l- ions behavior in Ag(SO_3)3-2 solution was studied. The mechanism of Ag particles formation in the solution was discussed, and factors affecting its formation were investigated.
The influence of chloride or sulphur dioxide on the corrosion behavior of copper tube in the air-conditioning system was studied using scanning electron microscope (SEM), energy dispersion spectrometer (EDS) and cycli...The influence of chloride or sulphur dioxide on the corrosion behavior of copper tube in the air-conditioning system was studied using scanning electron microscope (SEM), energy dispersion spectrometer (EDS) and cyclic polarization techniques. The results showed that the corrosion of copper tube are mainly caused by the SO42- and Cl- ions in the circulating water, and the former is mainly responsible for the general corrosion of the copper tube whilst the latter for the pitting corrosion. The different influences of SG42- and Cl- ions on the corrosion type of copper tube may be attributed to that the radius of SO42- ion is much larger than that of Cl- ion. Meanwhile the results also indicated that SO42- inhibits the pitting corrosion caused by Cl- and Cl- inhibits the general corrosion initiated by SO42- due to their competitive adsorption on the copper matrix.展开更多
Zn plays an important role in the protection of iron and steel from corrosion in sea water, and the alloying of Zn and Ni can improve its corrosion resistance. The corrosion behavior of Zn?Ni alloys in synthetic sea ...Zn plays an important role in the protection of iron and steel from corrosion in sea water, and the alloying of Zn and Ni can improve its corrosion resistance. The corrosion behavior of Zn?Ni alloys in synthetic sea water (3.5% NaCl, mass fraction) was studied using Tafel plot and electrochemical impedance spectroscopy (EIS) techniques. The corrosion resistance of the investigated alloys with various Ni contents (0.5%?10%, mass fraction) was compared with that of Zn. The results show that the corrosion resistance of Zn?Ni alloys (except 0.5% Ni) is superior to that of Zn. The 10% Ni gives the highest corrosion resistance due to the formation ofγ-Zn3Ni withγ-ZnNi phases in the alloy. In the case of alloy I (0.5% Ni), it exhibits a higher corrosion rate (less corrosion resistance) than Zn.展开更多
The corrosion mechanism of the S135 drill pipes was investigated through observation of the corrosion morphology and analysis of the corrosion products by scanning electronic microscope ( SEM), energy dispersive spe...The corrosion mechanism of the S135 drill pipes was investigated through observation of the corrosion morphology and analysis of the corrosion products by scanning electronic microscope ( SEM), energy dispersive spectrum (EDS) and X-ray diffraction (XRD). The results show that the localized corrosion on the outer surface of the drill pipes was caused by oxygen corrosion due to the action of retained slurry. Cl - contained in slurry accelerated the corrosion and promoted the development of corrosion pits. Suggestions for mitigating or preventing such corrosion of the drill pipes are proposed based on the research results.展开更多
The corrosive behaviors of hot-dip galvanized steel (G I) sheets and the corresponding interstitial free (IF) steel base sheets for use in automobiles were investigated by the classical salt water drop (SWD) tes...The corrosive behaviors of hot-dip galvanized steel (G I) sheets and the corresponding interstitial free (IF) steel base sheets for use in automobiles were investigated by the classical salt water drop (SWD) test at room temperature. The corrosive processes and products were observed and analyzed through morphological observation, a scanning electronic microscope (SEM) and an energy dispersive spectrum (EDS). The results show that the anodic and cathode sites can be distinguished clearly during and after the test. The propagation of rusting, and the color, distribution and composition of the final corrosive products of the two kinds of materials are quite different. The SWD corrosive mechanisms of steel with and without galvanized coating are both discussed in this paper.展开更多
文摘l- ions behavior in Ag(SO_3)3-2 solution was studied. The mechanism of Ag particles formation in the solution was discussed, and factors affecting its formation were investigated.
文摘The influence of chloride or sulphur dioxide on the corrosion behavior of copper tube in the air-conditioning system was studied using scanning electron microscope (SEM), energy dispersion spectrometer (EDS) and cyclic polarization techniques. The results showed that the corrosion of copper tube are mainly caused by the SO42- and Cl- ions in the circulating water, and the former is mainly responsible for the general corrosion of the copper tube whilst the latter for the pitting corrosion. The different influences of SG42- and Cl- ions on the corrosion type of copper tube may be attributed to that the radius of SO42- ion is much larger than that of Cl- ion. Meanwhile the results also indicated that SO42- inhibits the pitting corrosion caused by Cl- and Cl- inhibits the general corrosion initiated by SO42- due to their competitive adsorption on the copper matrix.
文摘Zn plays an important role in the protection of iron and steel from corrosion in sea water, and the alloying of Zn and Ni can improve its corrosion resistance. The corrosion behavior of Zn?Ni alloys in synthetic sea water (3.5% NaCl, mass fraction) was studied using Tafel plot and electrochemical impedance spectroscopy (EIS) techniques. The corrosion resistance of the investigated alloys with various Ni contents (0.5%?10%, mass fraction) was compared with that of Zn. The results show that the corrosion resistance of Zn?Ni alloys (except 0.5% Ni) is superior to that of Zn. The 10% Ni gives the highest corrosion resistance due to the formation ofγ-Zn3Ni withγ-ZnNi phases in the alloy. In the case of alloy I (0.5% Ni), it exhibits a higher corrosion rate (less corrosion resistance) than Zn.
文摘The corrosion mechanism of the S135 drill pipes was investigated through observation of the corrosion morphology and analysis of the corrosion products by scanning electronic microscope ( SEM), energy dispersive spectrum (EDS) and X-ray diffraction (XRD). The results show that the localized corrosion on the outer surface of the drill pipes was caused by oxygen corrosion due to the action of retained slurry. Cl - contained in slurry accelerated the corrosion and promoted the development of corrosion pits. Suggestions for mitigating or preventing such corrosion of the drill pipes are proposed based on the research results.
文摘The corrosive behaviors of hot-dip galvanized steel (G I) sheets and the corresponding interstitial free (IF) steel base sheets for use in automobiles were investigated by the classical salt water drop (SWD) test at room temperature. The corrosive processes and products were observed and analyzed through morphological observation, a scanning electronic microscope (SEM) and an energy dispersive spectrum (EDS). The results show that the anodic and cathode sites can be distinguished clearly during and after the test. The propagation of rusting, and the color, distribution and composition of the final corrosive products of the two kinds of materials are quite different. The SWD corrosive mechanisms of steel with and without galvanized coating are both discussed in this paper.