The cis-acting regulatory elements, e.g., promoters and ribosome binding sites (RBSs) with various desired properties, are building blocks widely used in synthetic biology for fine tuning gene expression. In the las...The cis-acting regulatory elements, e.g., promoters and ribosome binding sites (RBSs) with various desired properties, are building blocks widely used in synthetic biology for fine tuning gene expression. In the last decade, acquisition of a controllable regulatory element from a random library has been established and applied to control the protein expression and metabolic flux in different chassis cells. However, more rational strategies are still urgently needed to improve the efficiency and reduce the laborious screening and multifaceted characterizations. Building precise computational models that can predict the activity of regulatory elements and quantitatively design elements with desired strength have been demonstrated tremendous potentiality. Here, recent progress on construction of cis- acting regulatory element library and the quantitative predicting models for design of such elements are reviewed and discussed in detail.展开更多
Carotenoids are indispensable for both human health and plant survival.Citrus,is one of the fruit crops richest in carotenoid compounds,with approximately 115 kinds of carotenoids;tremendous diversity in carotenoids c...Carotenoids are indispensable for both human health and plant survival.Citrus,is one of the fruit crops richest in carotenoid compounds,with approximately 115 kinds of carotenoids;tremendous diversity in carotenoids composition and concentration exists among various species,showing different colors from nearly white to crimson.The carotenoid biosynthetic pathway and the key carotenogenic genes have been identified in citrus;however,the underlying regulatory mechanisms remain unclear.In this study,among the main species of genus Citrus(primitive,wild,and cultivated),we detected carotenoids in flavedo using High-Performance Liquid Chromatography,and analyzed variations in cis-acting elements in the promoters of key carotenoid pathway genes.Intriguingly,both carotenoid composition and content were generally increased during the evolution of citrus,and the corresponding variations in the promoters were identified,including the gain or loss of critical environmental stress-responsive elements and hormone-responsive elements,which are closely associated with carotenoid enhancement.In addition,pummelo has the most heat-responsive elements,but the Mangshan mandarin does not have this element in the promoters of PSY,which is highly related to their geographical origin and indicate that temperature is a critical environmental signal influencing carotenoid accumulation.Moreover,the abscisic acid-responsive motif was rich in almost all the seven species,but the ethylene-responsive motif was deficient,which demystified the unique phytohormone regulation mechanism of carotenoid accumulation in citrus.Overall,our study provides new insights into the molecular regulatory mechanism of carotenoid enhancement in the evolution of citrus,which can facilitate breeding and cultivation efforts to improve the nutritional quality and esthetic value in citrus and hopefully other fruit crops.展开更多
MicroRNAs (miRNAs) are derived from distinct loci in the genome and play crucial roles in RNA-mediated gene silencing mechanisms that regulate cellular processes during development and stress responses of plants. Th...MicroRNAs (miRNAs) are derived from distinct loci in the genome and play crucial roles in RNA-mediated gene silencing mechanisms that regulate cellular processes during development and stress responses of plants. The miRNAs are approximately 21 nucleotides long and code for the complementary strand to a larger genic mRNA. They are often found within the complementary primary transcript (pri-miRNAs). In the past few years, a growing number of soybean miRNAs have been discovered, however, little is known about the transcriptional regulation of these miRNAs. In this study, promoters and cis-acting elements of soybean miRNAs were analyzed using the genomic data for the first time. A total of 82 miRNAs were located among 122 loci in genome, some were present as double or multiple copies. Five clusters that included ten miRNAs were found in genome, and only one cluster share the same promoter. A total of 191 promoters from 122 loci of the soybean miRNA sequences were found and further analyzed. The results indicated that the conserved soybean miRNA genes had a greater proportion of promoters than that of non-conserved ones, and the distribution of the transcript start sites (TSSs) and TATA-boxes found had different motif styles between conserved and non-conserved miRNA genes. Furthermore, the cis-acting elements 5' of the TSSs were analyzed to obtain potential function and spatiotemporal expression pattern of miRNAs. The data obtained here may lead to the identification of specific sequences upstream of pre-miRNAs and the functional annotation of miRNAs in soybean.展开更多
By altering the electrostatic charge of histones or providing binding sites to protein recognition molecules, Chromatin marks have been proposed to regulate gene expression, a property that has motivated researchers t...By altering the electrostatic charge of histones or providing binding sites to protein recognition molecules, Chromatin marks have been proposed to regulate gene expression, a property that has motivated researchers to link these marks to cis-regulatory elements. With the help of next generation sequencing technologies, we can now correlate one specific chromatin mark with regulatory elements (e.g. enhancers or promoters) and also build tools, such as hidden Markov models, to gain insight into mark combinations. However, hidden Markov models have limitation for their character of generative models and assume that a current observation depends only on a current hidden state in the chain. Here, we employed two graphical probabilistic models, namely the linear conditional random field model and multivariate hidden Markov model, to mark gene regions with different states based on recurrent and spatially coherent character of these eight marks. Both models revealed chromatin states that may correspond to enhancers and promoters, transcribed regions, transcriptional elongation, and low-signal regions. We also found that the linear conditional random field model was more effective than the hidden Markov model in recognizing regulatory elements, such as promoter-, enhancer-, and transcriptional elongation-associated regions, which gives us a better choice.展开更多
Repressor elements significantly influence economically relevant phenotypes in pigs;however,their precise roles and characteristics are inadequately understood.In the present study,we employed H3K27me3 profiling,assay...Repressor elements significantly influence economically relevant phenotypes in pigs;however,their precise roles and characteristics are inadequately understood.In the present study,we employed H3K27me3 profiling,assay for transposase-accessible chromatin with highthroughput sequencing(ATAC-seq),and RNA sequencing(RNA-seq)data across six tissues derived from three embryonic layers to identify and map 2034 super repressor elements(SREs) and 22223 typical repressor elements(TREs) in the pig genome.Notably,many repressor elements were conserved across mesodermal and ectodermal tissues.SREs exhibited tight regulation of their target genes,affecting a limited number of genes within a specific genomic region with pronounced effects,while TREs exerted broader but weaker regulation over a wider range of target genes.Furthermore,in neuronal tissues,genes regulated by repressor elements started to be repressed during the differentiation of stem cells into progenitor cells.Notably,analysis showed that many repressor elements exhibited cooperative and additive effects on the modulation of KLF4 expression.This research provides the first comprehensive map of pig repressor elements,serving as an essential reference for future studies on repressor elements.展开更多
The P-element induced wimpy testis(Piwi)proteins,which are associated with PIWI-interacting RNAs(piRNAs),play important roles in meiosis,germ cell division,and germline maintenance.In this study,we identified and char...The P-element induced wimpy testis(Piwi)proteins,which are associated with PIWI-interacting RNAs(piRNAs),play important roles in meiosis,germ cell division,and germline maintenance.In this study,we identified and characterized the Paralichthys olivaceus piwil2 gene,a constituent factor of the piRNA pathways involved in the biogenesis of reproductive development.The biological analysis indicated that piwil2,which contains PAZ and PIWI domains,was highly conserved between teleosts and tetrapods.The piwil2 distribution profile in different tissues confirmed a sexually dimorphic expression pattern,with a higher expression level in testis.In situ hybridization demonstrated that piwil2 was expressed in the oogonia and oocytes of the ovaries as well as in the Sertoli cells and spermatocytes of the testes.Gene piwil2 showed a maternally inherited expression pattern during embryonic development,and was highly expressed during the early embryonic development.Different luciferase reporters were constructed to determine the transcriptional regulatory mechanisms of piwil2.The piwil2 core promoter region was located at−360 bp to−60 bp.Furthermore,some representative sex hormones,including human chorionic gonadotropin,17α-methyltestosterone,and estradiol-17βhad distinct regulatory effects on piwil2.In a summery,these results indicate that piwil2,regulated by sex hormones and transcriptional elements,has vital functions in the reproductive cycle and gonadal development.展开更多
Background: Primordial germ cells(PGCs), the precursors of functional gametes, have distinct characteristics and exhibit several unique molecular mechanisms to maintain pluripotency and germness in comparison to so...Background: Primordial germ cells(PGCs), the precursors of functional gametes, have distinct characteristics and exhibit several unique molecular mechanisms to maintain pluripotency and germness in comparison to somatic cells. They express germ cel-specific RNA binding proteins(RBPs) by modulating tissue-specific cis-and trans-regulatory elements. Studies on gene structures of chicken vasa homologue(CVH), a chicken RNA binding protein, involved in temporal and spatial regulation are thus important not only for understanding the molecular mechanisms that regulate germ cel fate, but also for practical applications of primordial germ cells. However, very limited studies are available on regulatory elements that control germ cel-specific expression in chicken. Therefore, we investigated the intricate regulatory mechanism(s) that governs transcriptional control of CVH.Results: We constructed green fluorescence protein(GFP) or luciferase reporter vectors containing the various 5′ flanking regions of CVH gene. From the 5′ deletion and fragmented assays in chicken PGCs, we have identified a CVH promoter that locates at-316 to +275 base pair fragment with the highest luciferase activity. Additional y, we confirmed for the first time that the 5′ untranslated region(UTR) containing intron 1 is required for promoter activity of the CVH gene in chicken PGCs. Furthermore, using a transcription factor binding prediction, transcriptome analysis and siR NA-mediated knockdown,we have identified that a set of transcription factors play a role in the PGC-specific CVH gene expression.Conclusions: These results demonstrate that cis-elements and transcription factors localizing in the 5′ flanking region including the 5′ UTR and an intron are important for transcriptional regulation of the CVH gene in chicken PGCs. Final y,this information wil contribute to research studies in areas of reproductive biology, constructing of germ cel-specific synthetic promoter for tracing primordial germ cells as wel as understanding the transcriptional regulation for maintaining germness in PGCs.展开更多
The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane pr...The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane proteins aremembers of the basic helix-loop-helix-leucine zipper (bHLHZip) family of transcription factors. They activate the expression of at least 30 genes involved in the synthesis of cholesterol and lipids. SREBPs are synthesized as precursor proteins in the endoplasmic reticulum (ER), where they form a complex with another protein, SREBP cleavage activating protein (SCAP). The SCAP molecule contains a sterol sensory domain. In the presence of high cellular sterol concentrations SCAP confines SREBP to the ER. With low cellular concentrations, SCAP escorts SREBP to activation in the Golgi. There, SREBP undergoes two proteolytic cleavage steps to release the mature, biologically active transcription factor, nuclear SREBP (nSREBP). nSREBP translocates to the nucleus and binds to sterol response elements (SRE) in the promoter/enhancer regions of target genes. Additional transcription factors are required to activate transcription of these genes. Three different SREBPs are known, SREBPs-1a, -1c and -2. SREBP-1a and -1c are isoforms produced from a single gene by alternate splicing. SREBP-2 is encoded by a different gene and does not display any isoforms. It appears that SREBPs alone, in the sequence described above, can exert complete control over cholesterol synthesis, whereas many additional factors (hormones, cytokines, etc.) are required for complete control of lipid metabolism. Medicinal manipulation of the SREBP/SCAP system is expected to prove highly beneficial in the management of cholesterol-related disease.展开更多
The importance of microRNA (miRNA) at the post-transcriptional regulation level has recently been recognized in both animals and plants. In recent years, many studies focused on miRNA target identification and funct...The importance of microRNA (miRNA) at the post-transcriptional regulation level has recently been recognized in both animals and plants. In recent years, many studies focused on miRNA target identification and functional analysis. However, little is known about the transcription and regulation of miRNAs themselves. In this study, the transcription start sites (TSSs) for 11 miRNA primary transcripts of soybean from 11 miRNA loci (of 50 loci tested) were cloned by a 5" rapid amplification of cDNA ends (5" RACE) procedure using total RNA from 30-d-old seedlings. The features consistent with a RNA polymerase II mechanism of transcription were found among these miRNA loci. A position weight matrix algorithm was used to identify conserved motifs in miRNA core promoter regions. A canonical TATA box motif was identified upstream of the major start site at 8 (76%) of the mapped miRNA loci. Several cis-acting elements were predicted in the 2 kb 5" to the TSSs. Potential spatial and temporal expression patterns of the miRNAs were found. The target genes for these miRNAs were also predicted and further elucidated for the potential function of the miRNAs. This research provides a molecular basis to explore regulatory mechanisms of miRNA expression, and a way to understand miRNA-mediated regulatory pathways and networks in soybean.展开更多
Abstract Leaves of melon were collected and extracted by the CTAB method for total DNA which was used for PCR amplification, obtaining the gene sequence of cucumisin promoter. The sequence results were processed and a...Abstract Leaves of melon were collected and extracted by the CTAB method for total DNA which was used for PCR amplification, obtaining the gene sequence of cucumisin promoter. The sequence results were processed and analyzed with DNAman, DNAstar and other softwares, and bioinformatic element analysis was performed with PlantCARE and PLACE. The analysis results showed that the cucumisin promoter shared 100%, 99% and 99% homology with AY055805, LN713264 and LN681897, respectively. The promoter sequence contains a variety of c/s-acting elements common in fruit promoters of higher plants such as TATA-Box and CAAT-Box, and light-responsive elements, some of which involved in ABA and VP1 responsiveness and salicylic acid responsiveness. This study provides a scien- tific basis for further research on genetic engineering of fruits.展开更多
The developmental control of the human e-globin gene expression is mediated by transcription regulatory elements in the 5' flanking DNA of this gene. Sequence analysis has revealed a DNA motif (GGGGAATTTGCT) simil...The developmental control of the human e-globin gene expression is mediated by transcription regulatory elements in the 5' flanking DNA of this gene. Sequence analysis has revealed a DNA motif (GGGGAATTTGCT) similar to NF-кB consensus sequence resides in the negative regulatory element (-3028bp~ -2902bp, termed ε-NRAII) 5' to the cap site of this gene. NRF DNA fragment (-3010bp~ -2986bp) containing the NF-кB motif similar sequence was synthesized and used in electrophoresis mobility shift assay (EMSA) and competitive analysis. Data showed that a protein factor from nuclear extracts of K562 cells specifically interacted with NRF DNA fragment. The synthetic NF DNA fragment (containing NF-кB consensus sequence) could competed for the protein binding, but MNF DNA fragment (mutated NF-кB motif) could not, suggesting that the binding protein is a member of NF-кB/Rel family. Western blot assay demonstrated that the molecular weight of NF-кB protein in the nuclei of K562 cells is 50ku. We suggested that NF-кB p50 may play an important role in the regulation of human c-globin gene expression.展开更多
The developmental control of the human e-globin gene expression is mediated by transcription regulatory elements in the 5’ flanking DNA of this gene. Sequence analysis has revealed a DNA motif (GGGGAATTTGCT) similar ...The developmental control of the human e-globin gene expression is mediated by transcription regulatory elements in the 5’ flanking DNA of this gene. Sequence analysis has revealed a DNA motif (GGGGAATTTGCT) similar to NF-кB consensus sequence resides in the negative regulatory element (-3028bp~ -2902bp, termed ε-NRAII) 5’ to the cap site of this gene. NRF DNA fragment (-3010bp~ -2986bp) containing the NF-кB motif similar sequence was synthesized and used in electrophoresis mobility shift assay (EMSA) and competitive analysis. Data showed that a protein factor from nuclear extracts of K562 cells specifically interacted with NRF DNA fragment. The synthetic NF DNA fragment (containing NF-кB consensus sequence) could competed for the protein binding, but MNF DNA fragment (mutated NF-кB motif) could not, suggesting that the binding protein is a member of NF-кB/Rel family. Western blot assay demonstrated that the molecular weight of NF-кB protein in the nuclei of K562 cells is 50ku. We suggested that NF-кB p50 may play an important role in the regulation of human c-globin gene expression.展开更多
The unicellular green alga Haematococcus pluvia/is uniquely accumulates carotenoids in the cytoplasm and in late developmental stages turns deep-red in color because of accumulation of astaxanthin in the cytosol. The ...The unicellular green alga Haematococcus pluvia/is uniquely accumulates carotenoids in the cytoplasm and in late developmental stages turns deep-red in color because of accumulation of astaxanthin in the cytosol. The enzyme, isopentenyl pyrophosphate (IPP) isomerase, plays a key role in astaxanthin biosynthesis of H. pluvialis. In this paper, two separate 5'-flanking regions (1.8 kb and 2.5 kb) of IPP isomerase gene was cloned through walking upstream firstly. Results of sequence analysis =showed that two separate 5'-flanking regions of IPP isomerase gene might have similar putative cis-acting elements such as ABA (abscisic acid)-responsive element (ABRE), drought-responsive element (DRE/C-repeat), light-responsive element (G-box, GAG-motif, I-box and ATC-motif), heat-shock element (HSE), wound-responsive element (WUN-motif), SA (salicylic acid)-responsive element (TCA-element), auxin-responsive element (TGA-element), MeJA (methyl jasmonate)-responsive element (TGACG-element), enhancer-like element involved in anoxic specific inducibility (GC-motif) and MYB binding sites (MBS and MRE), except for typical TATA box or CCAAT box, which exhibit diversiform transcriptional patterns of IPP isomerase gene in astaxanthin biosynthesis of Haematococcus pluvialis.展开更多
Probenazole (3-allyloxy-l,2-benzisothiazole-1,1-dioxide, PBZ), the active component of Oryzemate, could induce systemic acquired resistance (SAR) in plants through the induction of salicylic acid (SA) biosynthes...Probenazole (3-allyloxy-l,2-benzisothiazole-1,1-dioxide, PBZ), the active component of Oryzemate, could induce systemic acquired resistance (SAR) in plants through the induction of salicylic acid (SA) biosynthesis. As a widely used chemical inducer, PBZ is a good prospect for establishing a new chemical-inducible system. We first designed artificially synthetic promoters with tandem copies of a single type of cis-element (SARE, JERE, GCC, GST1, HSRE, and W-box) that could mediate the expression of the tS-glucuronidase (GUS) reporter gene in plants upon PBZ treatment. Then we combined different types of elements in order to improve inducibility in the PBZ-inducible system. On the other hand, we were surprised to find that the cis-elements, which are responsive to jasmonic acid (JA) and ethylene, also responded to PBZ, implying that SA, JA, and ethylene pathways also would play important roles in PBZ's action. Further analysis demonstrated that PBZ also induced early events of innate immunity via a signaling pathway in which Ca2+ influx and mitogen-activated protein kinase (MAPK) activity were involved. We constructed synthesized artificial promoters to establish a PBZ chemical-inducible system, and preliminarily explored SA, JA, ethylene, calcium, and MAPK signaling pathways via PBZ-inducible system, which could provide an insight for in-depth study.展开更多
An erythroid-specific nuclear matrix protein (termed ε-NMP_k) in K562 cells, which can specifically bind to the positive stage-specific regulatory element (ε-PRE Ⅱ, -446—-419 bp) upstream of the human ε-globin ge...An erythroid-specific nuclear matrix protein (termed ε-NMP_k) in K562 cells, which can specifically bind to the positive stage-specific regulatory element (ε-PRE Ⅱ, -446—-419 bp) upstream of the human ε-globin gene, has been identified by using gel mobility shift assay.Meanwhile, Southwestern blotting assay showed that the nuclear matrix protein ε-NMP_k in K562,cells may be composed of two polypeptides ( ~ 40 ku). In addition, it is observed in the gel mobility shift assay that the nuclear matrix proteins from K562, HEL and Raji cells can bind to the silencer DNA ( - 392— -177 bp) in the 5’-flanking sequence of human ε-globin gene respectively. However, the shift band K detected in K562 cells is different from shift band H/R in HEL and Raji cells, suggesting that a common nuclear matrix protein may exist in HEL and Raji cells. Results show that the nuclear matrix protein may play an important role in the regulation of the human ε-globin gene expression.展开更多
The root appears to be the most relevant organ for breeding drought stress tolerance.However, our knowledge about temporal and spatial regulation of drought-associated genes in the root remains fragmented, especially ...The root appears to be the most relevant organ for breeding drought stress tolerance.However, our knowledge about temporal and spatial regulation of drought-associated genes in the root remains fragmented, especially in crop plants. We performed a meta-analysis of expression divergence of essential drought-inducible genes and analyzed their association with cis-elements in model crops and major cereal crops. Our analysis of42 selected drought-inducible genes revealed that these are expressed primarily in roots,followed by shoot, leaf, and inflorescence tissues, especially in wheat. Quantitative real-time RT-PCR analysis confirmed higher expression of TaDREB2 and TaAQP7 in roots,correlated with extensive rooting and drought-stress tolerance in wheat. A promoter scan up to 2 kb upstream of the translation start site using phylogenetic footprinting revealed708 transcription factor binding sites, including drought response elements(DREs), auxin response elements(Aux REs), MYCREs/MYBREs, ABAREs, and ERD1 in 19 selected genes.Interestingly, these elements were organized into clusters of overlapping transcription factor binding sites known as homotypic clusters(HCTs), which modulate drought physiology in plants. Taken together, these results revealed the expression preeminence of major drought-inducible genes in the root, suggesting its crucial role in drought adaptation. The occurrence of HCTs in drought-inducible genes highlights the putative evolutionary modifications of crop plants in developing drought adaptation. We propose that these DNA motifs can be used as molecular markers for breeding drought-resilient cultivars, particularly in the cereal crops.展开更多
The hexanucleotide repeat mutation in the intron-1 of the chromosome 9 open reading frame (C9orf72) is a frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Altered RNA folding pla...The hexanucleotide repeat mutation in the intron-1 of the chromosome 9 open reading frame (C9orf72) is a frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Altered RNA folding plays a role in ALS pathogenesis in two ways: non-ATG translation of the repeat can lead to aggregates of the known C9orf72 specific dipeptide polymer, whereas the repeat also can form neurotoxic RNA inclusions that dose-responsively kill motor neurons. We report the presence of a homology in the 5’untranslated region (UTR) of the messenger RNA encoding C9orf72 with the iron responsive elements (IRE) that control expression of iron-associated transcripts and predict that this RNA structure may iron-dependently regulate C9orf72 translation. We previously report altered serum ferritin levels track with severity of ALS in patients. Here, we conduct bioinformatics analyses to determine the secondary structure of the 5’UTR in C9orf72 mRNA and find it aligned with IREs in the human mitochondrial cis-aconitase and L and H-ferritin transcripts. Comparison of the role of RNA repeats in Friedriech’s ataxia and fragile X mental retardation suggests the utility of RNA based therapies for treatment of ALS. Antisense oligonucleotides (ASO) have been reported to therapeutically target these GGGGCC repeats. At the same time, because the function of C9orf72 is unknown, knockdown strategies carry some risk of inducing or compounding haploinsufficiency. We propose, for consideration, an approach that may enhance its therapeutic dynamic range by increasing the 5’UTR driven translation of C9orf72 protein to compensate for any potential ALS-specific or ASO-induced haploinsufficieny.展开更多
基金This work was supported by the National Basic Research Program of China (973 Program, grant No. 2012CB721104), the National High Technology Research and Development Program (863 Program, grant No. 2012AA02A701), the National Natural Science Foundation of China (grant Nos. 31170101 and 31301017), and the Natural Science Foundation of Guangdong Province, China (grant No. 2015A030310317).
文摘The cis-acting regulatory elements, e.g., promoters and ribosome binding sites (RBSs) with various desired properties, are building blocks widely used in synthetic biology for fine tuning gene expression. In the last decade, acquisition of a controllable regulatory element from a random library has been established and applied to control the protein expression and metabolic flux in different chassis cells. However, more rational strategies are still urgently needed to improve the efficiency and reduce the laborious screening and multifaceted characterizations. Building precise computational models that can predict the activity of regulatory elements and quantitatively design elements with desired strength have been demonstrated tremendous potentiality. Here, recent progress on construction of cis- acting regulatory element library and the quantitative predicting models for design of such elements are reviewed and discussed in detail.
基金This research was supported by National Key Research and Development Program of China(Grant No.2018YFD1000200)National Natural Science Foundation of China(Grant nos.31930095 and 31630065)We should thank Prof.Zuoxiong Liu for editing the English language of the manuscript.
文摘Carotenoids are indispensable for both human health and plant survival.Citrus,is one of the fruit crops richest in carotenoid compounds,with approximately 115 kinds of carotenoids;tremendous diversity in carotenoids composition and concentration exists among various species,showing different colors from nearly white to crimson.The carotenoid biosynthetic pathway and the key carotenogenic genes have been identified in citrus;however,the underlying regulatory mechanisms remain unclear.In this study,among the main species of genus Citrus(primitive,wild,and cultivated),we detected carotenoids in flavedo using High-Performance Liquid Chromatography,and analyzed variations in cis-acting elements in the promoters of key carotenoid pathway genes.Intriguingly,both carotenoid composition and content were generally increased during the evolution of citrus,and the corresponding variations in the promoters were identified,including the gain or loss of critical environmental stress-responsive elements and hormone-responsive elements,which are closely associated with carotenoid enhancement.In addition,pummelo has the most heat-responsive elements,but the Mangshan mandarin does not have this element in the promoters of PSY,which is highly related to their geographical origin and indicate that temperature is a critical environmental signal influencing carotenoid accumulation.Moreover,the abscisic acid-responsive motif was rich in almost all the seven species,but the ethylene-responsive motif was deficient,which demystified the unique phytohormone regulation mechanism of carotenoid accumulation in citrus.Overall,our study provides new insights into the molecular regulatory mechanism of carotenoid enhancement in the evolution of citrus,which can facilitate breeding and cultivation efforts to improve the nutritional quality and esthetic value in citrus and hopefully other fruit crops.
基金supported by the National High-Tech R&D Program of China (863 Program,2006AA100104-4)the Project of 948 from Ministryof Agriculture of China (2006-G5)+5 种基金the National Nature Science Foundation of China (30971810,60932008)the National Basic Research Program ofChina (973 Program, 2009CB118400)the Postdoctoral Fund in Heilongjiang Province, China (LBH-Z07228)the Foundation Projects of Northeast Agricultural University, Chinathe Technology Project of Education Ministry of Heilongjiang Province, China(11541025)the Technology Project of Harbin,China (2009RFQXN085)
文摘MicroRNAs (miRNAs) are derived from distinct loci in the genome and play crucial roles in RNA-mediated gene silencing mechanisms that regulate cellular processes during development and stress responses of plants. The miRNAs are approximately 21 nucleotides long and code for the complementary strand to a larger genic mRNA. They are often found within the complementary primary transcript (pri-miRNAs). In the past few years, a growing number of soybean miRNAs have been discovered, however, little is known about the transcriptional regulation of these miRNAs. In this study, promoters and cis-acting elements of soybean miRNAs were analyzed using the genomic data for the first time. A total of 82 miRNAs were located among 122 loci in genome, some were present as double or multiple copies. Five clusters that included ten miRNAs were found in genome, and only one cluster share the same promoter. A total of 191 promoters from 122 loci of the soybean miRNA sequences were found and further analyzed. The results indicated that the conserved soybean miRNA genes had a greater proportion of promoters than that of non-conserved ones, and the distribution of the transcript start sites (TSSs) and TATA-boxes found had different motif styles between conserved and non-conserved miRNA genes. Furthermore, the cis-acting elements 5' of the TSSs were analyzed to obtain potential function and spatiotemporal expression pattern of miRNAs. The data obtained here may lead to the identification of specific sequences upstream of pre-miRNAs and the functional annotation of miRNAs in soybean.
基金funded by grants from the NIH R01LM010185-03(Zhou),NIH U01HL111560-01(Zhou),NIH 1R01DE022676-01(Zhou),and DoD TATRC (Zhou)
文摘By altering the electrostatic charge of histones or providing binding sites to protein recognition molecules, Chromatin marks have been proposed to regulate gene expression, a property that has motivated researchers to link these marks to cis-regulatory elements. With the help of next generation sequencing technologies, we can now correlate one specific chromatin mark with regulatory elements (e.g. enhancers or promoters) and also build tools, such as hidden Markov models, to gain insight into mark combinations. However, hidden Markov models have limitation for their character of generative models and assume that a current observation depends only on a current hidden state in the chain. Here, we employed two graphical probabilistic models, namely the linear conditional random field model and multivariate hidden Markov model, to mark gene regions with different states based on recurrent and spatially coherent character of these eight marks. Both models revealed chromatin states that may correspond to enhancers and promoters, transcribed regions, transcriptional elongation, and low-signal regions. We also found that the linear conditional random field model was more effective than the hidden Markov model in recognizing regulatory elements, such as promoter-, enhancer-, and transcriptional elongation-associated regions, which gives us a better choice.
基金supported by the Science&Technology Department of Yunnan Province (202102AE090039)National Natural Science Foundation of China (32100502)+3 种基金Yunnan Revitalization Talent Support Program Young Talent ProjectCAS “Light of West China”ProgramSpring City Plan:High-level Talent Promotion and Training Project of Kunming (2022SCP001)CAS Key Technology Talent Program to Y.G。
文摘Repressor elements significantly influence economically relevant phenotypes in pigs;however,their precise roles and characteristics are inadequately understood.In the present study,we employed H3K27me3 profiling,assay for transposase-accessible chromatin with highthroughput sequencing(ATAC-seq),and RNA sequencing(RNA-seq)data across six tissues derived from three embryonic layers to identify and map 2034 super repressor elements(SREs) and 22223 typical repressor elements(TREs) in the pig genome.Notably,many repressor elements were conserved across mesodermal and ectodermal tissues.SREs exhibited tight regulation of their target genes,affecting a limited number of genes within a specific genomic region with pronounced effects,while TREs exerted broader but weaker regulation over a wider range of target genes.Furthermore,in neuronal tissues,genes regulated by repressor elements started to be repressed during the differentiation of stem cells into progenitor cells.Notably,analysis showed that many repressor elements exhibited cooperative and additive effects on the modulation of KLF4 expression.This research provides the first comprehensive map of pig repressor elements,serving as an essential reference for future studies on repressor elements.
基金This study was supported by the National Natural Science Foundation of China(No.31672646)the Natural Science Foundation of Shandong Province(No.ZR 2017MC072).
文摘The P-element induced wimpy testis(Piwi)proteins,which are associated with PIWI-interacting RNAs(piRNAs),play important roles in meiosis,germ cell division,and germline maintenance.In this study,we identified and characterized the Paralichthys olivaceus piwil2 gene,a constituent factor of the piRNA pathways involved in the biogenesis of reproductive development.The biological analysis indicated that piwil2,which contains PAZ and PIWI domains,was highly conserved between teleosts and tetrapods.The piwil2 distribution profile in different tissues confirmed a sexually dimorphic expression pattern,with a higher expression level in testis.In situ hybridization demonstrated that piwil2 was expressed in the oogonia and oocytes of the ovaries as well as in the Sertoli cells and spermatocytes of the testes.Gene piwil2 showed a maternally inherited expression pattern during embryonic development,and was highly expressed during the early embryonic development.Different luciferase reporters were constructed to determine the transcriptional regulatory mechanisms of piwil2.The piwil2 core promoter region was located at−360 bp to−60 bp.Furthermore,some representative sex hormones,including human chorionic gonadotropin,17α-methyltestosterone,and estradiol-17βhad distinct regulatory effects on piwil2.In a summery,these results indicate that piwil2,regulated by sex hormones and transcriptional elements,has vital functions in the reproductive cycle and gonadal development.
基金supported by a National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP)(No.2015R1A3A2033826)
文摘Background: Primordial germ cells(PGCs), the precursors of functional gametes, have distinct characteristics and exhibit several unique molecular mechanisms to maintain pluripotency and germness in comparison to somatic cells. They express germ cel-specific RNA binding proteins(RBPs) by modulating tissue-specific cis-and trans-regulatory elements. Studies on gene structures of chicken vasa homologue(CVH), a chicken RNA binding protein, involved in temporal and spatial regulation are thus important not only for understanding the molecular mechanisms that regulate germ cel fate, but also for practical applications of primordial germ cells. However, very limited studies are available on regulatory elements that control germ cel-specific expression in chicken. Therefore, we investigated the intricate regulatory mechanism(s) that governs transcriptional control of CVH.Results: We constructed green fluorescence protein(GFP) or luciferase reporter vectors containing the various 5′ flanking regions of CVH gene. From the 5′ deletion and fragmented assays in chicken PGCs, we have identified a CVH promoter that locates at-316 to +275 base pair fragment with the highest luciferase activity. Additional y, we confirmed for the first time that the 5′ untranslated region(UTR) containing intron 1 is required for promoter activity of the CVH gene in chicken PGCs. Furthermore, using a transcription factor binding prediction, transcriptome analysis and siR NA-mediated knockdown,we have identified that a set of transcription factors play a role in the PGC-specific CVH gene expression.Conclusions: These results demonstrate that cis-elements and transcription factors localizing in the 5′ flanking region including the 5′ UTR and an intron are important for transcriptional regulation of the CVH gene in chicken PGCs. Final y,this information wil contribute to research studies in areas of reproductive biology, constructing of germ cel-specific synthetic promoter for tracing primordial germ cells as wel as understanding the transcriptional regulation for maintaining germness in PGCs.
文摘The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane proteins aremembers of the basic helix-loop-helix-leucine zipper (bHLHZip) family of transcription factors. They activate the expression of at least 30 genes involved in the synthesis of cholesterol and lipids. SREBPs are synthesized as precursor proteins in the endoplasmic reticulum (ER), where they form a complex with another protein, SREBP cleavage activating protein (SCAP). The SCAP molecule contains a sterol sensory domain. In the presence of high cellular sterol concentrations SCAP confines SREBP to the ER. With low cellular concentrations, SCAP escorts SREBP to activation in the Golgi. There, SREBP undergoes two proteolytic cleavage steps to release the mature, biologically active transcription factor, nuclear SREBP (nSREBP). nSREBP translocates to the nucleus and binds to sterol response elements (SRE) in the promoter/enhancer regions of target genes. Additional transcription factors are required to activate transcription of these genes. Three different SREBPs are known, SREBPs-1a, -1c and -2. SREBP-1a and -1c are isoforms produced from a single gene by alternate splicing. SREBP-2 is encoded by a different gene and does not display any isoforms. It appears that SREBPs alone, in the sequence described above, can exert complete control over cholesterol synthesis, whereas many additional factors (hormones, cytokines, etc.) are required for complete control of lipid metabolism. Medicinal manipulation of the SREBP/SCAP system is expected to prove highly beneficial in the management of cholesterol-related disease.
基金supported by the National High-Tech R&D Program of China (2006AA10Z1F1)the National Core Soybean Genetic Engineering Project, China(2011ZX08004-002)+3 种基金the National Natural Science Foundation of China (60932008, 30971810)the National Basic Research Program of China (2009CB118400)the Ministry of Education Innovation Team of Soybean Molecular Design,Chinathe Innovation Team of the Education Bureau of Heilongjiang Province, China
文摘The importance of microRNA (miRNA) at the post-transcriptional regulation level has recently been recognized in both animals and plants. In recent years, many studies focused on miRNA target identification and functional analysis. However, little is known about the transcription and regulation of miRNAs themselves. In this study, the transcription start sites (TSSs) for 11 miRNA primary transcripts of soybean from 11 miRNA loci (of 50 loci tested) were cloned by a 5" rapid amplification of cDNA ends (5" RACE) procedure using total RNA from 30-d-old seedlings. The features consistent with a RNA polymerase II mechanism of transcription were found among these miRNA loci. A position weight matrix algorithm was used to identify conserved motifs in miRNA core promoter regions. A canonical TATA box motif was identified upstream of the major start site at 8 (76%) of the mapped miRNA loci. Several cis-acting elements were predicted in the 2 kb 5" to the TSSs. Potential spatial and temporal expression patterns of the miRNAs were found. The target genes for these miRNAs were also predicted and further elucidated for the potential function of the miRNAs. This research provides a molecular basis to explore regulatory mechanisms of miRNA expression, and a way to understand miRNA-mediated regulatory pathways and networks in soybean.
基金Supported by Fund of Education Department of Yunnan Province(2013Y251)Characteristic Biological Resource Development and Utilization Key Laboratory Open Fund of Kunming University(GXKJ201612)Fund for Introduction of Doctors(YJL11015)
文摘Abstract Leaves of melon were collected and extracted by the CTAB method for total DNA which was used for PCR amplification, obtaining the gene sequence of cucumisin promoter. The sequence results were processed and analyzed with DNAman, DNAstar and other softwares, and bioinformatic element analysis was performed with PlantCARE and PLACE. The analysis results showed that the cucumisin promoter shared 100%, 99% and 99% homology with AY055805, LN713264 and LN681897, respectively. The promoter sequence contains a variety of c/s-acting elements common in fruit promoters of higher plants such as TATA-Box and CAAT-Box, and light-responsive elements, some of which involved in ABA and VP1 responsiveness and salicylic acid responsiveness. This study provides a scien- tific basis for further research on genetic engineering of fruits.
基金This work was supported by National Natural Sciences Foun-dation of China, No. 39893320 and No. 39870378.
文摘The developmental control of the human e-globin gene expression is mediated by transcription regulatory elements in the 5' flanking DNA of this gene. Sequence analysis has revealed a DNA motif (GGGGAATTTGCT) similar to NF-кB consensus sequence resides in the negative regulatory element (-3028bp~ -2902bp, termed ε-NRAII) 5' to the cap site of this gene. NRF DNA fragment (-3010bp~ -2986bp) containing the NF-кB motif similar sequence was synthesized and used in electrophoresis mobility shift assay (EMSA) and competitive analysis. Data showed that a protein factor from nuclear extracts of K562 cells specifically interacted with NRF DNA fragment. The synthetic NF DNA fragment (containing NF-кB consensus sequence) could competed for the protein binding, but MNF DNA fragment (mutated NF-кB motif) could not, suggesting that the binding protein is a member of NF-кB/Rel family. Western blot assay demonstrated that the molecular weight of NF-кB protein in the nuclei of K562 cells is 50ku. We suggested that NF-кB p50 may play an important role in the regulation of human c-globin gene expression.
基金This work was supported by National Natural Sciences Foun-dation of China, No. 39893320 and No. 39870378.
文摘The developmental control of the human e-globin gene expression is mediated by transcription regulatory elements in the 5’ flanking DNA of this gene. Sequence analysis has revealed a DNA motif (GGGGAATTTGCT) similar to NF-кB consensus sequence resides in the negative regulatory element (-3028bp~ -2902bp, termed ε-NRAII) 5’ to the cap site of this gene. NRF DNA fragment (-3010bp~ -2986bp) containing the NF-кB motif similar sequence was synthesized and used in electrophoresis mobility shift assay (EMSA) and competitive analysis. Data showed that a protein factor from nuclear extracts of K562 cells specifically interacted with NRF DNA fragment. The synthetic NF DNA fragment (containing NF-кB consensus sequence) could competed for the protein binding, but MNF DNA fragment (mutated NF-кB motif) could not, suggesting that the binding protein is a member of NF-кB/Rel family. Western blot assay demonstrated that the molecular weight of NF-кB protein in the nuclei of K562 cells is 50ku. We suggested that NF-кB p50 may play an important role in the regulation of human c-globin gene expression.
基金supported by the National Natural Science Foundation in China (NO. 30671126 40706050 and 40706048)+3 种基金National Key Technology R&D Program (No. 11200602)The Special Foundation of State-level and Public Interest Research Institute (No. 2060402/2)Natural Science Foundation in Shandong University of Technology (No. 4040306017) Start-up Foundation for Ph.D in Shandong University of Technology (No. 4041-405017 and 4041-405016)
文摘The unicellular green alga Haematococcus pluvia/is uniquely accumulates carotenoids in the cytoplasm and in late developmental stages turns deep-red in color because of accumulation of astaxanthin in the cytosol. The enzyme, isopentenyl pyrophosphate (IPP) isomerase, plays a key role in astaxanthin biosynthesis of H. pluvialis. In this paper, two separate 5'-flanking regions (1.8 kb and 2.5 kb) of IPP isomerase gene was cloned through walking upstream firstly. Results of sequence analysis =showed that two separate 5'-flanking regions of IPP isomerase gene might have similar putative cis-acting elements such as ABA (abscisic acid)-responsive element (ABRE), drought-responsive element (DRE/C-repeat), light-responsive element (G-box, GAG-motif, I-box and ATC-motif), heat-shock element (HSE), wound-responsive element (WUN-motif), SA (salicylic acid)-responsive element (TCA-element), auxin-responsive element (TGA-element), MeJA (methyl jasmonate)-responsive element (TGACG-element), enhancer-like element involved in anoxic specific inducibility (GC-motif) and MYB binding sites (MBS and MRE), except for typical TATA box or CCAAT box, which exhibit diversiform transcriptional patterns of IPP isomerase gene in astaxanthin biosynthesis of Haematococcus pluvialis.
基金supported by the National Key Project of Transgenic Variety Development of China(Nos.2011ZX08009-004 and 2013ZX08009-004)Shanghai Key Laboratory of Bio-Energy Cropsthe Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘Probenazole (3-allyloxy-l,2-benzisothiazole-1,1-dioxide, PBZ), the active component of Oryzemate, could induce systemic acquired resistance (SAR) in plants through the induction of salicylic acid (SA) biosynthesis. As a widely used chemical inducer, PBZ is a good prospect for establishing a new chemical-inducible system. We first designed artificially synthetic promoters with tandem copies of a single type of cis-element (SARE, JERE, GCC, GST1, HSRE, and W-box) that could mediate the expression of the tS-glucuronidase (GUS) reporter gene in plants upon PBZ treatment. Then we combined different types of elements in order to improve inducibility in the PBZ-inducible system. On the other hand, we were surprised to find that the cis-elements, which are responsive to jasmonic acid (JA) and ethylene, also responded to PBZ, implying that SA, JA, and ethylene pathways also would play important roles in PBZ's action. Further analysis demonstrated that PBZ also induced early events of innate immunity via a signaling pathway in which Ca2+ influx and mitogen-activated protein kinase (MAPK) activity were involved. We constructed synthesized artificial promoters to establish a PBZ chemical-inducible system, and preliminarily explored SA, JA, ethylene, calcium, and MAPK signaling pathways via PBZ-inducible system, which could provide an insight for in-depth study.
基金supported by the National Natural Science Foundation of China(Grant No.39893320)the Foundation of the Chinese Academy of Sciences(Grant No.kJ982-J1-618)
文摘An erythroid-specific nuclear matrix protein (termed ε-NMP_k) in K562 cells, which can specifically bind to the positive stage-specific regulatory element (ε-PRE Ⅱ, -446—-419 bp) upstream of the human ε-globin gene, has been identified by using gel mobility shift assay.Meanwhile, Southwestern blotting assay showed that the nuclear matrix protein ε-NMP_k in K562,cells may be composed of two polypeptides ( ~ 40 ku). In addition, it is observed in the gel mobility shift assay that the nuclear matrix proteins from K562, HEL and Raji cells can bind to the silencer DNA ( - 392— -177 bp) in the 5’-flanking sequence of human ε-globin gene respectively. However, the shift band K detected in K562 cells is different from shift band H/R in HEL and Raji cells, suggesting that a common nuclear matrix protein may exist in HEL and Raji cells. Results show that the nuclear matrix protein may play an important role in the regulation of the human ε-globin gene expression.
基金supported by German–Pakistani Research Cooperation(grant no.56453308)via German Academic Exchange Service(DAAD)to build German–Pakistani research and academic exchange and partnerships
文摘The root appears to be the most relevant organ for breeding drought stress tolerance.However, our knowledge about temporal and spatial regulation of drought-associated genes in the root remains fragmented, especially in crop plants. We performed a meta-analysis of expression divergence of essential drought-inducible genes and analyzed their association with cis-elements in model crops and major cereal crops. Our analysis of42 selected drought-inducible genes revealed that these are expressed primarily in roots,followed by shoot, leaf, and inflorescence tissues, especially in wheat. Quantitative real-time RT-PCR analysis confirmed higher expression of TaDREB2 and TaAQP7 in roots,correlated with extensive rooting and drought-stress tolerance in wheat. A promoter scan up to 2 kb upstream of the translation start site using phylogenetic footprinting revealed708 transcription factor binding sites, including drought response elements(DREs), auxin response elements(Aux REs), MYCREs/MYBREs, ABAREs, and ERD1 in 19 selected genes.Interestingly, these elements were organized into clusters of overlapping transcription factor binding sites known as homotypic clusters(HCTs), which modulate drought physiology in plants. Taken together, these results revealed the expression preeminence of major drought-inducible genes in the root, suggesting its crucial role in drought adaptation. The occurrence of HCTs in drought-inducible genes highlights the putative evolutionary modifications of crop plants in developing drought adaptation. We propose that these DNA motifs can be used as molecular markers for breeding drought-resilient cultivars, particularly in the cereal crops.
文摘The hexanucleotide repeat mutation in the intron-1 of the chromosome 9 open reading frame (C9orf72) is a frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Altered RNA folding plays a role in ALS pathogenesis in two ways: non-ATG translation of the repeat can lead to aggregates of the known C9orf72 specific dipeptide polymer, whereas the repeat also can form neurotoxic RNA inclusions that dose-responsively kill motor neurons. We report the presence of a homology in the 5’untranslated region (UTR) of the messenger RNA encoding C9orf72 with the iron responsive elements (IRE) that control expression of iron-associated transcripts and predict that this RNA structure may iron-dependently regulate C9orf72 translation. We previously report altered serum ferritin levels track with severity of ALS in patients. Here, we conduct bioinformatics analyses to determine the secondary structure of the 5’UTR in C9orf72 mRNA and find it aligned with IREs in the human mitochondrial cis-aconitase and L and H-ferritin transcripts. Comparison of the role of RNA repeats in Friedriech’s ataxia and fragile X mental retardation suggests the utility of RNA based therapies for treatment of ALS. Antisense oligonucleotides (ASO) have been reported to therapeutically target these GGGGCC repeats. At the same time, because the function of C9orf72 is unknown, knockdown strategies carry some risk of inducing or compounding haploinsufficiency. We propose, for consideration, an approach that may enhance its therapeutic dynamic range by increasing the 5’UTR driven translation of C9orf72 protein to compensate for any potential ALS-specific or ASO-induced haploinsufficieny.