We investigate arithmetic properties of certain subsets of square-free positive integers and obtain in this way some results concerning the class number h(d) of the real quadratic field Q(√d). In particular, we g...We investigate arithmetic properties of certain subsets of square-free positive integers and obtain in this way some results concerning the class number h(d) of the real quadratic field Q(√d). In particular, we give a new proof of the result of Hasse, asserting that in this case h(d) = 1 is possible only if d is of the form p, 2q or qr. where p.q. r are primes and q≡r≡3(mod 4).展开更多
Let K = $ k(\sqrt \theta ) $ be a real cyclic quartic field, k be its quadratic subfield and $ \tilde K = k(\sqrt { - \theta } ) $ be the corresponding imaginary quartic field. Denote the class numbers of K, k and $ \...Let K = $ k(\sqrt \theta ) $ be a real cyclic quartic field, k be its quadratic subfield and $ \tilde K = k(\sqrt { - \theta } ) $ be the corresponding imaginary quartic field. Denote the class numbers of K, k and $ \tilde K $ by h K , h k and {417-3} respectively. Here congruences modulo powers of 2 for h ? = h K /h K and $ \tilde h^ - = h_{\tilde K} /h_k $ are obtained via studying the p-adic L-functions of the fields.展开更多
Let q 5 be a prime number. Let k d=() be a quadratic number field, where d =--gqq(1)2(1) ---qqqquwuq12((1)+). Then the class number of k is divisible by q for certain integers u,w. Conversely, assume W / k is an unra...Let q 5 be a prime number. Let k d=() be a quadratic number field, where d =--gqq(1)2(1) ---qqqquwuq12((1)+). Then the class number of k is divisible by q for certain integers u,w. Conversely, assume W / k is an unramified cyclic extension of degree q (which implies the class number of k is divisible by q), and W is the splitting field of some irreducible trinomial f(X) = XqaXb with integer coefficients, k Df=(())with D(f) the discriminant of f(X). Then f(X) must be of the form f(X) = Xquq2wXuq1 in a cer-tain sense where u,w are certain integers. Therefore, k d=() with d =-----qqqqqquwuq(1)122(1)((1)+). Moreover, the above two results are both generalized for certain kinds of general polynomials.展开更多
Let k=Q((D 2+md)(D 2+nd)(D 2+rd)), this paper proves firstly that the fundamental unit of k is ε=((D 2+md)(D 2+nd)+D 2(D 2+rd)) 2/(|mn|d 2), where D,d,m,n, and r are rational integers satisfying certain cond...Let k=Q((D 2+md)(D 2+nd)(D 2+rd)), this paper proves firstly that the fundamental unit of k is ε=((D 2+md)(D 2+nd)+D 2(D 2+rd)) 2/(|mn|d 2), where D,d,m,n, and r are rational integers satisfying certain conditions. Consequently, we describe the fundamental unit system of K=Q(D 2+md,D 2+nd,D 2+rd) explicitly by the fundamental unit of all the quadratic subfields and the class number h K explicitly by the class numbers of all the quadratic subfields. We also provide the fundamental unit system of some fields of (2,2) type.展开更多
In this paper, the theory of continued fractions of algebraic functions will be used to give a general theorem on lower bounds for class numbers of real quadratic function fields K=k(D). The bounds are given more expl...In this paper, the theory of continued fractions of algebraic functions will be used to give a general theorem on lower bounds for class numbers of real quadratic function fields K=k(D). The bounds are given more explicitly for six types of real quadratic function fields. As a consequence, six classes of real quadratic function fields with ideal class number greater than one are given.[展开更多
The theory of continued fractions of functions is used to give a lower bound for class numbers h(D) of general real quadratic function fields over k = F q (T). For five series of real quadratic function fields K, the...The theory of continued fractions of functions is used to give a lower bound for class numbers h(D) of general real quadratic function fields over k = F q (T). For five series of real quadratic function fields K, the bounds of h(D) are given more explicitly, e. g., if D = F 2 + c, then h(D) ≥ degF/degP; if D = (SG)2 + cS, then h(D) ≥ degS/degP; if D = (A m + a)2 + A, then h(D) ≥ degA/degP, where P is an irreducible polynomial splitting in K, c ∈ F q . In addition, three types of quadratic function fields K are found to have ideal class numbers bigger than one.展开更多
In this paper,the authors show that there exists infinitely many family of pairs of quadratic fields Q(√D)and Q((√D+n)(1/2))with D,n∈Z whose class numbers are both divisible by 3.
A parametrization of quadratic function fields whose divisor class numbers are divisible by 3 is obtained by using free parameters when the characteristics of the fields are not 3.
Let K be a cyclic quartic number field, and k its quadratic subfield. Let h(L) denote theideal class number of field L. Ten congruenees for h^- = h(K)/h(k) are obtained. In par-ticular, if K = Q((p+s(p^(1/2))))^(1/2) ...Let K be a cyclic quartic number field, and k its quadratic subfield. Let h(L) denote theideal class number of field L. Ten congruenees for h^- = h(K)/h(k) are obtained. In par-ticular, if K = Q((p+s(p^(1/2))))^(1/2) with the prime number p = r^2+s^2 and s is even, then C_1h^-≡B_((p-1)/_4)B_(3(p-1)/4) (mod p) for p≡1 (mod 8); and C_2h^-≡E_((p-5)/8)E_((3p-7)/8)(mod p) for p≡5 (mod 8)where B_n and E_n are the Bernoulli and the Euler numbers. If the real K = Q((v(5+2(5^(1/2))))^(1/2),then C_3h^-≡h(Q((-v)^(1/2))) h (Q((-5v)^(1/2))) (mod 5). If 3 ramifies in K = Q(θ^(1/2)), then C_4h(K)≡h(K~*) (mod 3) with K~* = Q((-3θ^(1/2))). All the above C_i are explicitly given constants.Some relations between the factors of class numbers h^- are also obtained. These results forcyclic quartic fields are an extension of the results for quadratic fields obtained by Ankeny-Artin-Chowla, Kiselev, Carlitz and Lu Hong-wen from 1948 to 1983.展开更多
LetK 6 be a real cyclic sextic number field, andK 2,K 3 its quadratic and cubic subfield. Leth(L) denote the ideal class number of fieldL. Seven congruences forh - =h (K 6)/(h(K 2)h(K 3)) are obtained. In particular, ...LetK 6 be a real cyclic sextic number field, andK 2,K 3 its quadratic and cubic subfield. Leth(L) denote the ideal class number of fieldL. Seven congruences forh - =h (K 6)/(h(K 2)h(K 3)) are obtained. In particular, when the conductorf 6 ofK 6 is a primep, $Ch^ - \equiv B\tfrac{{p - 1}}{6}B\tfrac{{5(p - 1)}}{6}(\bmod p)$ , whereC is an explicitly given constant, andB n is the Bernoulli number. These results on real cyclic sextic fields are an extension of the results on quadratic and cyclic quartic fields.展开更多
For real quadratic fields K, especially for fields K of ERD-type, a series of criteria of ideal class numbers h(K)=1 and h(K)】1 will be given via results of Diophantine equations in [1] and continued fraction theory....For real quadratic fields K, especially for fields K of ERD-type, a series of criteria of ideal class numbers h(K)=1 and h(K)】1 will be given via results of Diophantine equations in [1] and continued fraction theory. The problem of class numbers of real quadratic fields, after Gauss’conjecture, has been studied. For example, Lu Hong-wen展开更多
As an attempt to follow the direction of machine proof, a personal computer LEO386/25 is used to prove some class number formulae for certain imaginary quadratic number fields Q (p) , ( q =3, 7, 11, 19, 23, 31, 43 and...As an attempt to follow the direction of machine proof, a personal computer LEO386/25 is used to prove some class number formulae for certain imaginary quadratic number fields Q (p) , ( q =3, 7, 11, 19, 23, 31, 43 and 47) if the real quadratic number field Q (-p) has class number one for a prime p=4N 2+1 (N is a positive integer).展开更多
The Gross conjecture over Q was first claimed by Aoki in 1991.However,the original proof contains too many mistakes and false claims to be considered as a serious proof.This paper is an attempt to find a sound proof o...The Gross conjecture over Q was first claimed by Aoki in 1991.However,the original proof contains too many mistakes and false claims to be considered as a serious proof.This paper is an attempt to find a sound proof of the Gross conjecture under the outline of Aoki.We reduce the conjecture to an elementary conjecture concerning the class numbers of cyclic 2-extensions of Q.展开更多
Let L/Fq(T) be a tame abelian extension of type (l, l,...l). The ratio of the degree zero divisor dass number (as well as the ideal class number) of L to the product of corresponding class numbers of all cydic subfiel...Let L/Fq(T) be a tame abelian extension of type (l, l,...l). The ratio of the degree zero divisor dass number (as well as the ideal class number) of L to the product of corresponding class numbers of all cydic subfields of L is clearly determined.展开更多
Ankeny-Artin-Chowla obtained in [1] several congruences for class number h of quadratic number field k, some of which were obtained also by Kiselev. In particular, if the discriminant of k is a prime p≡1(mod 4) and...Ankeny-Artin-Chowla obtained in [1] several congruences for class number h of quadratic number field k, some of which were obtained also by Kiselev. In particular, if the discriminant of k is a prime p≡1(mod 4) and ε0=(t+p1/u)/2 is the fundamental unit of k,展开更多
Let p be an odd prime and F∞ a p-adic Lie extension of a number field F with Galois group G. Suppose that G is a compact pro-p p-adic Lie group with no torsion and that it contains a closed normal subgroup H such tha...Let p be an odd prime and F∞ a p-adic Lie extension of a number field F with Galois group G. Suppose that G is a compact pro-p p-adic Lie group with no torsion and that it contains a closed normal subgroup H such that G/H≌Zp. Under various assumptions, we establish asymptotic upper bounds for the growth of p-exponents of the class groups in the said p-adic Lie extension. Our results generalize a previous result of Lei, where he established such an estimate under the assumption that H≌Zp.展开更多
Two new hereditary classes of P 5-free graphs where the stability number can be found in polynomial time are proposed.They generalize several known results.
基金Supported by NNSF of China and SF of Chinese Education Committee ,and has been done when the author visited the Department of Mathematics of Purduc Unuversity in 1993
文摘It is a survey of the problem on class numbers of quadratic number fields.
文摘We investigate arithmetic properties of certain subsets of square-free positive integers and obtain in this way some results concerning the class number h(d) of the real quadratic field Q(√d). In particular, we give a new proof of the result of Hasse, asserting that in this case h(d) = 1 is possible only if d is of the form p, 2q or qr. where p.q. r are primes and q≡r≡3(mod 4).
基金supported by National Natural Science Foundation of China (Grant No. 10771111)
文摘Let K = $ k(\sqrt \theta ) $ be a real cyclic quartic field, k be its quadratic subfield and $ \tilde K = k(\sqrt { - \theta } ) $ be the corresponding imaginary quartic field. Denote the class numbers of K, k and $ \tilde K $ by h K , h k and {417-3} respectively. Here congruences modulo powers of 2 for h ? = h K /h K and $ \tilde h^ - = h_{\tilde K} /h_k $ are obtained via studying the p-adic L-functions of the fields.
基金the National Natural Science Foundation of China (No.10071041)
文摘Let q 5 be a prime number. Let k d=() be a quadratic number field, where d =--gqq(1)2(1) ---qqqquwuq12((1)+). Then the class number of k is divisible by q for certain integers u,w. Conversely, assume W / k is an unramified cyclic extension of degree q (which implies the class number of k is divisible by q), and W is the splitting field of some irreducible trinomial f(X) = XqaXb with integer coefficients, k Df=(())with D(f) the discriminant of f(X). Then f(X) must be of the form f(X) = Xquq2wXuq1 in a cer-tain sense where u,w are certain integers. Therefore, k d=() with d =-----qqqqqquwuq(1)122(1)((1)+). Moreover, the above two results are both generalized for certain kinds of general polynomials.
文摘Let k=Q((D 2+md)(D 2+nd)(D 2+rd)), this paper proves firstly that the fundamental unit of k is ε=((D 2+md)(D 2+nd)+D 2(D 2+rd)) 2/(|mn|d 2), where D,d,m,n, and r are rational integers satisfying certain conditions. Consequently, we describe the fundamental unit system of K=Q(D 2+md,D 2+nd,D 2+rd) explicitly by the fundamental unit of all the quadratic subfields and the class number h K explicitly by the class numbers of all the quadratic subfields. We also provide the fundamental unit system of some fields of (2,2) type.
文摘In this paper, the theory of continued fractions of algebraic functions will be used to give a general theorem on lower bounds for class numbers of real quadratic function fields K=k(D). The bounds are given more explicitly for six types of real quadratic function fields. As a consequence, six classes of real quadratic function fields with ideal class number greater than one are given.[
文摘The theory of continued fractions of functions is used to give a lower bound for class numbers h(D) of general real quadratic function fields over k = F q (T). For five series of real quadratic function fields K, the bounds of h(D) are given more explicitly, e. g., if D = F 2 + c, then h(D) ≥ degF/degP; if D = (SG)2 + cS, then h(D) ≥ degS/degP; if D = (A m + a)2 + A, then h(D) ≥ degA/degP, where P is an irreducible polynomial splitting in K, c ∈ F q . In addition, three types of quadratic function fields K are found to have ideal class numbers bigger than one.
基金supported by Anhui Initiative in Quantum Information Technologies(No.AHY150200)
文摘In this paper,the authors show that there exists infinitely many family of pairs of quadratic fields Q(√D)and Q((√D+n)(1/2))with D,n∈Z whose class numbers are both divisible by 3.
基金Supported by National Natural Science Foundation of China (Grant No. 10131010)
文摘A parametrization of quadratic function fields whose divisor class numbers are divisible by 3 is obtained by using free parameters when the characteristics of the fields are not 3.
基金Project supported by the National Natural Science Foundation of China.
文摘Let K be a cyclic quartic number field, and k its quadratic subfield. Let h(L) denote theideal class number of field L. Ten congruenees for h^- = h(K)/h(k) are obtained. In par-ticular, if K = Q((p+s(p^(1/2))))^(1/2) with the prime number p = r^2+s^2 and s is even, then C_1h^-≡B_((p-1)/_4)B_(3(p-1)/4) (mod p) for p≡1 (mod 8); and C_2h^-≡E_((p-5)/8)E_((3p-7)/8)(mod p) for p≡5 (mod 8)where B_n and E_n are the Bernoulli and the Euler numbers. If the real K = Q((v(5+2(5^(1/2))))^(1/2),then C_3h^-≡h(Q((-v)^(1/2))) h (Q((-5v)^(1/2))) (mod 5). If 3 ramifies in K = Q(θ^(1/2)), then C_4h(K)≡h(K~*) (mod 3) with K~* = Q((-3θ^(1/2))). All the above C_i are explicitly given constants.Some relations between the factors of class numbers h^- are also obtained. These results forcyclic quartic fields are an extension of the results for quadratic fields obtained by Ankeny-Artin-Chowla, Kiselev, Carlitz and Lu Hong-wen from 1948 to 1983.
基金Project supported by the National Natural Science Foundation of China (Grant No. 19771052).
文摘LetK 6 be a real cyclic sextic number field, andK 2,K 3 its quadratic and cubic subfield. Leth(L) denote the ideal class number of fieldL. Seven congruences forh - =h (K 6)/(h(K 2)h(K 3)) are obtained. In particular, when the conductorf 6 ofK 6 is a primep, $Ch^ - \equiv B\tfrac{{p - 1}}{6}B\tfrac{{5(p - 1)}}{6}(\bmod p)$ , whereC is an explicitly given constant, andB n is the Bernoulli number. These results on real cyclic sextic fields are an extension of the results on quadratic and cyclic quartic fields.
基金Project supported partially by the National Natural Science Foundation of China.
文摘For real quadratic fields K, especially for fields K of ERD-type, a series of criteria of ideal class numbers h(K)=1 and h(K)】1 will be given via results of Diophantine equations in [1] and continued fraction theory. The problem of class numbers of real quadratic fields, after Gauss’conjecture, has been studied. For example, Lu Hong-wen
文摘As an attempt to follow the direction of machine proof, a personal computer LEO386/25 is used to prove some class number formulae for certain imaginary quadratic number fields Q (p) , ( q =3, 7, 11, 19, 23, 31, 43 and 47) if the real quadratic number field Q (-p) has class number one for a prime p=4N 2+1 (N is a positive integer).
基金supported by National Natural Science Foundation of China (Grant No.10871183)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.200803580047)
文摘The Gross conjecture over Q was first claimed by Aoki in 1991.However,the original proof contains too many mistakes and false claims to be considered as a serious proof.This paper is an attempt to find a sound proof of the Gross conjecture under the outline of Aoki.We reduce the conjecture to an elementary conjecture concerning the class numbers of cyclic 2-extensions of Q.
基金This work was done at USTC when the author was a graduate student in a special program of Nankai University.
文摘Let L/Fq(T) be a tame abelian extension of type (l, l,...l). The ratio of the degree zero divisor dass number (as well as the ideal class number) of L to the product of corresponding class numbers of all cydic subfields of L is clearly determined.
基金Project supported by the National Natural Science Foundation of China
文摘Ankeny-Artin-Chowla obtained in [1] several congruences for class number h of quadratic number field k, some of which were obtained also by Kiselev. In particular, if the discriminant of k is a prime p≡1(mod 4) and ε0=(t+p1/u)/2 is the fundamental unit of k,
基金Supported by National Natural Science Foundation of China(Grant Nos.11550110172 and 11771164)
文摘Let p be an odd prime and F∞ a p-adic Lie extension of a number field F with Galois group G. Suppose that G is a compact pro-p p-adic Lie group with no torsion and that it contains a closed normal subgroup H such that G/H≌Zp. Under various assumptions, we establish asymptotic upper bounds for the growth of p-exponents of the class groups in the said p-adic Lie extension. Our results generalize a previous result of Lei, where he established such an estimate under the assumption that H≌Zp.
基金The first author was supported by DIMACS Summer2 0 0 3Award
文摘Two new hereditary classes of P 5-free graphs where the stability number can be found in polynomial time are proposed.They generalize several known results.