Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subse...Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons.展开更多
The conflicts among food security, economic development and ecological protection are the “sticking point” of undeveloped southwestern mountainous areas of China. The objectives of this study are to identify appropr...The conflicts among food security, economic development and ecological protection are the “sticking point” of undeveloped southwestern mountainous areas of China. The objectives of this study are to identify appropriate inte- grated indicators influencing the classification and gradation of cultivated land quality in the southwestern mountainous area of China based on semi-structure interview, and to promote the monitoring of cultivated land quality in this region. Taking Bishan County of Chongqing as a study case, the integrated indicators involve the productivity, protection, ac- ceptability, and stability of cultivated land. The integrated indicators accord with the characteristics of land resources and human preference in southwestern mountainous area of China. In different agricultural zones, we emphasize different indicators, such as emphasizing productivity, stabilization and acceptability in low hilly and plain agricultural integrative zone (LHP-AIZ), protection, productivity and stability in low mountain and hill agro-forestry ecological zone (LMH-AEZ), and acceptability in plain outskirts integrative agricultural zone (PO-IAZ), respectively. The pronounced difference of classification and gradation of cultivated land, regardless of inter-region or intra-region, is observed, with the reducible rank from PO-IAZ, LHP-AIZ to LMH-AEZ. Research results accord with the characteristics of assets management and intensive utilization of cultivated land resources in the southwestern mountainous area of China. Semi-structure interview adequately presents the principal agent of farmers in agricultural land use and rural land market. This method is very effective and feasible to obtain data of the quality of cultivated land in the southwestern mountainous area of China.展开更多
Based on data of earthquake disaster events during 1954-2005 in the Chinese mainland, the classification and gradation of earthquake disasters have been studied by multivariate statistical analysis. Three fundamental ...Based on data of earthquake disaster events during 1954-2005 in the Chinese mainland, the classification and gradation of earthquake disasters have been studied by multivariate statistical analysis. Three fundamental structures of earthquake disasters have been found and an FAPE (factor analysis-principal component-equamax rotation) classification model and an HCWS (hierarchical cluster-ward method-seuclid) gradation model have been constructed. Earthquake disasters are divided into eight classes and five grades respectively in the models, which give a reasonable explanation to the phenomenon of earthquake disasters.展开更多
Rolling element bearings are machine components used to allow circular movement and hence deliver forces between components of machines used in diverse areas of industry.The likelihood of failure has the propensity of...Rolling element bearings are machine components used to allow circular movement and hence deliver forces between components of machines used in diverse areas of industry.The likelihood of failure has the propensity of increasing under prolonged operation and varying working conditions.Hence, the accurate fault severity categorization of bearings is vital in diagnosing faults that arise in rotating machinery.The variability and complexity of the recorded vibration signals pose a great hurdle to distinguishing unique characteristic fault features.In this paper, the efficacy and the leverage of a pre-trained convolutional neural network(CNN) is harnessed in the implementation of a robust fault classification model.In the absence of sufficient data, this method has a high-performance rate.Initially, a modified VGG16 architecture is used to extract discriminating features from new samples and serves as input to a classifier.The raw vibration data are strategically segmented and transformed into two representations which are trained separately and jointly.The proposed approach is carried out on bearing vibration data and shows high-performance results.In addition to successfully implementing a robust fault classification model, a prognostic framework is developed by constructing a health indicator(HI) under varying operating conditions for a given fault condition.展开更多
Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to est...Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT.展开更多
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil...The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.展开更多
Effective development and utilization of wood resources is critical.Wood modification research has become an integral dimension of wood science research,however,the similarities between modified wood and original wood...Effective development and utilization of wood resources is critical.Wood modification research has become an integral dimension of wood science research,however,the similarities between modified wood and original wood render it challenging for accurate identification and classification using conventional image classification techniques.So,the development of efficient and accurate wood classification techniques is inevitable.This paper presents a one-dimensional,convolutional neural network(i.e.,BACNN)that combines near-infrared spectroscopy and deep learning techniques to classify poplar,tung,and balsa woods,and PVA,nano-silica-sol and PVA-nano silica sol modified woods of poplar.The results show that BACNN achieves an accuracy of 99.3%on the test set,higher than the 52.9%of the BP neural network and 98.7%of Support Vector Machine compared with traditional machine learning methods and deep learning based methods;it is also higher than the 97.6%of LeNet,98.7%of AlexNet and 99.1%of VGGNet-11.Therefore,the classification method proposed offers potential applications in wood classification,especially with homogeneous modified wood,and it also provides a basis for subsequent wood properties studies.展开更多
When building a classification model,the scenario where the samples of one class are significantly more than those of the other class is called data imbalance.Data imbalance causes the trained classification model to ...When building a classification model,the scenario where the samples of one class are significantly more than those of the other class is called data imbalance.Data imbalance causes the trained classification model to be in favor of the majority class(usually defined as the negative class),which may do harm to the accuracy of the minority class(usually defined as the positive class),and then lead to poor overall performance of the model.A method called MSHR-FCSSVM for solving imbalanced data classification is proposed in this article,which is based on a new hybrid resampling approach(MSHR)and a new fine cost-sensitive support vector machine(CS-SVM)classifier(FCSSVM).The MSHR measures the separability of each negative sample through its Silhouette value calculated by Mahalanobis distance between samples,based on which,the so-called pseudo-negative samples are screened out to generate new positive samples(over-sampling step)through linear interpolation and are deleted finally(under-sampling step).This approach replaces pseudo-negative samples with generated new positive samples one by one to clear up the inter-class overlap on the borderline,without changing the overall scale of the dataset.The FCSSVM is an improved version of the traditional CS-SVM.It considers influences of both the imbalance of sample number and the class distribution on classification simultaneously,and through finely tuning the class cost weights by using the efficient optimization algorithm based on the physical phenomenon of rime-ice(RIME)algorithm with cross-validation accuracy as the fitness function to accurately adjust the classification borderline.To verify the effectiveness of the proposed method,a series of experiments are carried out based on 20 imbalanced datasets including both mildly and extremely imbalanced datasets.The experimental results show that the MSHR-FCSSVM method performs better than the methods for comparison in most cases,and both the MSHR and the FCSSVM played significant roles.展开更多
The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was p...The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was proposed to reduce casting defects and improve production efficiency,which includes the random forest(RF)classification model,the feature importance analysis,and the process parameters optimization with Monte Carlo simulation.The collected data includes four types of defects and corresponding process parameters were used to construct the RF model.Classification results show a recall rate above 90% for all categories.The Gini Index was used to assess the importance of the process parameters in the formation of various defects in the RF model.Finally,the classification model was applied to different production conditions for quality prediction.In the case of process parameters optimization for gas porosity defects,this model serves as an experimental process in the Monte Carlo method to estimate a better temperature distribution.The prediction model,when applied to the factory,greatly improved the efficiency of defect detection.Results show that the scrap rate decreased from 10.16% to 6.68%.展开更多
In network traffic classification,it is important to understand the correlation between network traffic and its causal application,protocol,or service group,for example,in facilitating lawful interception,ensuring the...In network traffic classification,it is important to understand the correlation between network traffic and its causal application,protocol,or service group,for example,in facilitating lawful interception,ensuring the quality of service,preventing application choke points,and facilitating malicious behavior identification.In this paper,we review existing network classification techniques,such as port-based identification and those based on deep packet inspection,statistical features in conjunction with machine learning,and deep learning algorithms.We also explain the implementations,advantages,and limitations associated with these techniques.Our review also extends to publicly available datasets used in the literature.Finally,we discuss existing and emerging challenges,as well as future research directions.展开更多
Background: Cavernous transformation of the portal vein(CTPV) due to portal vein obstruction is a rare vascular anomaly defined as the formation of multiple collateral vessels in the hepatic hilum. This study aimed to...Background: Cavernous transformation of the portal vein(CTPV) due to portal vein obstruction is a rare vascular anomaly defined as the formation of multiple collateral vessels in the hepatic hilum. This study aimed to investigate the imaging features of intrahepatic portal vein in adult patients with CTPV and establish the relationship between the manifestations of intrahepatic portal vein and the progression of CTPV. Methods: We retrospectively analyzed 14 CTPV patients in Beijing Tsinghua Changgung Hospital. All patients underwent both direct portal venography(DPV) and computed tomography angiography(CTA) to reveal the manifestations of the portal venous system. The vessels measured included the left portal vein(LPV), right portal vein(RPV), main portal vein(MPV) and the portal vein bifurcation(PVB). Results: Nine males and 5 females, with a median age of 40.5 years, were included in the study. No significant difference was found in the diameters of the LPV or RPV measured by DPV and CTA. The visualization in terms of LPV, RPV and PVB measured by DPV was higher than that by CTA. There was a significant association between LPV/RPV and PVB/MPV in term of visibility revealed with DPV( P = 0.01), while this association was not observed with CTA. According to the imaging features of the portal vein measured by DPV, CTPV was classified into three categories to facilitate the diagnosis and treatment. Conclusions: DPV was more accurate than CTA for revealing the course of the intrahepatic portal vein in patients with CTPV. The classification of CTPV, that originated from the imaging features of the portal vein revealed by DPV, may provide a new perspective for the diagnosis and treatment of CTPV.展开更多
While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious behavior.To address the issues of traditional machine learning me...While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious behavior.To address the issues of traditional machine learning methods relying on expert experience and the insufficient representation capabilities of existing deep learning methods for encrypted malicious traffic,we propose an encrypted malicious traffic classification method that integrates global semantic features with local spatiotemporal features,called BERT-based Spatio-Temporal Features Network(BSTFNet).At the packet-level granularity,the model captures the global semantic features of packets through the attention mechanism of the Bidirectional Encoder Representations from Transformers(BERT)model.At the byte-level granularity,we initially employ the Bidirectional Gated Recurrent Unit(BiGRU)model to extract temporal features from bytes,followed by the utilization of the Text Convolutional Neural Network(TextCNN)model with multi-sized convolution kernels to extract local multi-receptive field spatial features.The fusion of features from both granularities serves as the ultimate multidimensional representation of malicious traffic.Our approach achieves accuracy and F1-score of 99.39%and 99.40%,respectively,on the publicly available USTC-TFC2016 dataset,and effectively reduces sample confusion within the Neris and Virut categories.The experimental results demonstrate that our method has outstanding representation and classification capabilities for encrypted malicious traffic.展开更多
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec...In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment.展开更多
Purpose:Many science,technology and innovation(STI)resources are attached with several different labels.To assign automatically the resulting labels to an interested instance,many approaches with good performance on t...Purpose:Many science,technology and innovation(STI)resources are attached with several different labels.To assign automatically the resulting labels to an interested instance,many approaches with good performance on the benchmark datasets have been proposed for multi-label classification task in the literature.Furthermore,several open-source tools implementing these approaches have also been developed.However,the characteristics of real-world multi-label patent and publication datasets are not completely in line with those of benchmark ones.Therefore,the main purpose of this paper is to evaluate comprehensively seven multi-label classification methods on real-world datasets.Research limitations:Three real-world datasets differ in the following aspects:statement,data quality,and purposes.Additionally,open-source tools designed for multi-label classification also have intrinsic differences in their approaches for data processing and feature selection,which in turn impacts the performance of a multi-label classification approach.In the near future,we will enhance experimental precision and reinforce the validity of conclusions by employing more rigorous control over variables through introducing expanded parameter settings.Practical implications:The observed Macro F1 and Micro F1 scores on real-world datasets typically fall short of those achieved on benchmark datasets,underscoring the complexity of real-world multi-label classification tasks.Approaches leveraging deep learning techniques offer promising solutions by accommodating the hierarchical relationships and interdependencies among labels.With ongoing enhancements in deep learning algorithms and large-scale models,it is expected that the efficacy of multi-label classification tasks will be significantly improved,reaching a level of practical utility in the foreseeable future.Originality/value:(1)Seven multi-label classification methods are comprehensively compared on three real-world datasets.(2)The TextCNN and TextRCNN models perform better on small-scale datasets with more complex hierarchical structure of labels and more balanced document-label distribution.(3)The MLkNN method works better on the larger-scale dataset with more unbalanced document-label distribution.展开更多
A simplex centroid design method was employed to design the gradation of recycled coarse aggregate.The bulk density was measured while the specific surface area and average excess paste thickness were calculated with ...A simplex centroid design method was employed to design the gradation of recycled coarse aggregate.The bulk density was measured while the specific surface area and average excess paste thickness were calculated with different gradations.The fluidity,dynamic yield stress,static yield stress,printed width,printed inclination,compressive strength and ultrasonic wave velocity of 3D printed recycled aggregate concrete(3DPRAC)were further studied.The experimental results demonstrate that,with the increase of small-sized aggregate(4.75-7 mm)content,the bulk density initially increases and then decreases,and the specific surface area gradually increases.The average excess paste thickness fluctuates with both bulk density and specific surface area.The workability of 3DPRAC is closely related to the average excess paste thickness.With an increase in average paste thickness,there is a gradual decrease in dynamic yield stress,static yield stress and printed inclination,accompanied by an increase in fluidity and printed width.The mechanical performance of 3DPRAC closely correlates with the bulk density.With an increase in the bulk density,there is an increase in the ultrasonic wave velocity,accompanied by a slight increase in the compressive strength and a significant decrease in the anisotropic coefficient.Furthermore,an index for buildability failure of 3DPRAC based on the average excess paste thickness is proposed.展开更多
The tell tail is usually placed on the triangular sail to display the running state of the air flow on the sail surface.It is of great significance to make accurate judgement on the drift of the tell tail of the sailb...The tell tail is usually placed on the triangular sail to display the running state of the air flow on the sail surface.It is of great significance to make accurate judgement on the drift of the tell tail of the sailboat during sailing for the best sailing effect.Normally it is difficult for sailors to keep an eye for a long time on the tell sail for accurate judging its changes,affected by strong sunlight and visual fatigue.In this case,we adopt computer vision technology in hope of helping the sailors judge the changes of the tell tail in ease with ease.This paper proposes for the first time a method to classify sailboat tell tails based on deep learning and an expert guidance system,supported by a sailboat tell tail classification data set on the expert guidance system of interpreting the tell tails states in different sea wind conditions,including the feature extraction performance.Considering the expression capabilities that vary with the computational features in different visual tasks,the paper focuses on five tell tail computing features,which are recoded by an automatic encoder and classified by a SVM classifier.All experimental samples were randomly divided into five groups,and four groups were selected from each group as the training set to train the classifier.The remaining one group was used as the test set for testing.The highest resolution value of the ResNet network was 80.26%.To achieve better operational results on the basis of deep computing features obtained through the ResNet network in the experiments.The method can be used to assist the sailors in making better judgement about the tell tail changes during sailing.展开更多
Lung cancer is a leading cause of global mortality rates.Early detection of pulmonary tumors can significantly enhance the survival rate of patients.Recently,various Computer-Aided Diagnostic(CAD)methods have been dev...Lung cancer is a leading cause of global mortality rates.Early detection of pulmonary tumors can significantly enhance the survival rate of patients.Recently,various Computer-Aided Diagnostic(CAD)methods have been developed to enhance the detection of pulmonary nodules with high accuracy.Nevertheless,the existing method-ologies cannot obtain a high level of specificity and sensitivity.The present study introduces a novel model for Lung Cancer Segmentation and Classification(LCSC),which incorporates two improved architectures,namely the improved U-Net architecture and the improved AlexNet architecture.The LCSC model comprises two distinct stages.The first stage involves the utilization of an improved U-Net architecture to segment candidate nodules extracted from the lung lobes.Subsequently,an improved AlexNet architecture is employed to classify lung cancer.During the first stage,the proposed model demonstrates a dice accuracy of 0.855,a precision of 0.933,and a recall of 0.789 for the segmentation of candidate nodules.The suggested improved AlexNet architecture attains 97.06%accuracy,a true positive rate of 96.36%,a true negative rate of 97.77%,a positive predictive value of 97.74%,and a negative predictive value of 96.41%for classifying pulmonary cancer as either benign or malignant.The proposed LCSC model is tested and evaluated employing the publically available dataset furnished by the Lung Image Database Consortium and Image Database Resource Initiative(LIDC-IDRI).This proposed technique exhibits remarkable performance compared to the existing methods by using various evaluation parameters.展开更多
Among central nervous system-associated malignancies,glioblastoma(GBM)is the most common and has the highest mortality rate.The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently le...Among central nervous system-associated malignancies,glioblastoma(GBM)is the most common and has the highest mortality rate.The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently lead to tumor recurrence and sudden relapse in patients treated with temozolomide.In precision medicine,research on GBM treatment is increasingly focusing on molecular subtyping to precisely characterize the cellular and molecular heterogeneity,as well as the refractory nature of GBM toward therapy.Deep understanding of the different molecular expression patterns of GBM subtypes is critical.Researchers have recently proposed tetra fractional or tripartite methods for detecting GBM molecular subtypes.The various molecular subtypes of GBM show significant differences in gene expression patterns and biological behaviors.These subtypes also exhibit high plasticity in their regulatory pathways,oncogene expression,tumor microenvironment alterations,and differential responses to standard therapy.Herein,we summarize the current molecular typing scheme of GBM and the major molecular/genetic characteristics of each subtype.Furthermore,we review the mesenchymal transition mechanisms of GBM under various regulators.展开更多
The classification of functional data has drawn much attention in recent years.The main challenge is representing infinite-dimensional functional data by finite-dimensional features while utilizing those features to a...The classification of functional data has drawn much attention in recent years.The main challenge is representing infinite-dimensional functional data by finite-dimensional features while utilizing those features to achieve better classification accuracy.In this paper,we propose a mean-variance-based(MV)feature weighting method for classifying functional data or functional curves.In the feature extraction stage,each sample curve is approximated by B-splines to transfer features to the coefficients of the spline basis.After that,a feature weighting approach based on statistical principles is introduced by comprehensively considering the between-class differences and within-class variations of the coefficients.We also introduce a scaling parameter to adjust the gap between the weights of features.The new feature weighting approach can adaptively enhance noteworthy local features while mitigating the impact of confusing features.The algorithms for feature weighted K-nearest neighbor and support vector machine classifiers are both provided.Moreover,the new approach can be well integrated into existing functional data classifiers,such as the generalized functional linear model and functional linear discriminant analysis,resulting in a more accurate classification.The performance of the mean-variance-based classifiers is evaluated by simulation studies and real data.The results show that the newfeatureweighting approach significantly improves the classification accuracy for complex functional data.展开更多
Intrusion detection is a predominant task that monitors and protects the network infrastructure.Therefore,many datasets have been published and investigated by researchers to analyze and understand the problem of intr...Intrusion detection is a predominant task that monitors and protects the network infrastructure.Therefore,many datasets have been published and investigated by researchers to analyze and understand the problem of intrusion prediction and detection.In particular,the Network Security Laboratory-Knowledge Discovery in Databases(NSL-KDD)is an extensively used benchmark dataset for evaluating intrusion detection systems(IDSs)as it incorporates various network traffic attacks.It is worth mentioning that a large number of studies have tackled the problem of intrusion detection using machine learning models,but the performance of these models often decreases when evaluated on new attacks.This has led to the utilization of deep learning techniques,which have showcased significant potential for processing large datasets and therefore improving detection accuracy.For that reason,this paper focuses on the role of stacking deep learning models,including convolution neural network(CNN)and deep neural network(DNN)for improving the intrusion detection rate of the NSL-KDD dataset.Each base model is trained on the NSL-KDD dataset to extract significant features.Once the base models have been trained,the stacking process proceeds to the second stage,where a simple meta-model has been trained on the predictions generated from the proposed base models.The combination of the predictions allows the meta-model to distinguish different classes of attacks and increase the detection rate.Our experimental evaluations using the NSL-KDD dataset have shown the efficacy of stacking deep learning models for intrusion detection.The performance of the ensemble of base models,combined with the meta-model,exceeds the performance of individual models.Our stacking model has attained an accuracy of 99%and an average F1-score of 93%for the multi-classification scenario.Besides,the training time of the proposed ensemble model is lower than the training time of benchmark techniques,demonstrating its efficiency and robustness.展开更多
基金supported in part by NIH grants R01NS39600,U01MH114829RF1MH128693(to GAA)。
文摘Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons.
基金Under the auspices of Key Project of Science and Technology of the Ministry of Education (No. 03111)IncubationFund Project of Science and Technology Committee of Chongqing (No. 017079)
文摘The conflicts among food security, economic development and ecological protection are the “sticking point” of undeveloped southwestern mountainous areas of China. The objectives of this study are to identify appropriate inte- grated indicators influencing the classification and gradation of cultivated land quality in the southwestern mountainous area of China based on semi-structure interview, and to promote the monitoring of cultivated land quality in this region. Taking Bishan County of Chongqing as a study case, the integrated indicators involve the productivity, protection, ac- ceptability, and stability of cultivated land. The integrated indicators accord with the characteristics of land resources and human preference in southwestern mountainous area of China. In different agricultural zones, we emphasize different indicators, such as emphasizing productivity, stabilization and acceptability in low hilly and plain agricultural integrative zone (LHP-AIZ), protection, productivity and stability in low mountain and hill agro-forestry ecological zone (LMH-AEZ), and acceptability in plain outskirts integrative agricultural zone (PO-IAZ), respectively. The pronounced difference of classification and gradation of cultivated land, regardless of inter-region or intra-region, is observed, with the reducible rank from PO-IAZ, LHP-AIZ to LMH-AEZ. Research results accord with the characteristics of assets management and intensive utilization of cultivated land resources in the southwestern mountainous area of China. Semi-structure interview adequately presents the principal agent of farmers in agricultural land use and rural land market. This method is very effective and feasible to obtain data of the quality of cultivated land in the southwestern mountainous area of China.
文摘Based on data of earthquake disaster events during 1954-2005 in the Chinese mainland, the classification and gradation of earthquake disasters have been studied by multivariate statistical analysis. Three fundamental structures of earthquake disasters have been found and an FAPE (factor analysis-principal component-equamax rotation) classification model and an HCWS (hierarchical cluster-ward method-seuclid) gradation model have been constructed. Earthquake disasters are divided into eight classes and five grades respectively in the models, which give a reasonable explanation to the phenomenon of earthquake disasters.
基金supported by the National Natural Science Foundation of China (42027805)National Aeronautical Fund (ASFC-2017 2080005)National Key R&D Program of China (2017YFC03 07100)。
文摘Rolling element bearings are machine components used to allow circular movement and hence deliver forces between components of machines used in diverse areas of industry.The likelihood of failure has the propensity of increasing under prolonged operation and varying working conditions.Hence, the accurate fault severity categorization of bearings is vital in diagnosing faults that arise in rotating machinery.The variability and complexity of the recorded vibration signals pose a great hurdle to distinguishing unique characteristic fault features.In this paper, the efficacy and the leverage of a pre-trained convolutional neural network(CNN) is harnessed in the implementation of a robust fault classification model.In the absence of sufficient data, this method has a high-performance rate.Initially, a modified VGG16 architecture is used to extract discriminating features from new samples and serves as input to a classifier.The raw vibration data are strategically segmented and transformed into two representations which are trained separately and jointly.The proposed approach is carried out on bearing vibration data and shows high-performance results.In addition to successfully implementing a robust fault classification model, a prognostic framework is developed by constructing a health indicator(HI) under varying operating conditions for a given fault condition.
基金supported in part by the Nationa Natural Science Foundation of China (61876011)the National Key Research and Development Program of China (2022YFB4703700)+1 种基金the Key Research and Development Program 2020 of Guangzhou (202007050002)the Key-Area Research and Development Program of Guangdong Province (2020B090921003)。
文摘Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT.
文摘The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.
基金This study was supported by the Fundamental Research Funds for the Central Universities(No.2572023DJ02).
文摘Effective development and utilization of wood resources is critical.Wood modification research has become an integral dimension of wood science research,however,the similarities between modified wood and original wood render it challenging for accurate identification and classification using conventional image classification techniques.So,the development of efficient and accurate wood classification techniques is inevitable.This paper presents a one-dimensional,convolutional neural network(i.e.,BACNN)that combines near-infrared spectroscopy and deep learning techniques to classify poplar,tung,and balsa woods,and PVA,nano-silica-sol and PVA-nano silica sol modified woods of poplar.The results show that BACNN achieves an accuracy of 99.3%on the test set,higher than the 52.9%of the BP neural network and 98.7%of Support Vector Machine compared with traditional machine learning methods and deep learning based methods;it is also higher than the 97.6%of LeNet,98.7%of AlexNet and 99.1%of VGGNet-11.Therefore,the classification method proposed offers potential applications in wood classification,especially with homogeneous modified wood,and it also provides a basis for subsequent wood properties studies.
基金supported by the Yunnan Major Scientific and Technological Projects(Grant No.202302AD080001)the National Natural Science Foundation,China(No.52065033).
文摘When building a classification model,the scenario where the samples of one class are significantly more than those of the other class is called data imbalance.Data imbalance causes the trained classification model to be in favor of the majority class(usually defined as the negative class),which may do harm to the accuracy of the minority class(usually defined as the positive class),and then lead to poor overall performance of the model.A method called MSHR-FCSSVM for solving imbalanced data classification is proposed in this article,which is based on a new hybrid resampling approach(MSHR)and a new fine cost-sensitive support vector machine(CS-SVM)classifier(FCSSVM).The MSHR measures the separability of each negative sample through its Silhouette value calculated by Mahalanobis distance between samples,based on which,the so-called pseudo-negative samples are screened out to generate new positive samples(over-sampling step)through linear interpolation and are deleted finally(under-sampling step).This approach replaces pseudo-negative samples with generated new positive samples one by one to clear up the inter-class overlap on the borderline,without changing the overall scale of the dataset.The FCSSVM is an improved version of the traditional CS-SVM.It considers influences of both the imbalance of sample number and the class distribution on classification simultaneously,and through finely tuning the class cost weights by using the efficient optimization algorithm based on the physical phenomenon of rime-ice(RIME)algorithm with cross-validation accuracy as the fitness function to accurately adjust the classification borderline.To verify the effectiveness of the proposed method,a series of experiments are carried out based on 20 imbalanced datasets including both mildly and extremely imbalanced datasets.The experimental results show that the MSHR-FCSSVM method performs better than the methods for comparison in most cases,and both the MSHR and the FCSSVM played significant roles.
基金financially supported by the National Key Research and Development Program of China(2022YFB3706800,2020YFB1710100)the National Natural Science Foundation of China(51821001,52090042,52074183)。
文摘The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was proposed to reduce casting defects and improve production efficiency,which includes the random forest(RF)classification model,the feature importance analysis,and the process parameters optimization with Monte Carlo simulation.The collected data includes four types of defects and corresponding process parameters were used to construct the RF model.Classification results show a recall rate above 90% for all categories.The Gini Index was used to assess the importance of the process parameters in the formation of various defects in the RF model.Finally,the classification model was applied to different production conditions for quality prediction.In the case of process parameters optimization for gas porosity defects,this model serves as an experimental process in the Monte Carlo method to estimate a better temperature distribution.The prediction model,when applied to the factory,greatly improved the efficiency of defect detection.Results show that the scrap rate decreased from 10.16% to 6.68%.
文摘In network traffic classification,it is important to understand the correlation between network traffic and its causal application,protocol,or service group,for example,in facilitating lawful interception,ensuring the quality of service,preventing application choke points,and facilitating malicious behavior identification.In this paper,we review existing network classification techniques,such as port-based identification and those based on deep packet inspection,statistical features in conjunction with machine learning,and deep learning algorithms.We also explain the implementations,advantages,and limitations associated with these techniques.Our review also extends to publicly available datasets used in the literature.Finally,we discuss existing and emerging challenges,as well as future research directions.
文摘Background: Cavernous transformation of the portal vein(CTPV) due to portal vein obstruction is a rare vascular anomaly defined as the formation of multiple collateral vessels in the hepatic hilum. This study aimed to investigate the imaging features of intrahepatic portal vein in adult patients with CTPV and establish the relationship between the manifestations of intrahepatic portal vein and the progression of CTPV. Methods: We retrospectively analyzed 14 CTPV patients in Beijing Tsinghua Changgung Hospital. All patients underwent both direct portal venography(DPV) and computed tomography angiography(CTA) to reveal the manifestations of the portal venous system. The vessels measured included the left portal vein(LPV), right portal vein(RPV), main portal vein(MPV) and the portal vein bifurcation(PVB). Results: Nine males and 5 females, with a median age of 40.5 years, were included in the study. No significant difference was found in the diameters of the LPV or RPV measured by DPV and CTA. The visualization in terms of LPV, RPV and PVB measured by DPV was higher than that by CTA. There was a significant association between LPV/RPV and PVB/MPV in term of visibility revealed with DPV( P = 0.01), while this association was not observed with CTA. According to the imaging features of the portal vein measured by DPV, CTPV was classified into three categories to facilitate the diagnosis and treatment. Conclusions: DPV was more accurate than CTA for revealing the course of the intrahepatic portal vein in patients with CTPV. The classification of CTPV, that originated from the imaging features of the portal vein revealed by DPV, may provide a new perspective for the diagnosis and treatment of CTPV.
基金This research was funded by National Natural Science Foundation of China under Grant No.61806171Sichuan University of Science&Engineering Talent Project under Grant No.2021RC15+2 种基金Open Fund Project of Key Laboratory for Non-Destructive Testing and Engineering Computer of Sichuan Province Universities on Bridge Inspection and Engineering under Grant No.2022QYJ06Sichuan University of Science&Engineering Graduate Student Innovation Fund under Grant No.Y2023115The Scientific Research and Innovation Team Program of Sichuan University of Science and Technology under Grant No.SUSE652A006.
文摘While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious behavior.To address the issues of traditional machine learning methods relying on expert experience and the insufficient representation capabilities of existing deep learning methods for encrypted malicious traffic,we propose an encrypted malicious traffic classification method that integrates global semantic features with local spatiotemporal features,called BERT-based Spatio-Temporal Features Network(BSTFNet).At the packet-level granularity,the model captures the global semantic features of packets through the attention mechanism of the Bidirectional Encoder Representations from Transformers(BERT)model.At the byte-level granularity,we initially employ the Bidirectional Gated Recurrent Unit(BiGRU)model to extract temporal features from bytes,followed by the utilization of the Text Convolutional Neural Network(TextCNN)model with multi-sized convolution kernels to extract local multi-receptive field spatial features.The fusion of features from both granularities serves as the ultimate multidimensional representation of malicious traffic.Our approach achieves accuracy and F1-score of 99.39%and 99.40%,respectively,on the publicly available USTC-TFC2016 dataset,and effectively reduces sample confusion within the Neris and Virut categories.The experimental results demonstrate that our method has outstanding representation and classification capabilities for encrypted malicious traffic.
基金the Deputyship for Research and Innovation,“Ministry of Education”in Saudi Arabia for funding this research(IFKSUOR3-014-3).
文摘In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment.
基金the Natural Science Foundation of China(Grant Numbers 72074014 and 72004012).
文摘Purpose:Many science,technology and innovation(STI)resources are attached with several different labels.To assign automatically the resulting labels to an interested instance,many approaches with good performance on the benchmark datasets have been proposed for multi-label classification task in the literature.Furthermore,several open-source tools implementing these approaches have also been developed.However,the characteristics of real-world multi-label patent and publication datasets are not completely in line with those of benchmark ones.Therefore,the main purpose of this paper is to evaluate comprehensively seven multi-label classification methods on real-world datasets.Research limitations:Three real-world datasets differ in the following aspects:statement,data quality,and purposes.Additionally,open-source tools designed for multi-label classification also have intrinsic differences in their approaches for data processing and feature selection,which in turn impacts the performance of a multi-label classification approach.In the near future,we will enhance experimental precision and reinforce the validity of conclusions by employing more rigorous control over variables through introducing expanded parameter settings.Practical implications:The observed Macro F1 and Micro F1 scores on real-world datasets typically fall short of those achieved on benchmark datasets,underscoring the complexity of real-world multi-label classification tasks.Approaches leveraging deep learning techniques offer promising solutions by accommodating the hierarchical relationships and interdependencies among labels.With ongoing enhancements in deep learning algorithms and large-scale models,it is expected that the efficacy of multi-label classification tasks will be significantly improved,reaching a level of practical utility in the foreseeable future.Originality/value:(1)Seven multi-label classification methods are comprehensively compared on three real-world datasets.(2)The TextCNN and TextRCNN models perform better on small-scale datasets with more complex hierarchical structure of labels and more balanced document-label distribution.(3)The MLkNN method works better on the larger-scale dataset with more unbalanced document-label distribution.
基金Funded by the National Natural Science Foundation of China(No.U1904188)。
文摘A simplex centroid design method was employed to design the gradation of recycled coarse aggregate.The bulk density was measured while the specific surface area and average excess paste thickness were calculated with different gradations.The fluidity,dynamic yield stress,static yield stress,printed width,printed inclination,compressive strength and ultrasonic wave velocity of 3D printed recycled aggregate concrete(3DPRAC)were further studied.The experimental results demonstrate that,with the increase of small-sized aggregate(4.75-7 mm)content,the bulk density initially increases and then decreases,and the specific surface area gradually increases.The average excess paste thickness fluctuates with both bulk density and specific surface area.The workability of 3DPRAC is closely related to the average excess paste thickness.With an increase in average paste thickness,there is a gradual decrease in dynamic yield stress,static yield stress and printed inclination,accompanied by an increase in fluidity and printed width.The mechanical performance of 3DPRAC closely correlates with the bulk density.With an increase in the bulk density,there is an increase in the ultrasonic wave velocity,accompanied by a slight increase in the compressive strength and a significant decrease in the anisotropic coefficient.Furthermore,an index for buildability failure of 3DPRAC based on the average excess paste thickness is proposed.
基金supported by the Shandong Provin-cial Key Research Project of Undergraduate Teaching Reform(No.Z2022218)the Fundamental Research Funds for the Central University(No.202113028)+1 种基金the Graduate Education Promotion Program of Ocean University of China(No.HDJG20006)supported by the Sailing Laboratory of Ocean University of China.
文摘The tell tail is usually placed on the triangular sail to display the running state of the air flow on the sail surface.It is of great significance to make accurate judgement on the drift of the tell tail of the sailboat during sailing for the best sailing effect.Normally it is difficult for sailors to keep an eye for a long time on the tell sail for accurate judging its changes,affected by strong sunlight and visual fatigue.In this case,we adopt computer vision technology in hope of helping the sailors judge the changes of the tell tail in ease with ease.This paper proposes for the first time a method to classify sailboat tell tails based on deep learning and an expert guidance system,supported by a sailboat tell tail classification data set on the expert guidance system of interpreting the tell tails states in different sea wind conditions,including the feature extraction performance.Considering the expression capabilities that vary with the computational features in different visual tasks,the paper focuses on five tell tail computing features,which are recoded by an automatic encoder and classified by a SVM classifier.All experimental samples were randomly divided into five groups,and four groups were selected from each group as the training set to train the classifier.The remaining one group was used as the test set for testing.The highest resolution value of the ResNet network was 80.26%.To achieve better operational results on the basis of deep computing features obtained through the ResNet network in the experiments.The method can be used to assist the sailors in making better judgement about the tell tail changes during sailing.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RP23044).
文摘Lung cancer is a leading cause of global mortality rates.Early detection of pulmonary tumors can significantly enhance the survival rate of patients.Recently,various Computer-Aided Diagnostic(CAD)methods have been developed to enhance the detection of pulmonary nodules with high accuracy.Nevertheless,the existing method-ologies cannot obtain a high level of specificity and sensitivity.The present study introduces a novel model for Lung Cancer Segmentation and Classification(LCSC),which incorporates two improved architectures,namely the improved U-Net architecture and the improved AlexNet architecture.The LCSC model comprises two distinct stages.The first stage involves the utilization of an improved U-Net architecture to segment candidate nodules extracted from the lung lobes.Subsequently,an improved AlexNet architecture is employed to classify lung cancer.During the first stage,the proposed model demonstrates a dice accuracy of 0.855,a precision of 0.933,and a recall of 0.789 for the segmentation of candidate nodules.The suggested improved AlexNet architecture attains 97.06%accuracy,a true positive rate of 96.36%,a true negative rate of 97.77%,a positive predictive value of 97.74%,and a negative predictive value of 96.41%for classifying pulmonary cancer as either benign or malignant.The proposed LCSC model is tested and evaluated employing the publically available dataset furnished by the Lung Image Database Consortium and Image Database Resource Initiative(LIDC-IDRI).This proposed technique exhibits remarkable performance compared to the existing methods by using various evaluation parameters.
基金supported by grants from the National Natural Science Foundation of China(Grant No.82172660)Hebei Province Graduate Student Innovation Project(Grant No.CXZZBS2023001)Baoding Natural Science Foundation(Grant No.H2272P015).
文摘Among central nervous system-associated malignancies,glioblastoma(GBM)is the most common and has the highest mortality rate.The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently lead to tumor recurrence and sudden relapse in patients treated with temozolomide.In precision medicine,research on GBM treatment is increasingly focusing on molecular subtyping to precisely characterize the cellular and molecular heterogeneity,as well as the refractory nature of GBM toward therapy.Deep understanding of the different molecular expression patterns of GBM subtypes is critical.Researchers have recently proposed tetra fractional or tripartite methods for detecting GBM molecular subtypes.The various molecular subtypes of GBM show significant differences in gene expression patterns and biological behaviors.These subtypes also exhibit high plasticity in their regulatory pathways,oncogene expression,tumor microenvironment alterations,and differential responses to standard therapy.Herein,we summarize the current molecular typing scheme of GBM and the major molecular/genetic characteristics of each subtype.Furthermore,we review the mesenchymal transition mechanisms of GBM under various regulators.
基金the National Social Science Foundation of China(Grant No.22BTJ035).
文摘The classification of functional data has drawn much attention in recent years.The main challenge is representing infinite-dimensional functional data by finite-dimensional features while utilizing those features to achieve better classification accuracy.In this paper,we propose a mean-variance-based(MV)feature weighting method for classifying functional data or functional curves.In the feature extraction stage,each sample curve is approximated by B-splines to transfer features to the coefficients of the spline basis.After that,a feature weighting approach based on statistical principles is introduced by comprehensively considering the between-class differences and within-class variations of the coefficients.We also introduce a scaling parameter to adjust the gap between the weights of features.The new feature weighting approach can adaptively enhance noteworthy local features while mitigating the impact of confusing features.The algorithms for feature weighted K-nearest neighbor and support vector machine classifiers are both provided.Moreover,the new approach can be well integrated into existing functional data classifiers,such as the generalized functional linear model and functional linear discriminant analysis,resulting in a more accurate classification.The performance of the mean-variance-based classifiers is evaluated by simulation studies and real data.The results show that the newfeatureweighting approach significantly improves the classification accuracy for complex functional data.
文摘Intrusion detection is a predominant task that monitors and protects the network infrastructure.Therefore,many datasets have been published and investigated by researchers to analyze and understand the problem of intrusion prediction and detection.In particular,the Network Security Laboratory-Knowledge Discovery in Databases(NSL-KDD)is an extensively used benchmark dataset for evaluating intrusion detection systems(IDSs)as it incorporates various network traffic attacks.It is worth mentioning that a large number of studies have tackled the problem of intrusion detection using machine learning models,but the performance of these models often decreases when evaluated on new attacks.This has led to the utilization of deep learning techniques,which have showcased significant potential for processing large datasets and therefore improving detection accuracy.For that reason,this paper focuses on the role of stacking deep learning models,including convolution neural network(CNN)and deep neural network(DNN)for improving the intrusion detection rate of the NSL-KDD dataset.Each base model is trained on the NSL-KDD dataset to extract significant features.Once the base models have been trained,the stacking process proceeds to the second stage,where a simple meta-model has been trained on the predictions generated from the proposed base models.The combination of the predictions allows the meta-model to distinguish different classes of attacks and increase the detection rate.Our experimental evaluations using the NSL-KDD dataset have shown the efficacy of stacking deep learning models for intrusion detection.The performance of the ensemble of base models,combined with the meta-model,exceeds the performance of individual models.Our stacking model has attained an accuracy of 99%and an average F1-score of 93%for the multi-classification scenario.Besides,the training time of the proposed ensemble model is lower than the training time of benchmark techniques,demonstrating its efficiency and robustness.