期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Research on Intelligent Identification of PD Patterns Based on the Fingerprint Features
1
作者 Qiuping Zheng Ting Chen +4 位作者 Haitao Hu Yingli Wang Dawei Zhao Chuntian Chen Dianchun Zheng 《Applied Mathematics》 2022年第11期896-916,共21页
Five-electrode configurations were designed to simulate the distribution inhomogeneity of electric field intensities in the air-insulating medium, and the characteristic data waveforms of partial discharge generated b... Five-electrode configurations were designed to simulate the distribution inhomogeneity of electric field intensities in the air-insulating medium, and the characteristic data waveforms of partial discharge generated by different electrode configurations under the excitation of power frequency AC voltage were carefully collected in this paper. Furthermore, the feature vectors of the corresponding fingerprint, contained in partial discharge data, were extracted by rigorous mathematical algorithms, and the artificial neural network was employed to realize the pattern recognition of partial discharge caused by the inhomogeneity of electric field intensity with different electrode configurations. The results indicate that the J<sub>4</sub> value in the space of 7 feature quantities is 1905.6, and the recognition rate is 100% when the hidden layer neuron of the network is 19. However, the J<sub>5</sub> value of 9 feature quantities is 1589.9, and the purpose of recognition has been achieved when the number of hidden layer neurons of the network is 6. Increasing the number of hidden layer neurons will only waste computing resources. Of course, PD information collection mode, feature quantity selection, optimal feature space composition, network structure and classification algorithm are the key to realizing PD fault intelligence identification. 展开更多
关键词 PD FINGERPRINT Feature Extraction Pattern Recognition class separability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部