Classical swine fever (CSF), a list A disease of Office International des Epizooties, is caused by classical swine fever virus (CSFV) belonging to the Flaviviridae family. The well-known lapinized Chinese strain o...Classical swine fever (CSF), a list A disease of Office International des Epizooties, is caused by classical swine fever virus (CSFV) belonging to the Flaviviridae family. The well-known lapinized Chinese strain of CSFV, also known as C-strain, was developed in China in the mid-1950s. In the past half a century, the vaccine has been proved to be safe and immunogenic in pigs of essentially any age. It is of high efficacy, providing immunized animals with broad-spectrum, sometimes lifelong, protection, which is contributed by both cell-mediated immunity and humoral immunity, against essentially all genotypes or subgenotypes of the virus. The maternal antibodies derived from immunized sows can confer solid protection of their offspring from disease; however, they have been proved to inhibit the successful active immunization of C-strain vaccine. The complete genomes of C-strain and dozens of established or field strains have been sequenced and annotated. Recently, the reverse genetics system of C-strain has been developed, resulting in several C- strain-derived candidate marker vaccines. Many countries manage to control or even eradicate CSF with the aid of mass vaccination with C-strain. in spite of these efforts, the eradication of the disease worldwide remains a big challenge and needs to go a long way, and provably still resorts to genetically modified C-strain vaccine. The authors present an overview of the characteristics of the vaccine, which has stood the test of half a century.展开更多
A multi-epitope-vaccine MEVABc consisting of two linear neutralizing determinants (BCI: aa693-716; A6: aa844-865) located on antigenic unit B/C and unit A of glycoprotein E2 was prepared to evaluate whether a comb...A multi-epitope-vaccine MEVABc consisting of two linear neutralizing determinants (BCI: aa693-716; A6: aa844-865) located on antigenic unit B/C and unit A of glycoprotein E2 was prepared to evaluate whether a combination strategy is effective in the design of peptide vaccines. After immunization, pig sera collected every one to two weeks were evaluated by enzyme linked immunosorbent assay. C-straininduced anti-sera and hyper-immune sera cannot recognize overlapping peptides that cover the E2 N-terminus, while MEVAgC is able to elicit high levels of peptide-specific antibody response. When compared with previously studied peptide vaccines PV-BC1 and PV-A6, the same dose of either component in the MEMABc increases the BC1- or A6-specific antibodies (to 1/3-1/2 of the levels of the separate vaccines). However, the synergy between the antibodies may make MEVAgc much more potent. Moreover, anti-C-strain immunity pre-existing in pigs does not disturb the sequent MEVABc vaccination. Thus, MEVABc can be administrated to pigs which already possess anti-classical swine fever virus immunity. MEVAgC is a promising candidate marker vaccine.展开更多
Previous investigations demonstrated that the envelope glycoprotein E2 (gp55) of classical swine fever virus (CSFV) is the most immunogenic protein. Interestingly, recombinant protein E2 that contains only one stru...Previous investigations demonstrated that the envelope glycoprotein E2 (gp55) of classical swine fever virus (CSFV) is the most immunogenic protein. Interestingly, recombinant protein E2 that contains only one structural antigenic unit (unit B/C or A) could protect pigs from a lethal challenge of CSFV. Based on these findings, we designed and prepared five overlapping synthetic peptides that covered the sequence unit B/C (aa 693777) of Shimen E2 and conjugated individual peptides with bovine serum albumin (BSA). After the vaccination, the specificity of the rabbit sera was analyzed in the enzyme linked immunosorbent assay (ELISA) and the fast protein liquid chromatography (FPLC). The results show that each of the five candidate peptide vaccines can successfully induce a high titer of specific antibodies in New Zealand White Rabbits (n=3). Subsequently, the five candidate peptide vaccines were applied in combination for immunization of pigs (n=10) and induced specific and strong humoral responses against all of the five designed peptides in pigs. Our studies indicate that the candidate multi peptide vaccine would prove an excellent marker vaccine against CSFV and provide a model for developing effective synthetic peptide vaccines to stop viral epidemics in humans and animals.展开更多
文摘Classical swine fever (CSF), a list A disease of Office International des Epizooties, is caused by classical swine fever virus (CSFV) belonging to the Flaviviridae family. The well-known lapinized Chinese strain of CSFV, also known as C-strain, was developed in China in the mid-1950s. In the past half a century, the vaccine has been proved to be safe and immunogenic in pigs of essentially any age. It is of high efficacy, providing immunized animals with broad-spectrum, sometimes lifelong, protection, which is contributed by both cell-mediated immunity and humoral immunity, against essentially all genotypes or subgenotypes of the virus. The maternal antibodies derived from immunized sows can confer solid protection of their offspring from disease; however, they have been proved to inhibit the successful active immunization of C-strain vaccine. The complete genomes of C-strain and dozens of established or field strains have been sequenced and annotated. Recently, the reverse genetics system of C-strain has been developed, resulting in several C- strain-derived candidate marker vaccines. Many countries manage to control or even eradicate CSF with the aid of mass vaccination with C-strain. in spite of these efforts, the eradication of the disease worldwide remains a big challenge and needs to go a long way, and provably still resorts to genetically modified C-strain vaccine. The authors present an overview of the characteristics of the vaccine, which has stood the test of half a century.
基金the National Natural Science Foundation of China (No. 30221003)
文摘A multi-epitope-vaccine MEVABc consisting of two linear neutralizing determinants (BCI: aa693-716; A6: aa844-865) located on antigenic unit B/C and unit A of glycoprotein E2 was prepared to evaluate whether a combination strategy is effective in the design of peptide vaccines. After immunization, pig sera collected every one to two weeks were evaluated by enzyme linked immunosorbent assay. C-straininduced anti-sera and hyper-immune sera cannot recognize overlapping peptides that cover the E2 N-terminus, while MEVAgC is able to elicit high levels of peptide-specific antibody response. When compared with previously studied peptide vaccines PV-BC1 and PV-A6, the same dose of either component in the MEMABc increases the BC1- or A6-specific antibodies (to 1/3-1/2 of the levels of the separate vaccines). However, the synergy between the antibodies may make MEVAgc much more potent. Moreover, anti-C-strain immunity pre-existing in pigs does not disturb the sequent MEVABc vaccination. Thus, MEVABc can be administrated to pigs which already possess anti-classical swine fever virus immunity. MEVAgC is a promising candidate marker vaccine.
基金Supported by the National Key Basic Research Specific Funds(No.G19990 75 60 7) the National Science Foundation for Outstanding Young Scientists of China (No.3 0 0 2 5 0 3 8)
文摘Previous investigations demonstrated that the envelope glycoprotein E2 (gp55) of classical swine fever virus (CSFV) is the most immunogenic protein. Interestingly, recombinant protein E2 that contains only one structural antigenic unit (unit B/C or A) could protect pigs from a lethal challenge of CSFV. Based on these findings, we designed and prepared five overlapping synthetic peptides that covered the sequence unit B/C (aa 693777) of Shimen E2 and conjugated individual peptides with bovine serum albumin (BSA). After the vaccination, the specificity of the rabbit sera was analyzed in the enzyme linked immunosorbent assay (ELISA) and the fast protein liquid chromatography (FPLC). The results show that each of the five candidate peptide vaccines can successfully induce a high titer of specific antibodies in New Zealand White Rabbits (n=3). Subsequently, the five candidate peptide vaccines were applied in combination for immunization of pigs (n=10) and induced specific and strong humoral responses against all of the five designed peptides in pigs. Our studies indicate that the candidate multi peptide vaccine would prove an excellent marker vaccine against CSFV and provide a model for developing effective synthetic peptide vaccines to stop viral epidemics in humans and animals.