminidase overexpression significantly increased cell viability and inhibitedα-synuclein expression in 1-methyl-4-phenylpyridinium-treated cells.Taken together,our findings demonstrate for the first time that exosomal N-acetyl-alpha-glucosaminidase may serve as a biomarker for Parkinson’s disease diagnosis,and that N-acetyl-alpha-glucosaminidase may reduceα-synuclein expression and 1-methyl-4-phenylpyridinium-induced neurotoxicity,thus providing a new therapeutic target for Parkinson’s disease. 展开更多
关键词 biomarker diagnosis EXOsOMEs N-acetyl-alpha-glucosaminidase Parkinson’s disease proteomic α-synuclein
下载PDF
Netrin-1 signaling pathway mechanisms in neurodegenerative diseases
12
作者 Kedong Zhu Hualong Wang +2 位作者 Keqiang Ye Guiqin Chen Zhaohui Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第4期960-972,共13页
Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal sur... Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function.Increasing amounts of evidence highlight several key points:(1)Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer’s disease and Parkinson’s disease,and potentially,similar alterations occur in humans.(2)Genetic mutations of Netrin-1 receptors increase an individuals’susceptibility to neurodegenerative disorders.(3)Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function.(4)Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers.These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases.Through a comprehensive review of Netrin-1 signaling pathways,our objective is to uncover potential therapeutic avenues for neurodegenerative disorders. 展开更多
关键词 Alzheimer’s disease axon guidance colorectal cancer Netrin-1 receptors Netrin-1 signaling pathways NETRIN-1 neurodegenerative diseases neuron survival Parkinson’s disease UNC5C
下载PDF
The autophagy-lysosome pathway:a potential target in the chemical and gene therapeutic strategies for Parkinson’s disease
13
作者 Fengjuan Jiao Lingyan Meng +1 位作者 Kang Du Xuezhi Li 《Neural Regeneration Research》 SCIE CAS 2025年第1期139-158,共20页
Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular... Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular degradation pathways,the autophagy-lysosome pathway plays an important role in eliminating these proteins.Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance ofα-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson’s disease.Moreover,multiple genes associated with the pathogenesis of Parkinson’s disease are intimately linked to alterations in the autophagy-lysosome pathway.Thus,this pathway appears to be a promising therapeutic target for treatment of Parkinson’s disease.In this review,we briefly introduce the machinery of autophagy.Then,we provide a description of the effects of Parkinson’s disease–related genes on the autophagy-lysosome pathway.Finally,we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy–lysosome pathway and their applications in Parkinson’s disease. 展开更多
关键词 AUTOPHAGY chemical therapy gene therapy Parkinson’s disease Α-sYNUCLEIN
下载PDF
Nanomaterials-mediated lysosomal regulation:a robust protein-clearance approach for the treatment of Alzheimer’s disease
14
作者 Mengqi Hao Jianjian Chu +8 位作者 Tinglin Zhang Tong Yin Yuankai Gu Wendanqi Liang Wenbo Ji Jianhua Zhuang Yan Liu Jie Gao You Yin 《Neural Regeneration Research》 SCIE CAS 2025年第2期424-439,共16页
Alzheimer’s disease is a debilitating,progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins,including amyloid plaques and intracellular tau tangles,primarily within... Alzheimer’s disease is a debilitating,progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins,including amyloid plaques and intracellular tau tangles,primarily within the brain.Lysosomes,crucial intracellular organelles responsible for protein degradation,play a key role in maintaining cellular homeostasis.Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases,including Alzheimer’s disease.Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer’s disease.Currently,the efficacy of drugs in treating Alzheimer’s disease is limited,with major challenges in drug delivery efficiency and targeting.Recently,nanomaterials have gained widespread use in Alzheimer’s disease drug research owing to their favorable physical and chemical properties.This review aims to provide a comprehensive overview of recent advances in using nanomaterials(polymeric nanomaterials,nanoemulsions,and carbon-based nanomaterials)to enhance lysosomal function in treating Alzheimer’s disease.This review also explores new concepts and potential therapeutic strategies for Alzheimer’s disease through the integration of nanomaterials and modulation of lysosomal function.In conclusion,this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer’s disease.The application of nanotechnology to the development of Alzheimer’s disease drugs brings new ideas and approaches for future treatment of this disease. 展开更多
关键词 Alzheimer’s disease autophagy dysfunction lysosomal acidification lysosomal system nanomaterials neurodegenerative diseases
下载PDF
Glycolytic dysregulation in Alzheimer's disease:unveiling new avenues for understanding pathogenesis and improving therapy
15
作者 You Wu Lijie Yang +2 位作者 Wanrong Jiang Xinyuan Zhang Zhaohui Yao 《Neural Regeneration Research》 SCIE CAS 2025年第8期2264-2278,共15页
Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments.The current therapeutic strategies,primarily based on choli... Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments.The current therapeutic strategies,primarily based on cholinesterase inhibitors and N-methyl-Daspartate receptor antagonists,offer limited symptomatic relief without halting disease progression,highlighting an urgent need for novel research directions that address the key mechanisms underlying Alzheimer's disease.Recent studies have provided insights into the critical role of glycolysis,a fundamental energy metabolism pathway in the brain,in the pathogenesis of Alzheimer's disease.Alterations in glycolytic processes within neurons and glial cells,including microglia,astrocytes,and oligodendrocytes,have been identified as significant contributors to the pathological landscape of Alzheimer's disease.Glycolytic changes impact neuronal health and function,thus offering promising targets for therapeutic intervention.The purpose of this review is to consolidate current knowledge on the modifications in glycolysis associated with Alzheimer's disease and explore the mechanisms by which these abnormalities contribute to disease onset and progression.Comprehensive focus on the pathways through which glycolytic dysfunction influences Alzheimer's disease pathology should provide insights into potential therapeutic targets and strategies that pave the way for groundbreaking treatments,emphasizing the importance of understanding metabolic processes in the quest for clarification and management of Alzheimer's disease. 展开更多
关键词 Alzheimer’s disease glial cells GLYCOLYsIs neuronal metabolism PATHOGENEsIs therapeutic targets
下载PDF
Decoding molecular mechanisms:brain aging and Alzheimer's disease
16
作者 Mahnoor Hayat Rafay Ali Syed +9 位作者 Hammad Qaiser Mohammad Uzair Khalid Al-Regaiey Roaa Khallaf Lubna Abdullah Mohammed Albassam Imdad Kaleem Xueyi Wang Ran Wang Mehwish SBhatti Shahid Bashir 《Neural Regeneration Research》 SCIE CAS 2025年第8期2279-2299,共21页
The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions a... The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions and cognitions,but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders,such as Alzheimer's disease.Beyond these observable,mild morphological shifts,significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain.Understanding these changes is important for maintaining cognitive health,especially given the increasing prevalence of age-related conditions that affect cognition.This review aims to explore the age-induced changes in brain plasticity and molecular processes,differentiating normal aging from the pathogenesis of Alzheimer's disease,thereby providing insights into predicting the risk of dementia,particularly Alzheimer's disease. 展开更多
关键词 Alzheimer’s disease brain aging cognitive health DEMENTIA molecular mechanisms neuronal activity NEUROPLAsTICITY NEUROTRANsMIssION
下载PDF
Targeting epigenetic mechanisms in amyloid-β-mediated Alzheimer’s pathophysiology:unveiling therapeutic potential
17
作者 Jennie Z.Li Nagendran Ramalingam Shaomin Li 《Neural Regeneration Research》 SCIE CAS 2025年第1期54-66,共13页
Alzheimer’s disease is a prominent chronic neurodegenerative condition characterized by a gradual decline in memory leading to dementia.Growing evidence suggests that Alzheimer’s disease is associated with accumulat... Alzheimer’s disease is a prominent chronic neurodegenerative condition characterized by a gradual decline in memory leading to dementia.Growing evidence suggests that Alzheimer’s disease is associated with accumulating various amyloid-βoligomers in the brain,influenced by complex genetic and environmental factors.The memory and cognitive deficits observed during the prodromal and mild cognitive impairment phases of Alzheimer’s disease are believed to primarily result from synaptic dysfunction.Throughout life,environmental factors can lead to enduring changes in gene expression and the emergence of brain disorders.These changes,known as epigenetic modifications,also play a crucial role in regulating the formation of synapses and their adaptability in response to neuronal activity.In this context,we highlight recent advances in understanding the roles played by key components of the epigenetic machinery,specifically DNA methylation,histone modification,and microRNAs,in the development of Alzheimer’s disease,synaptic function,and activity-dependent synaptic plasticity.Moreover,we explore various strategies,including enriched environments,exposure to non-invasive brain stimulation,and the use of pharmacological agents,aimed at improving synaptic function and enhancing long-term potentiation,a process integral to epigenetic mechanisms.Lastly,we deliberate on the development of effective epigenetic agents and safe therapeutic approaches for managing Alzheimer’s disease.We suggest that addressing Alzheimer’s disease may require distinct tailored epigenetic drugs targeting different disease stages or pathways rather than relying on a single drug. 展开更多
关键词 Alzheimer’s disease DNA methylation enriched environments histone modification microRNAs non-invasive brain stimulation synaptic plasticity
下载PDF
Emerging structures and dynamic mechanisms ofγ-secretase for Alzheimer’s disease
18
作者 Yinglong Miao Michael S.Wolfe 《Neural Regeneration Research》 SCIE CAS 2025年第1期174-180,共7页
γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ... γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general. 展开更多
关键词 Alzheimer’s disease amyloid precursor protein cryo-EM structures drug design intramembrane proteolysis molecular dynamics NOTCH
下载PDF
Additive neurorestorative effects of exercise and docosahexaenoic acid intake in a mouse model of Parkinson’s disease
19
作者 Olivier Kerdiles Méryl-Farelle Oye Mintsa Mi-mba +8 位作者 Katherine Coulombe Cyntia Tremblay VincentÉmond Martine Saint-Pierre Clémence Rouxel Line Berthiaume Pierre Julien Francesca Cicchetti Frédéric Calon 《Neural Regeneration Research》 SCIE CAS 2025年第2期574-586,共13页
There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson’s disease after diagnosis.Given that preclinical and clinical studies suggest benefits of dietary n-3 poly... There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson’s disease after diagnosis.Given that preclinical and clinical studies suggest benefits of dietary n-3 polyunsaturated fatty acids,such as docosahexaenoic acid,and exercise in Parkinson’s disease,we investigated whether both could synergistically interact to induce recovery of the dopaminergic pathway.First,mice received a unilateral stereotactic injection of 6-hydroxydopamine into the striatum to establish an animal model of nigrostriatal denervation.Four weeks after lesion,animals were fed a docosahexaenoic acid-enriched or a control diet for the next 8 weeks.During this period,the animals had access to a running wheel,which they could use or not.Docosahexaenoic acid treatment,voluntary exercise,or the combination of both had no effect on(i)distance traveled in the open field test,(ii)the percentage of contraversive rotations in the apomorphine-induction test or(iii)the number of tyrosine-hydroxylase-positive cells in the substantia nigra pars compacta.However,the docosahexaenoic acid diet increased the number of tyrosine-hydroxylase-positive terminals and induced a rise in dopamine concentrations in the lesioned striatum.Compared to docosahexaenoic acid treatment or exercise alone,the combination of docosahexaenoic acid and exercise(i)improved forelimb balance in the stepping test,(ii)decreased the striatal DOPAC/dopamine ratio and(iii)led to increased dopamine transporter levels in the lesioned striatum.The present results suggest that the combination of exercise and docosahexaenoic acid may act synergistically in the striatum of mice with a unilateral lesion of the dopaminergic system and provide support for clinical trials combining nutrition and physical exercise in the treatment of Parkinson’s disease. 展开更多
关键词 6-HYDROXYDOPAMINE DOPAMINE dopamine transporter EXERCIsE neurorestoration Parkinson’s disease polyunsaturated fatty acids omega-3
下载PDF
Preparation of Co/S co-doped carbon catalysts for excellent methylene blue degradation
20
作者 Haixu Li Haobo He +7 位作者 Tiannan Jiang Yunfei Du Zhichen Wu Liang Xu Xinjie Wang Xiaoguang Liu Wanhua Yu Wendong Xue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期169-181,共13页
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB... S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB. 展开更多
关键词 advanced oxidation process alcohol solvent evaporation hydrogen bond s and Co co-doped carbon catalysts wastewater remediation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部