In this study, a group of indices were defined regarding intensity (P), area (S) and central position (λc, Фc) of the Aleutian low (AL) in the Northern Hemisphere in winter, using seasonal and monthly mean h...In this study, a group of indices were defined regarding intensity (P), area (S) and central position (λc, Фc) of the Aleutian low (AL) in the Northern Hemisphere in winter, using seasonal and monthly mean height field at 1000-hPa. These indices were calculated over 60 winter seasons from 1948/1949 to 2007/2008 using reanalysis data. Climatic and anomalous characteristics of the AL were analyzed based on these indices and relationships between the AL, and general circulations were explored using correlations between indicesP, λc, and Pacific SST, as well as Northern Hemisphere temperature and precipitation. The main results are these: (1) AL is the strongest in January, when the center shifts to the south and west of its climatological position, and it is the weakest in December when the center shifts to the north and east. (2) AL intensity (P) is negatively correlated with its longitude (λc): a deeper low occurs toward the east and a shallower low occurs toward the west. On a decadal scale, the AL has been persistently strong and has shifted eastward since the 1970s, but reversal signs have been observed in recent years. (3) The AL is stronger and is located toward the east during strong E1 Nifio winters and vice versa during strong La Nifia years; this tendency is particularly evident after 1975. The AL is also strongly correlated with SST in the North Pacific. It intensifies and moves eastward with negative SST anomalies, and it weakens and moves westward with positive SST anomalies. (4) Maps of significance correlation between AL intensity and Northern Hemisphere temperature and rainfall resemble the PNA teleconnection pattern in mid-latitudes in the North Pacific and across North America. The AL and the Mongolian High are two permanent atmospheric pressure systems adjacent to each other during boreal winter over the middle and high latitudes in the Northern Hemisphere, but their relationships with the E1 Nifio/La Nifia events and with temperature and precipitation in the Northern Hemisphere are significantly different.展开更多
A set of circulation indices are defined and calculated to characterize monthly mean polar vortex at 10 hPa geopotential height chart in the Northern Hemisphere,including area–(S),intensity–(P) and center position (...A set of circulation indices are defined and calculated to characterize monthly mean polar vortex at 10 hPa geopotential height chart in the Northern Hemisphere,including area–(S),intensity–(P) and center position (λc,φc)–indices by use of 1948–2007 NCEP/NCAR 10 hPa monthly height data.These indices series are used to investigate the seasonal variation and interannual anomaly of polar vortex,along with the relations with global warming,ozone anomaly and Arctic Oscillation (AO).The results show that (1) there is anticyclonic (cyclonic) from Jun.to Aug.(from Sep.to Mar.).The change of spring circulation pattern is slower than that of autumn.(2) S can be replaced by P due to the interannual synchronal variations of the intensity and area for polar vortex.The interannual (interdecadal) variations of P are significant in Jan.(Jul.).(3) The anomalies of system center position in Jan.are more evident than that in Jul.(4) The variations of mean temperature at mid-stratosphere in the vicinity of pole zone in Jan.are different from that in Jul.,but they are synchronal with the corresponding P and not significant correlation with the trend of global warming.However,the relationship between P and total O3 in Jul.are obvious.(5) There is so notable correlation between P and AO that P can represent AO.展开更多
Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of...Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of 40 meteorological stations and nine monthly large-scale ocean-atmospheric circulation indices data during 1959–2019,we present an assessment of the spatial and temporal variations of extreme temperature and precipitation events in the HRB using nine extreme climate indices,and analyze the teleconnection relationship between extreme climate indices and large-scale ocean-atmospheric circulation indices.The results show that warm extreme indices show a significant(P < 0.05) increasing trend,while cold extreme indices(except for cold spell duration) and diurnal temperature range(DTR) show a significant decreasing trend.Furthermore,all extreme temperature indices show significant mutations during 1959-2019.Spatially,a stronger warming trend occurs in eastern HRB than western HRB,while maximum 5-d precipitation(Rx5day) and rainstorm days(R25) show an increasing trend in the southern,central,and northwestern regions of HRB.Arctic oscillation(AO),Atlantic multidecadal oscillation(AMO),and East Atlantic/Western Russia(EA/WR) have a stronger correlation with extreme climate indices compared to other circulation indices.AO and AMO(EA/WR) exhibit a significant(P < 0.05) negative(positive)correlation with frost days and diurnal temperature range.Extreme warm events are strongly correlated with the variability of AMO and EA/WR in most parts of HRB,while extreme cold events are closely related to the variability of AO and AMO in eastern HRB.In contrast,AMO,AO,and EA/WR show limited impacts on extreme precipitation events in most parts of HRB.展开更多
Methods of calculating the basic hydrological characteristics of a water resource assessment, as well as the planning and manage- ment of their long-term use are based upon the concept of stationarity of long-term flo...Methods of calculating the basic hydrological characteristics of a water resource assessment, as well as the planning and manage- ment of their long-term use are based upon the concept of stationarity of long-term flow fluctuations. However, data of researches by hydrologists and climatologists clearly indicate that there are long-period changes in the characteristics of precipitation and riv- er flow. This article discusses the variations of annual precipitation and fiver flow in the Ishim River Basin in Kazakhstan, based on the W, C and E classification developed by GY. Vangengeim who analyzed the long-term variability of anomalies by the num- ber of days with some form of atmospheric circulation. From this study, the largest anomaly of the macro-circulation processes was revealed, and a comparative analysis of the number of days with various forms of atmospheric circulation and precipitation anomalies was made. It was demonstrated that the nature of atmospheric circulation depends on the distribution of precipitation; however, precipitation is also highly dependent on local physiographic conditions. The analysis of anomalous precipitation during the maximum number of days of positive anomalies with various forms of atmospheric circulation was also carried out. This study presents some results t^om the preliminary analysis of annual river flow linked with forms of atmospheric circulation.展开更多
A prerequisite of a successful statistical downscaling is that large-scale predictors simulated by the General Circulation Model (GCM) must be realistic. It is assumed here that features smaller than the GCM resolutio...A prerequisite of a successful statistical downscaling is that large-scale predictors simulated by the General Circulation Model (GCM) must be realistic. It is assumed here that features smaller than the GCM resolution are important in determining the realism of the large-scale predictors. It is tested whether a three-step method can improve conventional one-step statistical downscaling. The method uses predictors that are upscaled from a dynamical downscaling instead of predictors taken directly from a GCM simulation. The method is applied to downscaling of monthly precipitation in Sweden. The statistical model used is a multiple regression model that uses indices of large-scale atmospheric circulation and 850-hPa specific humidity as predictors. Data from two GCMs (HadCM2 and ECHAM4) and two RCM experiments of the Rossby Centre model (RCA1) driven by the GCMs are used. It is found that upscaled RCA1 predictors capture the seasonal cycle better than those from the GCMs, and hence increase the reliability of the downscaled precipitation. However, there are only slight improvements in the simulation of the seasonal cycle of downscaled precipitation. Due to the cost of the method and the limited improvements in the downscaling results, the three-step method is not justified to replace the one-step method for downscaling of Swedish precipitation.展开更多
By use of 1948-2007 NCEP/NCAR reanalysis monthly geopotential data, a set of circulation indices are defined to characterize the polar vortex at 10 hPa in the Southern Hemisphere, including area-(S), intensity-(P)...By use of 1948-2007 NCEP/NCAR reanalysis monthly geopotential data, a set of circulation indices are defined to characterize the polar vortex at 10 hPa in the Southern Hemisphere, including area-(S), intensity-(P) and centre position-(λc , φc) indices. Sea-sonal variation, interannual anomalies and their possible causes of 10 hPa polar vortex in the Southern Hemisphere are analyzed by using these indices, the relationship between 10 hPa polar vortex strength and the Antarctic Oscillation are analyzed as well. The results show that: (1) the polar region at 10 hPa in the Southern Hemisphere is controlled by anticyclone (cyclone) from Dec. to Jan. (from Mar. to Oct.), Feb. and Nov. are circulation transition seasons. (2) Intensity index (P) and area index (S) of anticy-clone (cyclone) in Jan. (Jul.) show a significant spike in the late 1970s, the anticyclone (cyclone) enhances (weakens) from ex-tremely weak (strong) oscillation to near the climatic mean before a spike, anticyclone tends to the mean state from very strong oscillation and cyclone oscillates in the weaker state after the spike. (3) There is significant interdecadal change for the anticyclone center in Jan., while markedly interannual variation for cyclone center in July. (4) The ozone anomalies can cause the interannual anomaly of the polar anticyclone at 10 hPa in the Southern Hemisphere in Jan. (positive correlation between them), but it is not related to the polar cyclone anomalies. (5) There is notable negative correlation between the polar vortex intensity index P and the Antarctic Oscillation index (AAOI), thus AAOI can be represented by P.展开更多
Sea Level Pressure(SLP) data for the period 1950–2012 at 61 stations located in or around the Balkan Peninsula was used. The main concept is that intra-annual course of SLP represents the best different air masses ...Sea Level Pressure(SLP) data for the period 1950–2012 at 61 stations located in or around the Balkan Peninsula was used. The main concept is that intra-annual course of SLP represents the best different air masses that are situated over the Balkan Peninsula during the year. The method for differentiation of climatic zones is cluster analysis. A hierarchical clustering technique–average linkage between groups with Pearson correlation for measurement of intervals was employed in the research. The climate of the Balkan Peninsula is transitional between oceanic and continental and also between subtropical and temperate climates. Several major changes in atmospheric circulation over the Balkan Peninsula have happened over the period 1950–2012. There is a serious increase of the influence of the Azores High in the period January–Marchwhich leads to an increase of SLP and enhances oceanic influence. There is an increase of the influence of the north-west extension of the monsoonal low in the period June–September. This leads to more continental climatebut also to more tropical air masses over the Balkan Peninsula. Accordinglythe extent of subtropical climate widens in northern direction. There is an increase of the influence of the Siberian High in the period October–December. This influence covers central and eastern part of the peninsula in October and Novemberand it reaches western parts in December. Thusthe climate becomes more continental.展开更多
The critical roles of oxygen homeostasis in metabolism are indisputable and hypoxic responses are correlated with the pathogenesis of gastrointestinal, pulmonary, renal diseases and cancers. Evaluating tissue hypoxia ...The critical roles of oxygen homeostasis in metabolism are indisputable and hypoxic responses are correlated with the pathogenesis of gastrointestinal, pulmonary, renal diseases and cancers. Evaluating tissue hypoxia to predict treatment outcome is challenging, however, due to the lack of rapid, accurate and non-invasive methods. Hypoxia enhances prolyl-4-hydroxylase a1(P4HA1) expression, which can convert bradykinin(BK) to hydroxyprolyl-BK(Hyp-BK), leading us to hypothesize that circulating Hyp-BK/BK ratios may reflect tissue hypoxia and predict treatment outcomes. Direct quantification of Hyp-BK peptides in serum or plasma by conventional MALDI-TOF MS analysis is technically challenging. In our study, a nanopore-based fractionation and enrichment protocol was utilized to allow the simple workflow for circulating Hyp-BK/BK analysis. Hypoxia is linked to poor prognosis due to its role in promoting pancreatic cancer progression and metastasis. Here we show that P4HA1 expression was increased in pancreatic tumors versus adjacent tissue, associated with poor survival, and corresponded with tumor expression of the hypoxia inducible factor 1a(HIF-1a) and carbonic anhydrase 9(CA9). Hypoxiainduced P4HA1 expression and BK conversion to Hyp-BK were found to be HIF-1 a dependent, pretreatment serum Hyp-BK/BK ratios corresponded with tissue HIF-1 a and P4HA1 expression, and high Hyp-BK/BK levels corresponded with poor response to therapy. These results suggest that pretreatment circulating Hyp-BK/BK ratios may have value as a non-invasive, surrogate indicator of tissue hypoxia and tumor responses to therapy.展开更多
Metastases may occur in node-negative breast cancer patients. It indicates that breast cancer cells can bypass regional lymph nodes and hematogenously disseminate to distant organs. In a recent paper (Clin Cancer Res ...Metastases may occur in node-negative breast cancer patients. It indicates that breast cancer cells can bypass regional lymph nodes and hematogenously disseminate to distant organs. In a recent paper (Clin Cancer Res 2006, 12:1715-1720) , Wulfing et al. evaluated the prognostic value of blood-borne, HER2-positive circulating tumor cells (CTC) in the peripheral blood from 42 breast cancer patients with a median follow-up of 95 months. HER2-展开更多
基金supported by National Key Technology Research and Development Program (Grant No. 2007BAC29B02)the National Basic Research Program of China’s 973 Program (Grant Nos.2010CB950502 and 2010CB428904)the project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘In this study, a group of indices were defined regarding intensity (P), area (S) and central position (λc, Фc) of the Aleutian low (AL) in the Northern Hemisphere in winter, using seasonal and monthly mean height field at 1000-hPa. These indices were calculated over 60 winter seasons from 1948/1949 to 2007/2008 using reanalysis data. Climatic and anomalous characteristics of the AL were analyzed based on these indices and relationships between the AL, and general circulations were explored using correlations between indicesP, λc, and Pacific SST, as well as Northern Hemisphere temperature and precipitation. The main results are these: (1) AL is the strongest in January, when the center shifts to the south and west of its climatological position, and it is the weakest in December when the center shifts to the north and east. (2) AL intensity (P) is negatively correlated with its longitude (λc): a deeper low occurs toward the east and a shallower low occurs toward the west. On a decadal scale, the AL has been persistently strong and has shifted eastward since the 1970s, but reversal signs have been observed in recent years. (3) The AL is stronger and is located toward the east during strong E1 Nifio winters and vice versa during strong La Nifia years; this tendency is particularly evident after 1975. The AL is also strongly correlated with SST in the North Pacific. It intensifies and moves eastward with negative SST anomalies, and it weakens and moves westward with positive SST anomalies. (4) Maps of significance correlation between AL intensity and Northern Hemisphere temperature and rainfall resemble the PNA teleconnection pattern in mid-latitudes in the North Pacific and across North America. The AL and the Mongolian High are two permanent atmospheric pressure systems adjacent to each other during boreal winter over the middle and high latitudes in the Northern Hemisphere, but their relationships with the E1 Nifio/La Nifia events and with temperature and precipitation in the Northern Hemisphere are significantly different.
基金supported by the National Key Technology R&D Program (Grant No.2008BAC48B02)
文摘A set of circulation indices are defined and calculated to characterize monthly mean polar vortex at 10 hPa geopotential height chart in the Northern Hemisphere,including area–(S),intensity–(P) and center position (λc,φc)–indices by use of 1948–2007 NCEP/NCAR 10 hPa monthly height data.These indices series are used to investigate the seasonal variation and interannual anomaly of polar vortex,along with the relations with global warming,ozone anomaly and Arctic Oscillation (AO).The results show that (1) there is anticyclonic (cyclonic) from Jun.to Aug.(from Sep.to Mar.).The change of spring circulation pattern is slower than that of autumn.(2) S can be replaced by P due to the interannual synchronal variations of the intensity and area for polar vortex.The interannual (interdecadal) variations of P are significant in Jan.(Jul.).(3) The anomalies of system center position in Jan.are more evident than that in Jul.(4) The variations of mean temperature at mid-stratosphere in the vicinity of pole zone in Jan.are different from that in Jul.,but they are synchronal with the corresponding P and not significant correlation with the trend of global warming.However,the relationship between P and total O3 in Jul.are obvious.(5) There is so notable correlation between P and AO that P can represent AO.
基金Under the auspices of National Natural Science Foundation of China(No.52279016,51909106,51879108,42002247,41471160)Natural Science Foundation of Guangdong Province,China(No.2020A1515011038,2020A1515111054)+1 种基金Special Fund for Science and Technology Development in 2016 of Department of Science and Technology of Guangdong Province,China(No.2016A020223007)the Project of Jinan Science and Technology Bureau(No.2021GXRC070)。
文摘Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of 40 meteorological stations and nine monthly large-scale ocean-atmospheric circulation indices data during 1959–2019,we present an assessment of the spatial and temporal variations of extreme temperature and precipitation events in the HRB using nine extreme climate indices,and analyze the teleconnection relationship between extreme climate indices and large-scale ocean-atmospheric circulation indices.The results show that warm extreme indices show a significant(P < 0.05) increasing trend,while cold extreme indices(except for cold spell duration) and diurnal temperature range(DTR) show a significant decreasing trend.Furthermore,all extreme temperature indices show significant mutations during 1959-2019.Spatially,a stronger warming trend occurs in eastern HRB than western HRB,while maximum 5-d precipitation(Rx5day) and rainstorm days(R25) show an increasing trend in the southern,central,and northwestern regions of HRB.Arctic oscillation(AO),Atlantic multidecadal oscillation(AMO),and East Atlantic/Western Russia(EA/WR) have a stronger correlation with extreme climate indices compared to other circulation indices.AO and AMO(EA/WR) exhibit a significant(P < 0.05) negative(positive)correlation with frost days and diurnal temperature range.Extreme warm events are strongly correlated with the variability of AMO and EA/WR in most parts of HRB,while extreme cold events are closely related to the variability of AO and AMO in eastern HRB.In contrast,AMO,AO,and EA/WR show limited impacts on extreme precipitation events in most parts of HRB.
基金supported by the al-Faraby Kazakh National University(KazNU)the Institute of Geography of the Ministry of Education and Science
文摘Methods of calculating the basic hydrological characteristics of a water resource assessment, as well as the planning and manage- ment of their long-term use are based upon the concept of stationarity of long-term flow fluctuations. However, data of researches by hydrologists and climatologists clearly indicate that there are long-period changes in the characteristics of precipitation and riv- er flow. This article discusses the variations of annual precipitation and fiver flow in the Ishim River Basin in Kazakhstan, based on the W, C and E classification developed by GY. Vangengeim who analyzed the long-term variability of anomalies by the num- ber of days with some form of atmospheric circulation. From this study, the largest anomaly of the macro-circulation processes was revealed, and a comparative analysis of the number of days with various forms of atmospheric circulation and precipitation anomalies was made. It was demonstrated that the nature of atmospheric circulation depends on the distribution of precipitation; however, precipitation is also highly dependent on local physiographic conditions. The analysis of anomalous precipitation during the maximum number of days of positive anomalies with various forms of atmospheric circulation was also carried out. This study presents some results t^om the preliminary analysis of annual river flow linked with forms of atmospheric circulation.
基金supported by grants from the Chinese Ministry of Science and Technology(2001BA611B-01)the Chinese Academy of Sciences,and SWECLIM which is financed by MISTRA and SMHI.
文摘A prerequisite of a successful statistical downscaling is that large-scale predictors simulated by the General Circulation Model (GCM) must be realistic. It is assumed here that features smaller than the GCM resolution are important in determining the realism of the large-scale predictors. It is tested whether a three-step method can improve conventional one-step statistical downscaling. The method uses predictors that are upscaled from a dynamical downscaling instead of predictors taken directly from a GCM simulation. The method is applied to downscaling of monthly precipitation in Sweden. The statistical model used is a multiple regression model that uses indices of large-scale atmospheric circulation and 850-hPa specific humidity as predictors. Data from two GCMs (HadCM2 and ECHAM4) and two RCM experiments of the Rossby Centre model (RCA1) driven by the GCMs are used. It is found that upscaled RCA1 predictors capture the seasonal cycle better than those from the GCMs, and hence increase the reliability of the downscaled precipitation. However, there are only slight improvements in the simulation of the seasonal cycle of downscaled precipitation. Due to the cost of the method and the limited improvements in the downscaling results, the three-step method is not justified to replace the one-step method for downscaling of Swedish precipitation.
基金supported by National Key Technology R&D Program (Grant No. 2007BAC29B02)National Natural Science Foundation Director Fund (Grant No. 40940008)
文摘By use of 1948-2007 NCEP/NCAR reanalysis monthly geopotential data, a set of circulation indices are defined to characterize the polar vortex at 10 hPa in the Southern Hemisphere, including area-(S), intensity-(P) and centre position-(λc , φc) indices. Sea-sonal variation, interannual anomalies and their possible causes of 10 hPa polar vortex in the Southern Hemisphere are analyzed by using these indices, the relationship between 10 hPa polar vortex strength and the Antarctic Oscillation are analyzed as well. The results show that: (1) the polar region at 10 hPa in the Southern Hemisphere is controlled by anticyclone (cyclone) from Dec. to Jan. (from Mar. to Oct.), Feb. and Nov. are circulation transition seasons. (2) Intensity index (P) and area index (S) of anticy-clone (cyclone) in Jan. (Jul.) show a significant spike in the late 1970s, the anticyclone (cyclone) enhances (weakens) from ex-tremely weak (strong) oscillation to near the climatic mean before a spike, anticyclone tends to the mean state from very strong oscillation and cyclone oscillates in the weaker state after the spike. (3) There is significant interdecadal change for the anticyclone center in Jan., while markedly interannual variation for cyclone center in July. (4) The ozone anomalies can cause the interannual anomaly of the polar anticyclone at 10 hPa in the Southern Hemisphere in Jan. (positive correlation between them), but it is not related to the polar cyclone anomalies. (5) There is notable negative correlation between the polar vortex intensity index P and the Antarctic Oscillation index (AAOI), thus AAOI can be represented by P.
文摘Sea Level Pressure(SLP) data for the period 1950–2012 at 61 stations located in or around the Balkan Peninsula was used. The main concept is that intra-annual course of SLP represents the best different air masses that are situated over the Balkan Peninsula during the year. The method for differentiation of climatic zones is cluster analysis. A hierarchical clustering technique–average linkage between groups with Pearson correlation for measurement of intervals was employed in the research. The climate of the Balkan Peninsula is transitional between oceanic and continental and also between subtropical and temperate climates. Several major changes in atmospheric circulation over the Balkan Peninsula have happened over the period 1950–2012. There is a serious increase of the influence of the Azores High in the period January–Marchwhich leads to an increase of SLP and enhances oceanic influence. There is an increase of the influence of the north-west extension of the monsoonal low in the period June–September. This leads to more continental climatebut also to more tropical air masses over the Balkan Peninsula. Accordinglythe extent of subtropical climate widens in northern direction. There is an increase of the influence of the Siberian High in the period October–December. This influence covers central and eastern part of the peninsula in October and Novemberand it reaches western parts in December. Thusthe climate becomes more continental.
基金the Arizona Biomedical Research Commission(ABRC)young investigator awardthe Fred Hutchinson Cancer Research Center(0000917241)Tulane University Startup fund。
文摘The critical roles of oxygen homeostasis in metabolism are indisputable and hypoxic responses are correlated with the pathogenesis of gastrointestinal, pulmonary, renal diseases and cancers. Evaluating tissue hypoxia to predict treatment outcome is challenging, however, due to the lack of rapid, accurate and non-invasive methods. Hypoxia enhances prolyl-4-hydroxylase a1(P4HA1) expression, which can convert bradykinin(BK) to hydroxyprolyl-BK(Hyp-BK), leading us to hypothesize that circulating Hyp-BK/BK ratios may reflect tissue hypoxia and predict treatment outcomes. Direct quantification of Hyp-BK peptides in serum or plasma by conventional MALDI-TOF MS analysis is technically challenging. In our study, a nanopore-based fractionation and enrichment protocol was utilized to allow the simple workflow for circulating Hyp-BK/BK analysis. Hypoxia is linked to poor prognosis due to its role in promoting pancreatic cancer progression and metastasis. Here we show that P4HA1 expression was increased in pancreatic tumors versus adjacent tissue, associated with poor survival, and corresponded with tumor expression of the hypoxia inducible factor 1a(HIF-1a) and carbonic anhydrase 9(CA9). Hypoxiainduced P4HA1 expression and BK conversion to Hyp-BK were found to be HIF-1 a dependent, pretreatment serum Hyp-BK/BK ratios corresponded with tissue HIF-1 a and P4HA1 expression, and high Hyp-BK/BK levels corresponded with poor response to therapy. These results suggest that pretreatment circulating Hyp-BK/BK ratios may have value as a non-invasive, surrogate indicator of tissue hypoxia and tumor responses to therapy.
文摘Metastases may occur in node-negative breast cancer patients. It indicates that breast cancer cells can bypass regional lymph nodes and hematogenously disseminate to distant organs. In a recent paper (Clin Cancer Res 2006, 12:1715-1720) , Wulfing et al. evaluated the prognostic value of blood-borne, HER2-positive circulating tumor cells (CTC) in the peripheral blood from 42 breast cancer patients with a median follow-up of 95 months. HER2-