Synthetic hexaploid wheat (SHW) represents a valuable source of new resistances to a range of biotic and abiotic stresses. A recombinant inbred line (RIL) population with 127 recombinant inbred lines derived from ...Synthetic hexaploid wheat (SHW) represents a valuable source of new resistances to a range of biotic and abiotic stresses. A recombinant inbred line (RIL) population with 127 recombinant inbred lines derived from a SHW-derived variety Chuanmai 42 crossing with a Chinese spring wheat variety Chuannong 16 was used to map QTLs for agronomic traits including grain yield, grains per square meter, thousand-kernel weight, spikes per square meter, grain number per spike, grains weight per spike, and biomass yield. The population was genotyped using 184 simple-sequence repeat (SSR) markers and 34 sequence-related amplified polymorphism (SRAP) markers. Of 76 QTLs (LOD〉2.5) identified, 42 were found to have a positive effect from Chuanmai 42. The QTL QGy.saas-4D.2 associated with grain yield on chromosome 4D was detected in four of the six environments and the combined analysis, and the mean yield, across six environments, of individuals carrying the Chuanmai 42 allele at this locus was 8.9% higher than that of those lines carrying the Chuannong 16 allele. Seven clusters of the yield-coincident QTLs were detected on 1A, 4A, 3B, 5B, 4D, and 7D.展开更多
基金supported by the Sichuan Provincial Youth Foundation,China (09ZQ026-086)the earmarked fund for Modern Agro-Industry Technology Research System,China (nycytx-03)+1 种基金the National 863 Program of China (2006AA10Z1C6)the National Natural Science Foundation of China (30771338 and30871532)
文摘Synthetic hexaploid wheat (SHW) represents a valuable source of new resistances to a range of biotic and abiotic stresses. A recombinant inbred line (RIL) population with 127 recombinant inbred lines derived from a SHW-derived variety Chuanmai 42 crossing with a Chinese spring wheat variety Chuannong 16 was used to map QTLs for agronomic traits including grain yield, grains per square meter, thousand-kernel weight, spikes per square meter, grain number per spike, grains weight per spike, and biomass yield. The population was genotyped using 184 simple-sequence repeat (SSR) markers and 34 sequence-related amplified polymorphism (SRAP) markers. Of 76 QTLs (LOD〉2.5) identified, 42 were found to have a positive effect from Chuanmai 42. The QTL QGy.saas-4D.2 associated with grain yield on chromosome 4D was detected in four of the six environments and the combined analysis, and the mean yield, across six environments, of individuals carrying the Chuanmai 42 allele at this locus was 8.9% higher than that of those lines carrying the Chuannong 16 allele. Seven clusters of the yield-coincident QTLs were detected on 1A, 4A, 3B, 5B, 4D, and 7D.