A digital predistorted class-F power amplifier (PA) using Cree GaN HEMT CGH40010 operating at 2. 12 GHz is presented to obtain high efficiency and excellent linearity for wideband code-division multiple access ( WC...A digital predistorted class-F power amplifier (PA) using Cree GaN HEMT CGH40010 operating at 2. 12 GHz is presented to obtain high efficiency and excellent linearity for wideband code-division multiple access ( WCDMA ) applications. Measurement results with the continuous wave (CW) signals indicate that the designed class-F PA achieves a peak power-added efficiency (PAE) of 75. 2% with an output power of 39.4 dBm. The adjacent channel power ratio (ACPR) of the designed PA after digital predistortion (DPD) decreases from -28. 3 and -27. 5 dBc to -51.9 and -54. 0 dBc, respectively, for a 4-carrier 20 MHz WCDMA signal with 7. 1 dB peak to average power ratio (PAPR). The drain efficiency (DE) of the PA is 37. 8% at an average output power of 33. 3 dBm. The designed power amplifier can be aoolied in the WCDMA system.展开更多
The appearance of third-generation semiconductors represented by gallium nitride (GaN) material greatly improves the output power of a power amplifier (PA), but the efficiency of the PA needs to be further improve...The appearance of third-generation semiconductors represented by gallium nitride (GaN) material greatly improves the output power of a power amplifier (PA), but the efficiency of the PA needs to be further improved. The Class-F PA reduces the overlap of drain voltage and current by tuning harmonic impedance so that high efficiency is achieved. This paper begins with the principle of class-F PA, regards the third harmonic voltage as an independent variable, analyzes the influence of the third harmonic on fundamental, and points out how drain efficiency and output power vary with the third harmonic voltage with an I-V knee effect. Finally, the best third harmonic impedance is found mathematically. We compare our results with the Loadpull technique in advanced design system environment and conclude that an optimized third harmonic impedance is open in an ideal case, while it is not at an open point with the I-V knee effect, and the drain efficiency with optimized third harmonic impedance is 4% higher than that with the third harmonic open.展开更多
An X-band inverse class-F power amplifier is realized by a 1-mm Al Ga N/Ga N high electron mobility transistor(HEMT).The intrinsic and parasitic components inside the transistor,especially output capacitor Cds,influ...An X-band inverse class-F power amplifier is realized by a 1-mm Al Ga N/Ga N high electron mobility transistor(HEMT).The intrinsic and parasitic components inside the transistor,especially output capacitor Cds,influence the harmonic impedance heavily at the X-band,so compensation design is used for meeting the harmonic condition of inverse class-F on the current source plane.Experiment results show that,in the continuous-wave mode,the power amplifier achieves 61.7% power added efficiency(PAE),which is 16.3% higher than the class-AB power amplifier realized by the same kind of HEMT.To the best of our knowledge,this is the first inverse class-F Ga N internally-matched power amplifier,and the PAE is quite high at the X-band.展开更多
This paper proposed the high-frequency, multi-harmonic-controlled, Class-F power amplifier (PA) implemented with 0.5 μm GaN Hetrojunction Electron Mobility Transistor (HEMT). For PA design at high frequencies, parasi...This paper proposed the high-frequency, multi-harmonic-controlled, Class-F power amplifier (PA) implemented with 0.5 μm GaN Hetrojunction Electron Mobility Transistor (HEMT). For PA design at high frequencies, parasitics of a transistor significantly increase the difficulty of harmonic manipulation, compared to low-frequency cases. To overcome this issue, we propose a novel design methodology based on a band-reject, low-pass, output matching network, which is realized with passive components. This network provides optimal fundamental impedance and allows harmonic control up to the third order to enable an efficient Class-F behavior. The implemented PA exhibits performance at 2.5 GHz with a 50% PAE, 14 dB gain, and 10 W output power.展开更多
The fundamental operating principle of a Class F power amplifier and the factors aiding or affecting Class F performance were explicated previously. A Class F power amplifier design which satisfies WCDMA specification...The fundamental operating principle of a Class F power amplifier and the factors aiding or affecting Class F performance were explicated previously. A Class F power amplifier design which satisfies WCDMA specifications is explained in this paper. The Class F amplifier was designed by employing Motorola’s LDMOS (Laterally Diffused Metal Oxide Semiconductor) transistor models and we simulated its performance by means of ADS. A variety of procedures were applied in the process of designing Class F amplifier, namely, DC simulation, bias point selection, source-pull and load-pull characterization, input and output matching circuit design and the design of suitable harmonic traps, which are explained here.展开更多
A broadband class-F power amplifier for an S-band handset device is integrated on a 330.82 mm^3 die using an In Ga /GaAs HBT process. With LC serial harmonic traps immersed into the broadband output matching circuit, ...A broadband class-F power amplifier for an S-band handset device is integrated on a 330.82 mm^3 die using an In Ga /GaAs HBT process. With LC serial harmonic traps immersed into the broadband output matching circuit, good harmonic suppression performance can be achieved. A pure resistive impedance of the matching circuit, but near zero at second and infinite at third harmonic frequency, which enhances the efficiency, is obtained across 1.8–2.5 GHz. Tested with a continuous wave(CW) signal, the PA delivers an output power of 34 dBm and achieves a PAE of 57% at 2 GHz. In addition, excellent harmonic suppression levels of less than –53 dBc across the second to fifth harmonic are obtained.展开更多
针对无线通信应用的射频功率放大器,提出了一种新颖的温度补偿电路。应用该温度补偿电路,设计了一款基于In Ga P/Ga As HBT工艺的两级F类功率放大器。该功率放大器采用了带温度补偿特性的有源偏置电路,能有效地提高线性度,补偿温度引起...针对无线通信应用的射频功率放大器,提出了一种新颖的温度补偿电路。应用该温度补偿电路,设计了一款基于In Ga P/Ga As HBT工艺的两级F类功率放大器。该功率放大器采用了带温度补偿特性的有源偏置电路,能有效地提高线性度,补偿温度引起的性能偏差;输出匹配网络采用F类功率放大器谐波理论而设计。在1 920~1 980 MHz频段和电源电压3.4 V条件下,测得常温状态该功率放大器增益为27 d B;输出功率在28 d Bm时功率附加效率达到42%,邻信道功率比为?36 d Bc;在?20℃~80℃之间功率附加效率和邻信道功率比基本不变。展开更多
逆F类功放在接近饱和区工作时效率很高,将其与Doherty功放结构相结合,可以实现一种在大功率回退的情况下仍然具有很高效率的射频功率放大器。本文设计了一款基于Ga N HEMT晶体管的高效率的逆F类Doherty功率放大器,工作频带为910MHz^950...逆F类功放在接近饱和区工作时效率很高,将其与Doherty功放结构相结合,可以实现一种在大功率回退的情况下仍然具有很高效率的射频功率放大器。本文设计了一款基于Ga N HEMT晶体管的高效率的逆F类Doherty功率放大器,工作频带为910MHz^950MHz。单音信号测试结果显示,在930MHz处,功放回退7.5d B后漏极效率仍高达64.2%。使用3载波WCDMA信号作为测试信号,利用数字预失真技术进行线性化后,功放输出信号的上下边带邻信道功率比(ACPR)分别为-35.39d Bc和-35.9d Bc。展开更多
为了满足功率放大器对高效率和宽带的要求,介绍了一种连续逆F类功率放大器设计方法。在分析连续逆F类模式的基波和谐波阻抗基础上,提出了一种阶跃阻抗匹配网络电路。为了验证方法的有效性,设计并实现了一个1.7~2.9 GHz宽带的连续逆F类...为了满足功率放大器对高效率和宽带的要求,介绍了一种连续逆F类功率放大器设计方法。在分析连续逆F类模式的基波和谐波阻抗基础上,提出了一种阶跃阻抗匹配网络电路。为了验证方法的有效性,设计并实现了一个1.7~2.9 GHz宽带的连续逆F类功率放大器。测试结果表明,在工作带宽内,增益波动小于2 d B,饱和功率大于40.5 d Bm,峰值效率为65%~76%。该方法为宽带高效率放大器设计提供了有益的参考。展开更多
提出了一款4G频段全覆盖高输出功率高效率功率放大器。设计采用的是Cree公司提供的Ga N HEMT晶体管CGH40025F。基于F类功率放大器的设计理论,通过对晶体管的输入输出端均采用谐波控制网络,并将渐变式阻抗匹配这种宽带匹配方法应用到输...提出了一款4G频段全覆盖高输出功率高效率功率放大器。设计采用的是Cree公司提供的Ga N HEMT晶体管CGH40025F。基于F类功率放大器的设计理论,通过对晶体管的输入输出端均采用谐波控制网络,并将渐变式阻抗匹配这种宽带匹配方法应用到输入输出端的基波匹配当中。在实现二次谐波阻抗匹配至低阻抗区,三次谐波阻抗匹配至高阻抗区的同时基波阻抗被匹配至50Ω附近,从而有效提高了功率放大器的输出功率、效率和带宽。最终的测试结果表明在1.7~2.7 GHz频率范围内,漏极效率维持在62.55%~76%,输出功率在20~41W,增益在10 d B以上。仿真与实测结果基本一致。展开更多
基金The National Natural Science Foundation of China(No.60702163)the National Science and Technology Major Project(No.2010ZX03007-002-01,2011ZX03004-003)
文摘A digital predistorted class-F power amplifier (PA) using Cree GaN HEMT CGH40010 operating at 2. 12 GHz is presented to obtain high efficiency and excellent linearity for wideband code-division multiple access ( WCDMA ) applications. Measurement results with the continuous wave (CW) signals indicate that the designed class-F PA achieves a peak power-added efficiency (PAE) of 75. 2% with an output power of 39.4 dBm. The adjacent channel power ratio (ACPR) of the designed PA after digital predistortion (DPD) decreases from -28. 3 and -27. 5 dBc to -51.9 and -54. 0 dBc, respectively, for a 4-carrier 20 MHz WCDMA signal with 7. 1 dB peak to average power ratio (PAPR). The drain efficiency (DE) of the PA is 37. 8% at an average output power of 33. 3 dBm. The designed power amplifier can be aoolied in the WCDMA system.
文摘The appearance of third-generation semiconductors represented by gallium nitride (GaN) material greatly improves the output power of a power amplifier (PA), but the efficiency of the PA needs to be further improved. The Class-F PA reduces the overlap of drain voltage and current by tuning harmonic impedance so that high efficiency is achieved. This paper begins with the principle of class-F PA, regards the third harmonic voltage as an independent variable, analyzes the influence of the third harmonic on fundamental, and points out how drain efficiency and output power vary with the third harmonic voltage with an I-V knee effect. Finally, the best third harmonic impedance is found mathematically. We compare our results with the Loadpull technique in advanced design system environment and conclude that an optimized third harmonic impedance is open in an ideal case, while it is not at an open point with the I-V knee effect, and the drain efficiency with optimized third harmonic impedance is 4% higher than that with the third harmonic open.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2015AA016801)
文摘An X-band inverse class-F power amplifier is realized by a 1-mm Al Ga N/Ga N high electron mobility transistor(HEMT).The intrinsic and parasitic components inside the transistor,especially output capacitor Cds,influence the harmonic impedance heavily at the X-band,so compensation design is used for meeting the harmonic condition of inverse class-F on the current source plane.Experiment results show that,in the continuous-wave mode,the power amplifier achieves 61.7% power added efficiency(PAE),which is 16.3% higher than the class-AB power amplifier realized by the same kind of HEMT.To the best of our knowledge,this is the first inverse class-F Ga N internally-matched power amplifier,and the PAE is quite high at the X-band.
文摘This paper proposed the high-frequency, multi-harmonic-controlled, Class-F power amplifier (PA) implemented with 0.5 μm GaN Hetrojunction Electron Mobility Transistor (HEMT). For PA design at high frequencies, parasitics of a transistor significantly increase the difficulty of harmonic manipulation, compared to low-frequency cases. To overcome this issue, we propose a novel design methodology based on a band-reject, low-pass, output matching network, which is realized with passive components. This network provides optimal fundamental impedance and allows harmonic control up to the third order to enable an efficient Class-F behavior. The implemented PA exhibits performance at 2.5 GHz with a 50% PAE, 14 dB gain, and 10 W output power.
文摘The fundamental operating principle of a Class F power amplifier and the factors aiding or affecting Class F performance were explicated previously. A Class F power amplifier design which satisfies WCDMA specifications is explained in this paper. The Class F amplifier was designed by employing Motorola’s LDMOS (Laterally Diffused Metal Oxide Semiconductor) transistor models and we simulated its performance by means of ADS. A variety of procedures were applied in the process of designing Class F amplifier, namely, DC simulation, bias point selection, source-pull and load-pull characterization, input and output matching circuit design and the design of suitable harmonic traps, which are explained here.
文摘A broadband class-F power amplifier for an S-band handset device is integrated on a 330.82 mm^3 die using an In Ga /GaAs HBT process. With LC serial harmonic traps immersed into the broadband output matching circuit, good harmonic suppression performance can be achieved. A pure resistive impedance of the matching circuit, but near zero at second and infinite at third harmonic frequency, which enhances the efficiency, is obtained across 1.8–2.5 GHz. Tested with a continuous wave(CW) signal, the PA delivers an output power of 34 dBm and achieves a PAE of 57% at 2 GHz. In addition, excellent harmonic suppression levels of less than –53 dBc across the second to fifth harmonic are obtained.
文摘针对无线通信应用的射频功率放大器,提出了一种新颖的温度补偿电路。应用该温度补偿电路,设计了一款基于In Ga P/Ga As HBT工艺的两级F类功率放大器。该功率放大器采用了带温度补偿特性的有源偏置电路,能有效地提高线性度,补偿温度引起的性能偏差;输出匹配网络采用F类功率放大器谐波理论而设计。在1 920~1 980 MHz频段和电源电压3.4 V条件下,测得常温状态该功率放大器增益为27 d B;输出功率在28 d Bm时功率附加效率达到42%,邻信道功率比为?36 d Bc;在?20℃~80℃之间功率附加效率和邻信道功率比基本不变。
文摘为了满足功率放大器对高效率和宽带的要求,介绍了一种连续逆F类功率放大器设计方法。在分析连续逆F类模式的基波和谐波阻抗基础上,提出了一种阶跃阻抗匹配网络电路。为了验证方法的有效性,设计并实现了一个1.7~2.9 GHz宽带的连续逆F类功率放大器。测试结果表明,在工作带宽内,增益波动小于2 d B,饱和功率大于40.5 d Bm,峰值效率为65%~76%。该方法为宽带高效率放大器设计提供了有益的参考。
文摘提出了一款4G频段全覆盖高输出功率高效率功率放大器。设计采用的是Cree公司提供的Ga N HEMT晶体管CGH40025F。基于F类功率放大器的设计理论,通过对晶体管的输入输出端均采用谐波控制网络,并将渐变式阻抗匹配这种宽带匹配方法应用到输入输出端的基波匹配当中。在实现二次谐波阻抗匹配至低阻抗区,三次谐波阻抗匹配至高阻抗区的同时基波阻抗被匹配至50Ω附近,从而有效提高了功率放大器的输出功率、效率和带宽。最终的测试结果表明在1.7~2.7 GHz频率范围内,漏极效率维持在62.55%~76%,输出功率在20~41W,增益在10 d B以上。仿真与实测结果基本一致。