By investigating the interaction of an n-type silicon sample with the TM01 mode millimeter wave in a circular waveguide, a viable high-power TM01 millimeter wave sensor is proposed. Based on the hot electron effect, t...By investigating the interaction of an n-type silicon sample with the TM01 mode millimeter wave in a circular waveguide, a viable high-power TM01 millimeter wave sensor is proposed. Based on the hot electron effect, the silicon sample serving as a sensing element(SE) and appropriately mounted on the inner wall of the circular waveguide is devoted to the on-line measurement of a high-power millimeter wave pulse. A three-dimensional parallel finite-difference time-domain method is applied to simulate the wave propagation within the measuring structure. The transverse electric field distribution, the dependences of the frequency response of the voltage standing-wave ratio(VSWR) in the circular waveguide, and the average electric field amplitude within the SE on the electrophysical parameters of the SE are calculated and analyzed in the frequency range of 300–400 GHz. As a result, the optimal dimensions and specific resistance of the SE are obtained,which provide a VSWR of no more than 2.0, a relative sensitivity around 0.0046 kW-1 fluctuating within ±17.3%, and a maximum enduring power of about 4.3 MW.展开更多
Mode matching method is used to analyze the scattering characteristics of thecircular-to-circular groove waveguide junction. Matching the electric fields and magnetic fields atthe boundary of the junction, and multipl...Mode matching method is used to analyze the scattering characteristics of thecircular-to-circular groove waveguide junction. Matching the electric fields and magnetic fields atthe boundary of the junction, and multiplying the mode functions of the circular waveguide andcircular groove waveguide on both sides of the boundary equation, the scattering matrix equation isobtained, the scattering coefficients can be obtained from the equation. Then the scatteringcharacteristics of the iris with circular window in circular groove waveguide are analyzed. At lastthe convergent problem is discussed; when choosing a suitable mode group, convergent numericalresults are obtained, and the frequency response of the iris' scattering coefficients is also given.展开更多
The chiral materials were prepared by using the carbon fiber helices as chiral inclusions, and the composite of Fe3O4 and polyaniline as matrix. The electromagnetic properties, including the rotation angles, the axial...The chiral materials were prepared by using the carbon fiber helices as chiral inclusions, and the composite of Fe3O4 and polyaniline as matrix. The electromagnetic properties, including the rotation angles, the axial ratios and the complex chirality parameters, were measured by using a circular waveguide method in the 8.5-11.0 GHz frequency range. The dependence of these electromagnetic properties on the frequency and the concentration of the Fe3O4 in the composite matrix were analyzed. The results show that an appropriate concentration of Fe3O4 in the matrix is useful in improving the electromagnetic properties of the chiral material.展开更多
A novel surface wave plasma (SWP) source excited with cylindrical Teflon waveguide has been developed in our previous work. The plasma characteristics have been simply studied. In this work, our experimental device ...A novel surface wave plasma (SWP) source excited with cylindrical Teflon waveguide has been developed in our previous work. The plasma characteristics have been simply studied. In this work, our experimental device has been significantly improved by replacing the Teflon waveguide with a quartz rod, and then better microwave coupling and higher gas purity can be obtained during plasma discharge. The plasma spatial distributions, both in radial and axial directions, have been measured and the effect of gas pressure has been investigated. Plasma density profiles indicate that this plasma source can produce uniform plasma in an axial direction at low pressure, which shows its potential in plasma processing on a curved surface such as an inner tube wall. A simplified circular waveguide model has been used to explain the principle of plasma excitation. The distinguishing features and potential application of this kind of plasma source with a hardware improvement have been shown.展开更多
A novel plasmonic waveguide filter design based on three cascaded slot cavities is proposed. The cascaded nanocavities support a united resonant (UR) mode. Light is trapped in the middle nanocavity at telecom- muaic...A novel plasmonic waveguide filter design based on three cascaded slot cavities is proposed. The cascaded nanocavities support a united resonant (UR) mode. Light is trapped in the middle nanocavity at telecom- muaication wavelenEth (1550 rim) when the UR mode exists. This phenomenon leads to the efficient transmittance and high Q factor of the plasmonic filter. The resonant wavelength and Q factor can be easily modulated by the cavity radii and the waveguide width.展开更多
The cutoff characteristics of dielectric-filled circular holes embedded in a dispersive plasmonic medium are investigated. Since two distinctive operating modes, surface plasmon polariton and circular waveguide modes,...The cutoff characteristics of dielectric-filled circular holes embedded in a dispersive plasmonic medium are investigated. Since two distinctive operating modes, surface plasmon polariton and circular waveguide modes, can exist in the slow and fast wave regions, respectively, the cutoff characteristics for each are separately investigated for linear and radial polarizations of the guided fields. As a result, the cutoff wavelengths for the linear and radial polarizations with very small subwavelength hole radii are found to be limited by the plasma resonance wavelength and plasma wavelength, which in turn are dependent and independent, respectively, of the dielectric constant of the dielectric filler material.展开更多
We propose a scheme for carpet anti-cloak based on the transformation optics. An anti-cloak layer is designed, which can make the external electromagnetic waves break the carpet cloak shielding. The external electroma...We propose a scheme for carpet anti-cloak based on the transformation optics. An anti-cloak layer is designed, which can make the external electromagnetic waves break the carpet cloak shielding. The external electromagnetic waves can be detected under the carpet cloak, while not affecting the role of carpet cloak of stealth. The Jacobian transformation tensor is calculated by numerically solving the Laplace equations with proper boundary condition. Thus, it is possible to design tile anti-cloak layer of irregular shape. The simulation results demonstrate the feasibilities and flexibilities of the structure. Design details and full-wave simulation results are provided.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61231003)
文摘By investigating the interaction of an n-type silicon sample with the TM01 mode millimeter wave in a circular waveguide, a viable high-power TM01 millimeter wave sensor is proposed. Based on the hot electron effect, the silicon sample serving as a sensing element(SE) and appropriately mounted on the inner wall of the circular waveguide is devoted to the on-line measurement of a high-power millimeter wave pulse. A three-dimensional parallel finite-difference time-domain method is applied to simulate the wave propagation within the measuring structure. The transverse electric field distribution, the dependences of the frequency response of the voltage standing-wave ratio(VSWR) in the circular waveguide, and the average electric field amplitude within the SE on the electrophysical parameters of the SE are calculated and analyzed in the frequency range of 300–400 GHz. As a result, the optimal dimensions and specific resistance of the SE are obtained,which provide a VSWR of no more than 2.0, a relative sensitivity around 0.0046 kW-1 fluctuating within ±17.3%, and a maximum enduring power of about 4.3 MW.
文摘Mode matching method is used to analyze the scattering characteristics of thecircular-to-circular groove waveguide junction. Matching the electric fields and magnetic fields atthe boundary of the junction, and multiplying the mode functions of the circular waveguide andcircular groove waveguide on both sides of the boundary equation, the scattering matrix equation isobtained, the scattering coefficients can be obtained from the equation. Then the scatteringcharacteristics of the iris with circular window in circular groove waveguide are analyzed. At lastthe convergent problem is discussed; when choosing a suitable mode group, convergent numericalresults are obtained, and the frequency response of the iris' scattering coefficients is also given.
基金Hubei Provincial department of education(No.2000A4002)
文摘The chiral materials were prepared by using the carbon fiber helices as chiral inclusions, and the composite of Fe3O4 and polyaniline as matrix. The electromagnetic properties, including the rotation angles, the axial ratios and the complex chirality parameters, were measured by using a circular waveguide method in the 8.5-11.0 GHz frequency range. The dependence of these electromagnetic properties on the frequency and the concentration of the Fe3O4 in the composite matrix were analyzed. The results show that an appropriate concentration of Fe3O4 in the matrix is useful in improving the electromagnetic properties of the chiral material.
基金supported in part by National Natural Science of Foundation of China(Nos.11005021,51177017 and 11175049)the Grants-in-Aid for Scientific Research of Japan Society for the Promotion of Science(No.21110010)+1 种基金the Fudan University Excellent Doctoral Research Program(985 project)the Ph.D Programs Foundation of Ministry of Education of China(No.20120071110031)
文摘A novel surface wave plasma (SWP) source excited with cylindrical Teflon waveguide has been developed in our previous work. The plasma characteristics have been simply studied. In this work, our experimental device has been significantly improved by replacing the Teflon waveguide with a quartz rod, and then better microwave coupling and higher gas purity can be obtained during plasma discharge. The plasma spatial distributions, both in radial and axial directions, have been measured and the effect of gas pressure has been investigated. Plasma density profiles indicate that this plasma source can produce uniform plasma in an axial direction at low pressure, which shows its potential in plasma processing on a curved surface such as an inner tube wall. A simplified circular waveguide model has been used to explain the principle of plasma excitation. The distinguishing features and potential application of this kind of plasma source with a hardware improvement have been shown.
基金supported by the National Natural Science Foundation of China(No.61178004)the Research Fund for the Doctoral Program of Higher Education of China(No.20110031120005)+1 种基金Tianjin NaturalScience Foundation(Nos.12JCQNJC01100 and 13JC-QNJC01700)the Program for Changjiang Scholars and Innovative Research Team in Nankai University
文摘A novel plasmonic waveguide filter design based on three cascaded slot cavities is proposed. The cascaded nanocavities support a united resonant (UR) mode. Light is trapped in the middle nanocavity at telecom- muaication wavelenEth (1550 rim) when the UR mode exists. This phenomenon leads to the efficient transmittance and high Q factor of the plasmonic filter. The resonant wavelength and Q factor can be easily modulated by the cavity radii and the waveguide width.
文摘The cutoff characteristics of dielectric-filled circular holes embedded in a dispersive plasmonic medium are investigated. Since two distinctive operating modes, surface plasmon polariton and circular waveguide modes, can exist in the slow and fast wave regions, respectively, the cutoff characteristics for each are separately investigated for linear and radial polarizations of the guided fields. As a result, the cutoff wavelengths for the linear and radial polarizations with very small subwavelength hole radii are found to be limited by the plasma resonance wavelength and plasma wavelength, which in turn are dependent and independent, respectively, of the dielectric constant of the dielectric filler material.
基金financially supported by the National Natural Science Foundation of China under Grant No.61275130
文摘We propose a scheme for carpet anti-cloak based on the transformation optics. An anti-cloak layer is designed, which can make the external electromagnetic waves break the carpet cloak shielding. The external electromagnetic waves can be detected under the carpet cloak, while not affecting the role of carpet cloak of stealth. The Jacobian transformation tensor is calculated by numerically solving the Laplace equations with proper boundary condition. Thus, it is possible to design tile anti-cloak layer of irregular shape. The simulation results demonstrate the feasibilities and flexibilities of the structure. Design details and full-wave simulation results are provided.