Background: Cavernous transformation of the portal vein(CTPV) due to portal vein obstruction is a rare vascular anomaly defined as the formation of multiple collateral vessels in the hepatic hilum. This study aimed to...Background: Cavernous transformation of the portal vein(CTPV) due to portal vein obstruction is a rare vascular anomaly defined as the formation of multiple collateral vessels in the hepatic hilum. This study aimed to investigate the imaging features of intrahepatic portal vein in adult patients with CTPV and establish the relationship between the manifestations of intrahepatic portal vein and the progression of CTPV. Methods: We retrospectively analyzed 14 CTPV patients in Beijing Tsinghua Changgung Hospital. All patients underwent both direct portal venography(DPV) and computed tomography angiography(CTA) to reveal the manifestations of the portal venous system. The vessels measured included the left portal vein(LPV), right portal vein(RPV), main portal vein(MPV) and the portal vein bifurcation(PVB). Results: Nine males and 5 females, with a median age of 40.5 years, were included in the study. No significant difference was found in the diameters of the LPV or RPV measured by DPV and CTA. The visualization in terms of LPV, RPV and PVB measured by DPV was higher than that by CTA. There was a significant association between LPV/RPV and PVB/MPV in term of visibility revealed with DPV( P = 0.01), while this association was not observed with CTA. According to the imaging features of the portal vein measured by DPV, CTPV was classified into three categories to facilitate the diagnosis and treatment. Conclusions: DPV was more accurate than CTA for revealing the course of the intrahepatic portal vein in patients with CTPV. The classification of CTPV, that originated from the imaging features of the portal vein revealed by DPV, may provide a new perspective for the diagnosis and treatment of CTPV.展开更多
Background:Sports medicine(injury and illnesses)requires distinct coding systems because the International Classification of Diseases is insuf-ficient for sports medicine coding.The Orchard Sports Injury and Illness C...Background:Sports medicine(injury and illnesses)requires distinct coding systems because the International Classification of Diseases is insuf-ficient for sports medicine coding.The Orchard Sports Injury and Illness Classification System(OSIICS)is one of two sports medicine coding systems recommended by the International Olympic Committee.Regular updates of coding systems are required.Methods:For Version 15,updates for mental health conditions in athletes,sports cardiology,concussion sub-types,infectious diseases,and skin and eye conditions were considered particularly important.Results:Recommended codes were added from a recent International Olympic Committee consensus statement on mental health conditions in athletes.Two landmark sports cardiology papers were used to update a more comprehensive list of sports cardiology codes.Rugby union protocols on head injury assessment were used to create additional concussion codes.Conclusion:It is planned that OSIICS Version 15 will be translated into multiple new languages in a timely fashion to facilitate international accessibility.The large number of recently published sport-specific and discipline-specific consensus statements on athlete surveillance warrant regular updating of OSIICS.展开更多
The International Skin Imaging Collaboration(ISIC)datasets are pivotal resources for researchers in machine learning for medical image analysis,especially in skin cancer detection.These datasets contain tens of thousa...The International Skin Imaging Collaboration(ISIC)datasets are pivotal resources for researchers in machine learning for medical image analysis,especially in skin cancer detection.These datasets contain tens of thousands of dermoscopic photographs,each accompanied by gold-standard lesion diagnosis metadata.Annual challenges associated with ISIC datasets have spurred significant advancements,with research papers reporting metrics surpassing those of human experts.Skin cancers are categorized into melanoma and non-melanoma types,with melanoma posing a greater threat due to its rapid potential for metastasis if left untreated.This paper aims to address challenges in skin cancer detection via visual inspection and manual examination of skin lesion images,processes historically known for their laboriousness.Despite notable advancements in machine learning and deep learning models,persistent challenges remain,largely due to the intricate nature of skin lesion images.We review research on convolutional neural networks(CNNs)in skin cancer classification and segmentation,identifying issues like data duplication and augmentation problems.We explore the efficacy of Vision Transformers(ViTs)in overcoming these challenges within ISIC dataset processing.ViTs leverage their capabilities to capture both global and local relationships within images,reducing data duplication and enhancing model generalization.Additionally,ViTs alleviate augmentation issues by effectively leveraging original data.Through a thorough examination of ViT-based methodologies,we illustrate their pivotal role in enhancing ISIC image classification and segmentation.This study offers valuable insights for researchers and practitioners looking to utilize ViTs for improved analysis of dermatological images.Furthermore,this paper emphasizes the crucial role of mathematical and computational modeling processes in advancing skin cancer detection methodologies,highlighting their significance in improving algorithmic performance and interpretability.展开更多
This paper introduces an intelligent waste recycling automatic classification system,which integrates sensors,image recognition,and robotic arms to achieve automatic identification and classification of waste.The syst...This paper introduces an intelligent waste recycling automatic classification system,which integrates sensors,image recognition,and robotic arms to achieve automatic identification and classification of waste.The system monitors the composition and properties of waste in real time through sensors,and uses image recognition technology for precise classification,and the robotic arm is responsible for grabbing and disposing.The design and implementation of the system have important practical significance and application value,and help promote the popularization and standardization of waste classification.This paper details the system s architecture,module division,sensors and recognition technology,robotic arm and grabbing technology,data processing and control system,and testing and optimization process.Experimental results show that the system has efficient waste recycling efficiency and accuracy in practical applications,bringing new development opportunities to the waste recycling industry.展开更多
Introduction: Since its creation in 2017 by the European community, the EU-TIRADS classification has enjoyed an excellent reputation in several countries around the world. Indeed, several studies conducted in these co...Introduction: Since its creation in 2017 by the European community, the EU-TIRADS classification has enjoyed an excellent reputation in several countries around the world. Indeed, several studies conducted in these countries testify to the effectiveness of this tool for the management of nodular thyroid pathology. However, in Benin, the contribution of this classification has not yet been evaluated. It is therefore to overcome this inadequacy that we undertook this study. Objective: Participate in improving the diagnostic and therapeutic management of thyroid nodules at the CNHU HKM in Cotonou and at the CHUZ in Suru-Léré. Methods: This is a cross-sectional study with retrospective data collection spread over a period of 3 years 5 months, from January 2019 to May 2022 and carried out jointly in the Endocrinology Metabolism Nutrition and ORL-CCF departments of the CNHU HKM of Cotonou and in the ORL-CCF department of the CHUZ of Suru-Léré. The study population consisted of patients who consulted the University Clinic of Endocrinology Metabolism Nutrition, the University Clinic of ORL-CCF of the CNHU-HKM and the University Clinic of ORL-CCF of the CHUZ of Suru-Léré for thyroid nodule and who have had surgery. The study data was collected from patients hospitalization records using a survey form. Results: On ultrasound, according to the EU-TIRADS classification, 56.8% of nodules presented a low risk of malignancy (EU-TIRADS 3) compared to respectively 19.8%;23% and 2.5% of nodules with zero (EU-TIRADS 2), intermediate (EU-TIRADS 4) and high (EU-TIRADS 5) risk of malignancy. Regarding the performance of this classification, it is sensitive in 37.5% of cases and has a specificity of 78.5% with a PPV (Positive Predictive Value) and a NPV (Negative Predictive Value) respectively of 6.6 % and 91.6%. Furthermore, the bivariate correlations revealed that the size of the nodule was significantly associated with the malignancy of the nodule (p = 0.014) and the calculated value of the Yule’s Q coefficient (0.375) reflects a moderate intensity of the connection between the EU-TIRADS and histology. Conclusion: the EU-TIRADS classification, due to its excellent NPV, is of great interest for the management of thyroid nodules at the CNHU-HKM of Cotonou and at the CHUZ of Suru-Léré. In view of this, particular emphasis must be placed on its regular and rigorous use.展开更多
A distributed acoustic sensing(DAS)system is proposed and a data processing method for vibration is designed in this paper.The proposed DAS system is based on the Rayleigh scattering signal and utilizes phase-sensitiv...A distributed acoustic sensing(DAS)system is proposed and a data processing method for vibration is designed in this paper.The proposed DAS system is based on the Rayleigh scattering signal and utilizes phase-sensitive optical time-domain reflectometry(φ-OTDR)to demodulate the environmental vibration.It can collect the vibration information in railways and implement vibration classification based on the feature of sensed vibration signals.This system has been deployed in Guangzhou Shenzhen High-Speed Railway,and the experimental results validate its effectiveness.展开更多
Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subse...Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons.展开更多
By analyzing and comparing the current application status and advantages and disadvantages of domestic and foreign artificial material mechanical equipment classification coding systems,and conducting a comparative st...By analyzing and comparing the current application status and advantages and disadvantages of domestic and foreign artificial material mechanical equipment classification coding systems,and conducting a comparative study of the existing coding system standards in different regions of the country,a coding data model suitable for big data research needs is proposed based on the current national standard for artificial material mechanical equipment classification coding.This model achieves a horizontal connection of characteristics and a vertical penetration of attribute values for construction materials and machinery through forward automatic coding calculation and reverse automatic decoding.This coding scheme and calculation model can also establish a database file for the coding and unit price of construction materials and machinery,forming a complete big data model for construction material coding unit prices.This provides foundational support for calculating and analyzing big data related to construction material unit prices,real-time information prices,market prices,and various comprehensive prices,thus contributing to the formation of cost-related big data.展开更多
Several pathohistological classification systems exist for the diagnosis of gastric cancer. Many studies have investigated the correlation between the pathohistological characteristics in gastric cancer and patient ch...Several pathohistological classification systems exist for the diagnosis of gastric cancer. Many studies have investigated the correlation between the pathohistological characteristics in gastric cancer and patient characteristics, disease specific criteria and overall outcome. It is still controversial as to which classification system imparts the most reliable information, and therefore, the choice of system may vary in clinical routine. In addition to the most common classification systems, such as the Laurén and the World Health Organization (WHO) classifications, other authors have tried to characterize and classify gastric cancer based on the microscopic morphology and in reference to the clinical outcome of the patients. In more than 50 years of systematic classification of the pathohistological characteristics of gastric cancer, there is no sole classification system that is consistently used worldwide in diagnostics and research. However, several national guidelines for the treatment of gastric cancer refer to the Laurén or the WHO classifications regarding therapeutic decision-making, which underlines the importance of a reliable classification system for gastric cancer. The latest results from gastric cancer studies indicate that it might be useful to integrate DNA- and RNA-based features of gastric cancer into the classification systems to establish prognostic relevance. This article reviews the diagnostic relevance and the prognostic value of different pathohistological classification systems in gastric cancer.展开更多
The rock mass in nature is in most cases anisotropic,while the existing classifications are mostly developed with the assumption of isotropic conditions that not always meet the engineering requirements.In this study,...The rock mass in nature is in most cases anisotropic,while the existing classifications are mostly developed with the assumption of isotropic conditions that not always meet the engineering requirements.In this study,an anisotropic system based on China National Standard of BQ,named as A-BQ,is developed to address the classification of anisotropic rock mass incorporating the anisotropy degree as well as the quality of rock mass.Two series of basic rating factors are incorporated including inherent anisotropy and structure anisotropy.The anisotropy degree of rock mass is characterized by the ratio of maximum to minimum quality score and adjusted by the confining stress.The quality score of rock mass is determined by the key factors of anisotropic structure occurrence and the correction factors of stress state and groundwater condition.The quality of rock mass is characterized by a quality score and classified in five grades.The assessment of stability status and probable failure modes are also suggested for tunnel and slope engineering for different quality grades.Finally,two cases of tunnel and slope are presented to illustrate the application of the developed classification system into the rock masses under varied stress state.展开更多
The phenomenon of coal spontaneous combustion is one of the common hazards in coal mines and also one of the important reasons for the loss of coal in piles and mines. Based on previous researches, different types of ...The phenomenon of coal spontaneous combustion is one of the common hazards in coal mines and also one of the important reasons for the loss of coal in piles and mines. Based on previous researches, different types of coals have different spontaneous combustion characteristics. For coal loss prevention, a measure is necessary for prediction of coal spontaneous combustion. In this study, a new engineering classification system called "Coal Spontaneous Combustion Potential Index (CSCPI)" is presented based on the Fuzzy Delphi Analytic Hierarchy Process (FDAHP) approach. CSCPI classifies coals based on their spontaneous combustion capability. After recognition of the roles of the effective parameters influencing the initiation of a spontaneous combustion, a series of intrinsic, geological, and mining characteristics of coal seams are investigated. Then, the main stages of the implementation of the FDAHP method are studied and the weight of each parameter involved is calculated. A classification list of each parameter is formed, the CSCPI system is described, and the engineering classifying system is subsequently presented. In the CSCPI system, each coal seam can be rated by a number from 0 to 100; a higher number implies a greater ease for the coal spontaneous combustion capability. Based on the CSCPI system, the propensity of spontaneous combustion of coal can be classified into three potential levels: low, medium, and high. Finally, using the events of coal spontaneous combustion occurring in one of the Iranian coal mines, Eastern Alborz Coal Mines, an initial validation of the mentioned systematic approach is conducted. Comparison of the results obtained in this study illustrate a relatively good agreement.展开更多
The stability of rock slopes is considered crucial to public safety in highways passing through rock cuts, as well as to personnel and equipment safety in open pit mines. Slope instability and failures occur due to ma...The stability of rock slopes is considered crucial to public safety in highways passing through rock cuts, as well as to personnel and equipment safety in open pit mines. Slope instability and failures occur due to many factors such as adverse slope geometries, geological discontinuities, weak or weathered slope materials as well as severe weather conditions. External loads like heavy precipitation and seismicity could play a significant role in slope failure. In this paper, several rock mass classification systems developed for rock slope stability assessment are evaluated against known rock slope conditions in a region of Saudi Arabia, where slopes located in rugged terrains with complex geometry serve as highway road cuts. Selected empirical methods have been applied to 22 rock cuts that are selected based on their failure mechanisms and slope materials. The stability conditions are identified, and the results of each rock slope classification system are compared. The paper also highlights the limitations of the empirical classification methods used in the study and proposes future research directions.展开更多
The ability to predict tableting properties of a powder mixture from individual components is of both fundamental and practical importance to the efficient formulation development of tablet products. A common tabletin...The ability to predict tableting properties of a powder mixture from individual components is of both fundamental and practical importance to the efficient formulation development of tablet products. A common tableting classification system(TCS) of binary powder mixtures facilitates the systematic development of new knowledge in this direction. Based on the dependence of tablet tensile strength on weight fraction in a binary mixture,three main types of tableting behavior are identified. Each type is further divided to arrive at a total of 15 sub-classes. The proposed classification system lays a framework for a better understanding of powder interactions during compaction. Potential applications and limitations of this classification system are discussed.展开更多
Objective: Accurate detection and classification of breast lesions in early stage is crucial to timely formulate effective treatments for patients. We aim to develop a fully automatic system to detect and classify bre...Objective: Accurate detection and classification of breast lesions in early stage is crucial to timely formulate effective treatments for patients. We aim to develop a fully automatic system to detect and classify breast lesions using multiple contrast-enhanced mammography(CEM) images.Methods: In this study, a total of 1,903 females who underwent CEM examination from three hospitals were enrolled as the training set, internal testing set, pooled external testing set and prospective testing set. Here we developed a CEM-based multiprocess detection and classification system(MDCS) to perform the task of detection and classification of breast lesions. In this system, we introduced an innovative auxiliary feature fusion(AFF)algorithm that could intelligently incorporates multiple types of information from CEM images. The average freeresponse receiver operating characteristic score(AFROC-Score) was presented to validate system’s detection performance, and the performance of classification was evaluated by area under the receiver operating characteristic curve(AUC). Furthermore, we assessed the diagnostic value of MDCS through visual analysis of disputed cases,comparing its performance and efficiency with that of radiologists and exploring whether it could augment radiologists’ performance.Results: On the pooled external and prospective testing sets, MDCS always maintained a high standalone performance, with AFROC-Scores of 0.953 and 0.963 for detection task, and AUCs for classification were 0.909[95% confidence interval(95% CI): 0.822-0.996] and 0.912(95% CI: 0.840-0.985), respectively. It also achieved higher sensitivity than all senior radiologists and higher specificity than all junior radiologists on pooled external and prospective testing sets. Moreover, MDCS performed superior diagnostic efficiency with an average reading time of 5 seconds, compared to the radiologists’ average reading time of 3.2 min. The average performance of all radiologists was also improved to varying degrees with MDCS assistance.Conclusions: MDCS demonstrated excellent performance in the detection and classification of breast lesions,and greatly enhanced the overall performance of radiologists.展开更多
The cervical spine injury represents a potential devastating disease with 6% associated in-hospital mortality (lain et al., 2015). Neurological deterioration ranging from complete spinal cord injury (SCI) to incom...The cervical spine injury represents a potential devastating disease with 6% associated in-hospital mortality (lain et al., 2015). Neurological deterioration ranging from complete spinal cord injury (SCI) to incomplete SCI or single radiculopathy are potential consequences of the blunt trauma over this region. The subaxial cervical spine accounts the vast majority of cervical injuries, making up two thirds of all cervical fractures (Alday, 1996). Few classifications (Holdsworth, 1970; White et al., 1975; Mien et al., 1982; Denis, 1984; Vaccaro et al., 2007) have been proposed to describe injuries of the cervical spine for several reasons. First, to delineate the best treatment in each case; second, to determinate an accurate neurological prognosis, and third, to establish a standard way to communicate and describe specific characteristics of cervical injuries patterns. Classical systems are primarily descriptive and no single system has gained widespread use, largely because of restrictions in clinical relevance and its complexity.展开更多
A new classification of petroleum systems(PSs) based on reservoir qualities is proposed. We classify PSs into the following three basic types:(1) source-rock petroleum system(SPS);(2) tight-reservoir or tight petroleu...A new classification of petroleum systems(PSs) based on reservoir qualities is proposed. We classify PSs into the following three basic types:(1) source-rock petroleum system(SPS);(2) tight-reservoir or tight petroleum system(TPS);and(3) conventional-reservoir or conventional petroleum system(CPS). The CPS is a PS in which hydrocarbons accumulate in conventional reservoirs, and all the essential elements and processes are significant and indispensable. Oil and gas accumulations are geographically discrete and therefore exist as discontinuous accumulations. The TPS is a PS where hydrocarbons accumulate in tight reservoirs and the source rock, reservoir, seal, migration, and trap are also indispensable,but the traps are mostly non-anticlinal and the accumulations are primarily quasi-continuous and secondarily discontinuous. The SPS is a PS where both hydrocarbon generation and accumulation occurred in source rocks and traps and migration are unnecessary or inconsequential; the hydrocarbon distribution is extensive and continuous and has no distinct boundaries. The aforementioned three PSs can be derived from a common hydrocarbon source kitchen and are closely linked in terms of their formation and distribution. Therefore, to maximize the exploration efficiency, a comprehensive study and different strategies are needed by considering the SPS, TPS, and CPS as parts of a greater whole.展开更多
Emotion recognition systems are helpful in human-machine interactions and Intelligence Medical applications.Electroencephalogram(EEG)is closely related to the central nervous system activity of the brain.Compared with...Emotion recognition systems are helpful in human-machine interactions and Intelligence Medical applications.Electroencephalogram(EEG)is closely related to the central nervous system activity of the brain.Compared with other signals,EEG is more closely associated with the emotional activity.It is essential to study emotion recognition based on EEG information.In the research of emotion recognition based on EEG,it is a common problem that the results of individual emotion classification vary greatly under the same scheme of emotion recognition,which affects the engineering application of emotion recognition.In order to improve the overall emotion recognition rate of the emotion classification system,we propose the CSP_VAR_CNN(CVC)emotion recognition system,which is based on the convolutional neural network(CNN)algorithm to classify emotions of EEG signals.Firstly,the emotion recognition system using common spatial patterns(CSP)to reduce the EEG data,then the standardized variance(VAR)is selected as the parameter to form the emotion feature vectors.Lastly,a 5-layer CNN model is built to classify the EEG signal.The classification results show that this emotion recognition system can better the overall emotion recognition rate:the variance has been reduced to 0.0067,which is a decrease of 64%compared to that of the CSP_VAR_SVM(CVS)system.On the other hand,the average accuracy reaches 69.84%,which is 0.79%higher than that of the CVS system.It shows that the overall emotion recognition rate of the proposed emotion recognition system is more stable,and its emotion recognition rate is higher.展开更多
Discrete fracture network(DFN) models have been proved to be effective tools for the characterisation of rock masses by using statistical distributions to generate realistic three-dimensional(3 D) representations of a...Discrete fracture network(DFN) models have been proved to be effective tools for the characterisation of rock masses by using statistical distributions to generate realistic three-dimensional(3 D) representations of a natural fracture network. The quality of DFN modelling relies on the quality of the field data and their interpretation. In this context, advancements in remote data acquisition have now made it possible to acquire high-quality data potentially not accessible by conventional scanline and window mapping. This paper presents a comparison between aggregate and disaggregate approaches to define fracture sets, and their role with respect to the definition of key input parameters required to generate DFN models. The focal point of the discussion is the characterisation of in situ block size distribution(IBSD) using DFN methods. An application of IBSD is the assessment of rock mass quality through rock mass classification systems such as geological strength index(GSI). As DFN models are becoming an almost integral part of many geotechnical and mining engineering problems, the authors present a method whereby realistic representation of 3 D fracture networks and block size analysis are used to estimate GSI ratings, with emphasis on the limitations that exist in rock engineering design when assigning a unique GSI value to spatially variable rock masses.展开更多
Internet of Things(IoT)defines a network of devices connected to the internet and sharing a massive amount of data between each other and a central location.These IoT devices are connected to a network therefore prone...Internet of Things(IoT)defines a network of devices connected to the internet and sharing a massive amount of data between each other and a central location.These IoT devices are connected to a network therefore prone to attacks.Various management tasks and network operations such as security,intrusion detection,Quality-of-Service provisioning,performance monitoring,resource provisioning,and traffic engineering require traffic classification.Due to the ineffectiveness of traditional classification schemes,such as port-based and payload-based methods,researchers proposed machine learning-based traffic classification systems based on shallow neural networks.Furthermore,machine learning-based models incline to misclassify internet traffic due to improper feature selection.In this research,an efficient multilayer deep learning based classification system is presented to overcome these challenges that can classify internet traffic.To examine the performance of the proposed technique,Moore-dataset is used for training the classifier.The proposed scheme takes the pre-processed data and extracts the flow features using a deep neural network(DNN).In particular,the maximum entropy classifier is used to classify the internet traffic.The experimental results show that the proposed hybrid deep learning algorithm is effective and achieved high accuracy for internet traffic classification,i.e.,99.23%.Furthermore,the proposed algorithm achieved the highest accuracy compared to the support vector machine(SVM)based classification technique and k-nearest neighbours(KNNs)based classification technique.展开更多
Over the last decade,a significant increase has been observed in the use of web-based Information systems that process sensitive information,e.g.,personal,financial,medical.With this increased use,the security of such...Over the last decade,a significant increase has been observed in the use of web-based Information systems that process sensitive information,e.g.,personal,financial,medical.With this increased use,the security of such systems became a crucial aspect to ensure safety,integrity and authenticity of the data.To achieve the objectives of data safety,security testing is performed.However,with growth and diversity of information systems,it is challenging to apply security testing for each and every system.Therefore,it is important to classify the assets based on their required level of security using an appropriate technique.In this paper,we propose an asset security classification technique to classify the System Under Test(SUT)based on various factors such as system exposure,data criticality and security requirements.We perform an extensive evaluation of our technique on a sample of 451 information systems.Further,we use security testing on a sample extracted from the resulting prioritized systems to investigate the presence of vulnerabilities.Our technique achieved promising results of successfully assigning security levels to various assets in the tested environments and also found several vulnerabilities in them.展开更多
文摘Background: Cavernous transformation of the portal vein(CTPV) due to portal vein obstruction is a rare vascular anomaly defined as the formation of multiple collateral vessels in the hepatic hilum. This study aimed to investigate the imaging features of intrahepatic portal vein in adult patients with CTPV and establish the relationship between the manifestations of intrahepatic portal vein and the progression of CTPV. Methods: We retrospectively analyzed 14 CTPV patients in Beijing Tsinghua Changgung Hospital. All patients underwent both direct portal venography(DPV) and computed tomography angiography(CTA) to reveal the manifestations of the portal venous system. The vessels measured included the left portal vein(LPV), right portal vein(RPV), main portal vein(MPV) and the portal vein bifurcation(PVB). Results: Nine males and 5 females, with a median age of 40.5 years, were included in the study. No significant difference was found in the diameters of the LPV or RPV measured by DPV and CTA. The visualization in terms of LPV, RPV and PVB measured by DPV was higher than that by CTA. There was a significant association between LPV/RPV and PVB/MPV in term of visibility revealed with DPV( P = 0.01), while this association was not observed with CTA. According to the imaging features of the portal vein measured by DPV, CTPV was classified into three categories to facilitate the diagnosis and treatment. Conclusions: DPV was more accurate than CTA for revealing the course of the intrahepatic portal vein in patients with CTPV. The classification of CTPV, that originated from the imaging features of the portal vein revealed by DPV, may provide a new perspective for the diagnosis and treatment of CTPV.
文摘Background:Sports medicine(injury and illnesses)requires distinct coding systems because the International Classification of Diseases is insuf-ficient for sports medicine coding.The Orchard Sports Injury and Illness Classification System(OSIICS)is one of two sports medicine coding systems recommended by the International Olympic Committee.Regular updates of coding systems are required.Methods:For Version 15,updates for mental health conditions in athletes,sports cardiology,concussion sub-types,infectious diseases,and skin and eye conditions were considered particularly important.Results:Recommended codes were added from a recent International Olympic Committee consensus statement on mental health conditions in athletes.Two landmark sports cardiology papers were used to update a more comprehensive list of sports cardiology codes.Rugby union protocols on head injury assessment were used to create additional concussion codes.Conclusion:It is planned that OSIICS Version 15 will be translated into multiple new languages in a timely fashion to facilitate international accessibility.The large number of recently published sport-specific and discipline-specific consensus statements on athlete surveillance warrant regular updating of OSIICS.
文摘The International Skin Imaging Collaboration(ISIC)datasets are pivotal resources for researchers in machine learning for medical image analysis,especially in skin cancer detection.These datasets contain tens of thousands of dermoscopic photographs,each accompanied by gold-standard lesion diagnosis metadata.Annual challenges associated with ISIC datasets have spurred significant advancements,with research papers reporting metrics surpassing those of human experts.Skin cancers are categorized into melanoma and non-melanoma types,with melanoma posing a greater threat due to its rapid potential for metastasis if left untreated.This paper aims to address challenges in skin cancer detection via visual inspection and manual examination of skin lesion images,processes historically known for their laboriousness.Despite notable advancements in machine learning and deep learning models,persistent challenges remain,largely due to the intricate nature of skin lesion images.We review research on convolutional neural networks(CNNs)in skin cancer classification and segmentation,identifying issues like data duplication and augmentation problems.We explore the efficacy of Vision Transformers(ViTs)in overcoming these challenges within ISIC dataset processing.ViTs leverage their capabilities to capture both global and local relationships within images,reducing data duplication and enhancing model generalization.Additionally,ViTs alleviate augmentation issues by effectively leveraging original data.Through a thorough examination of ViT-based methodologies,we illustrate their pivotal role in enhancing ISIC image classification and segmentation.This study offers valuable insights for researchers and practitioners looking to utilize ViTs for improved analysis of dermatological images.Furthermore,this paper emphasizes the crucial role of mathematical and computational modeling processes in advancing skin cancer detection methodologies,highlighting their significance in improving algorithmic performance and interpretability.
文摘This paper introduces an intelligent waste recycling automatic classification system,which integrates sensors,image recognition,and robotic arms to achieve automatic identification and classification of waste.The system monitors the composition and properties of waste in real time through sensors,and uses image recognition technology for precise classification,and the robotic arm is responsible for grabbing and disposing.The design and implementation of the system have important practical significance and application value,and help promote the popularization and standardization of waste classification.This paper details the system s architecture,module division,sensors and recognition technology,robotic arm and grabbing technology,data processing and control system,and testing and optimization process.Experimental results show that the system has efficient waste recycling efficiency and accuracy in practical applications,bringing new development opportunities to the waste recycling industry.
文摘Introduction: Since its creation in 2017 by the European community, the EU-TIRADS classification has enjoyed an excellent reputation in several countries around the world. Indeed, several studies conducted in these countries testify to the effectiveness of this tool for the management of nodular thyroid pathology. However, in Benin, the contribution of this classification has not yet been evaluated. It is therefore to overcome this inadequacy that we undertook this study. Objective: Participate in improving the diagnostic and therapeutic management of thyroid nodules at the CNHU HKM in Cotonou and at the CHUZ in Suru-Léré. Methods: This is a cross-sectional study with retrospective data collection spread over a period of 3 years 5 months, from January 2019 to May 2022 and carried out jointly in the Endocrinology Metabolism Nutrition and ORL-CCF departments of the CNHU HKM of Cotonou and in the ORL-CCF department of the CHUZ of Suru-Léré. The study population consisted of patients who consulted the University Clinic of Endocrinology Metabolism Nutrition, the University Clinic of ORL-CCF of the CNHU-HKM and the University Clinic of ORL-CCF of the CHUZ of Suru-Léré for thyroid nodule and who have had surgery. The study data was collected from patients hospitalization records using a survey form. Results: On ultrasound, according to the EU-TIRADS classification, 56.8% of nodules presented a low risk of malignancy (EU-TIRADS 3) compared to respectively 19.8%;23% and 2.5% of nodules with zero (EU-TIRADS 2), intermediate (EU-TIRADS 4) and high (EU-TIRADS 5) risk of malignancy. Regarding the performance of this classification, it is sensitive in 37.5% of cases and has a specificity of 78.5% with a PPV (Positive Predictive Value) and a NPV (Negative Predictive Value) respectively of 6.6 % and 91.6%. Furthermore, the bivariate correlations revealed that the size of the nodule was significantly associated with the malignancy of the nodule (p = 0.014) and the calculated value of the Yule’s Q coefficient (0.375) reflects a moderate intensity of the connection between the EU-TIRADS and histology. Conclusion: the EU-TIRADS classification, due to its excellent NPV, is of great interest for the management of thyroid nodules at the CNHU-HKM of Cotonou and at the CHUZ of Suru-Léré. In view of this, particular emphasis must be placed on its regular and rigorous use.
文摘A distributed acoustic sensing(DAS)system is proposed and a data processing method for vibration is designed in this paper.The proposed DAS system is based on the Rayleigh scattering signal and utilizes phase-sensitive optical time-domain reflectometry(φ-OTDR)to demodulate the environmental vibration.It can collect the vibration information in railways and implement vibration classification based on the feature of sensed vibration signals.This system has been deployed in Guangzhou Shenzhen High-Speed Railway,and the experimental results validate its effectiveness.
基金supported in part by NIH grants R01NS39600,U01MH114829RF1MH128693(to GAA)。
文摘Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons.
基金Research project of the Construction Department of Hubei Province(Project No.2023-64).
文摘By analyzing and comparing the current application status and advantages and disadvantages of domestic and foreign artificial material mechanical equipment classification coding systems,and conducting a comparative study of the existing coding system standards in different regions of the country,a coding data model suitable for big data research needs is proposed based on the current national standard for artificial material mechanical equipment classification coding.This model achieves a horizontal connection of characteristics and a vertical penetration of attribute values for construction materials and machinery through forward automatic coding calculation and reverse automatic decoding.This coding scheme and calculation model can also establish a database file for the coding and unit price of construction materials and machinery,forming a complete big data model for construction material coding unit prices.This provides foundational support for calculating and analyzing big data related to construction material unit prices,real-time information prices,market prices,and various comprehensive prices,thus contributing to the formation of cost-related big data.
文摘Several pathohistological classification systems exist for the diagnosis of gastric cancer. Many studies have investigated the correlation between the pathohistological characteristics in gastric cancer and patient characteristics, disease specific criteria and overall outcome. It is still controversial as to which classification system imparts the most reliable information, and therefore, the choice of system may vary in clinical routine. In addition to the most common classification systems, such as the Laurén and the World Health Organization (WHO) classifications, other authors have tried to characterize and classify gastric cancer based on the microscopic morphology and in reference to the clinical outcome of the patients. In more than 50 years of systematic classification of the pathohistological characteristics of gastric cancer, there is no sole classification system that is consistently used worldwide in diagnostics and research. However, several national guidelines for the treatment of gastric cancer refer to the Laurén or the WHO classifications regarding therapeutic decision-making, which underlines the importance of a reliable classification system for gastric cancer. The latest results from gastric cancer studies indicate that it might be useful to integrate DNA- and RNA-based features of gastric cancer into the classification systems to establish prognostic relevance. This article reviews the diagnostic relevance and the prognostic value of different pathohistological classification systems in gastric cancer.
基金Projects(41702345,41825018)supported by the National Natural Science Foundation of ChinaProject(2019QZKK0904)supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP),ChinaProject(KFZD-SW-422)supported by the Key Deployment Program of the Chinese Academy of Sciences。
文摘The rock mass in nature is in most cases anisotropic,while the existing classifications are mostly developed with the assumption of isotropic conditions that not always meet the engineering requirements.In this study,an anisotropic system based on China National Standard of BQ,named as A-BQ,is developed to address the classification of anisotropic rock mass incorporating the anisotropy degree as well as the quality of rock mass.Two series of basic rating factors are incorporated including inherent anisotropy and structure anisotropy.The anisotropy degree of rock mass is characterized by the ratio of maximum to minimum quality score and adjusted by the confining stress.The quality score of rock mass is determined by the key factors of anisotropic structure occurrence and the correction factors of stress state and groundwater condition.The quality of rock mass is characterized by a quality score and classified in five grades.The assessment of stability status and probable failure modes are also suggested for tunnel and slope engineering for different quality grades.Finally,two cases of tunnel and slope are presented to illustrate the application of the developed classification system into the rock masses under varied stress state.
文摘The phenomenon of coal spontaneous combustion is one of the common hazards in coal mines and also one of the important reasons for the loss of coal in piles and mines. Based on previous researches, different types of coals have different spontaneous combustion characteristics. For coal loss prevention, a measure is necessary for prediction of coal spontaneous combustion. In this study, a new engineering classification system called "Coal Spontaneous Combustion Potential Index (CSCPI)" is presented based on the Fuzzy Delphi Analytic Hierarchy Process (FDAHP) approach. CSCPI classifies coals based on their spontaneous combustion capability. After recognition of the roles of the effective parameters influencing the initiation of a spontaneous combustion, a series of intrinsic, geological, and mining characteristics of coal seams are investigated. Then, the main stages of the implementation of the FDAHP method are studied and the weight of each parameter involved is calculated. A classification list of each parameter is formed, the CSCPI system is described, and the engineering classifying system is subsequently presented. In the CSCPI system, each coal seam can be rated by a number from 0 to 100; a higher number implies a greater ease for the coal spontaneous combustion capability. Based on the CSCPI system, the propensity of spontaneous combustion of coal can be classified into three potential levels: low, medium, and high. Finally, using the events of coal spontaneous combustion occurring in one of the Iranian coal mines, Eastern Alborz Coal Mines, an initial validation of the mentioned systematic approach is conducted. Comparison of the results obtained in this study illustrate a relatively good agreement.
基金financially supported by the Saudi Geological Survey through a doctoral fellowship at McGill University
文摘The stability of rock slopes is considered crucial to public safety in highways passing through rock cuts, as well as to personnel and equipment safety in open pit mines. Slope instability and failures occur due to many factors such as adverse slope geometries, geological discontinuities, weak or weathered slope materials as well as severe weather conditions. External loads like heavy precipitation and seismicity could play a significant role in slope failure. In this paper, several rock mass classification systems developed for rock slope stability assessment are evaluated against known rock slope conditions in a region of Saudi Arabia, where slopes located in rugged terrains with complex geometry serve as highway road cuts. Selected empirical methods have been applied to 22 rock cuts that are selected based on their failure mechanisms and slope materials. The stability conditions are identified, and the results of each rock slope classification system are compared. The paper also highlights the limitations of the empirical classification methods used in the study and proposes future research directions.
文摘The ability to predict tableting properties of a powder mixture from individual components is of both fundamental and practical importance to the efficient formulation development of tablet products. A common tableting classification system(TCS) of binary powder mixtures facilitates the systematic development of new knowledge in this direction. Based on the dependence of tablet tensile strength on weight fraction in a binary mixture,three main types of tableting behavior are identified. Each type is further divided to arrive at a total of 15 sub-classes. The proposed classification system lays a framework for a better understanding of powder interactions during compaction. Potential applications and limitations of this classification system are discussed.
基金supported by the National Natural Science Foundation of China (No.82001775, 82371933)the Natural Science Foundation of Shandong Province of China (No.ZR2021MH120)+1 种基金the Special Fund for Breast Disease Research of Shandong Medical Association (No.YXH2021ZX055)the Taishan Scholar Foundation of Shandong Province of China (No.tsgn202211378)。
文摘Objective: Accurate detection and classification of breast lesions in early stage is crucial to timely formulate effective treatments for patients. We aim to develop a fully automatic system to detect and classify breast lesions using multiple contrast-enhanced mammography(CEM) images.Methods: In this study, a total of 1,903 females who underwent CEM examination from three hospitals were enrolled as the training set, internal testing set, pooled external testing set and prospective testing set. Here we developed a CEM-based multiprocess detection and classification system(MDCS) to perform the task of detection and classification of breast lesions. In this system, we introduced an innovative auxiliary feature fusion(AFF)algorithm that could intelligently incorporates multiple types of information from CEM images. The average freeresponse receiver operating characteristic score(AFROC-Score) was presented to validate system’s detection performance, and the performance of classification was evaluated by area under the receiver operating characteristic curve(AUC). Furthermore, we assessed the diagnostic value of MDCS through visual analysis of disputed cases,comparing its performance and efficiency with that of radiologists and exploring whether it could augment radiologists’ performance.Results: On the pooled external and prospective testing sets, MDCS always maintained a high standalone performance, with AFROC-Scores of 0.953 and 0.963 for detection task, and AUCs for classification were 0.909[95% confidence interval(95% CI): 0.822-0.996] and 0.912(95% CI: 0.840-0.985), respectively. It also achieved higher sensitivity than all senior radiologists and higher specificity than all junior radiologists on pooled external and prospective testing sets. Moreover, MDCS performed superior diagnostic efficiency with an average reading time of 5 seconds, compared to the radiologists’ average reading time of 3.2 min. The average performance of all radiologists was also improved to varying degrees with MDCS assistance.Conclusions: MDCS demonstrated excellent performance in the detection and classification of breast lesions,and greatly enhanced the overall performance of radiologists.
文摘The cervical spine injury represents a potential devastating disease with 6% associated in-hospital mortality (lain et al., 2015). Neurological deterioration ranging from complete spinal cord injury (SCI) to incomplete SCI or single radiculopathy are potential consequences of the blunt trauma over this region. The subaxial cervical spine accounts the vast majority of cervical injuries, making up two thirds of all cervical fractures (Alday, 1996). Few classifications (Holdsworth, 1970; White et al., 1975; Mien et al., 1982; Denis, 1984; Vaccaro et al., 2007) have been proposed to describe injuries of the cervical spine for several reasons. First, to delineate the best treatment in each case; second, to determinate an accurate neurological prognosis, and third, to establish a standard way to communicate and describe specific characteristics of cervical injuries patterns. Classical systems are primarily descriptive and no single system has gained widespread use, largely because of restrictions in clinical relevance and its complexity.
基金supported by National Science and Technology Major Project of China (Project No. 2016ZX05050, 2011ZX05018001-004)National Natural Science Foundation Project of China (No. 41402121 and 41502132)
文摘A new classification of petroleum systems(PSs) based on reservoir qualities is proposed. We classify PSs into the following three basic types:(1) source-rock petroleum system(SPS);(2) tight-reservoir or tight petroleum system(TPS);and(3) conventional-reservoir or conventional petroleum system(CPS). The CPS is a PS in which hydrocarbons accumulate in conventional reservoirs, and all the essential elements and processes are significant and indispensable. Oil and gas accumulations are geographically discrete and therefore exist as discontinuous accumulations. The TPS is a PS where hydrocarbons accumulate in tight reservoirs and the source rock, reservoir, seal, migration, and trap are also indispensable,but the traps are mostly non-anticlinal and the accumulations are primarily quasi-continuous and secondarily discontinuous. The SPS is a PS where both hydrocarbon generation and accumulation occurred in source rocks and traps and migration are unnecessary or inconsequential; the hydrocarbon distribution is extensive and continuous and has no distinct boundaries. The aforementioned three PSs can be derived from a common hydrocarbon source kitchen and are closely linked in terms of their formation and distribution. Therefore, to maximize the exploration efficiency, a comprehensive study and different strategies are needed by considering the SPS, TPS, and CPS as parts of a greater whole.
基金This work has been supported by the National Nature Science Foundation of China(No.61503423,H.P.Jiang).And its URls is http://www.nsfc.gov.cn/.
文摘Emotion recognition systems are helpful in human-machine interactions and Intelligence Medical applications.Electroencephalogram(EEG)is closely related to the central nervous system activity of the brain.Compared with other signals,EEG is more closely associated with the emotional activity.It is essential to study emotion recognition based on EEG information.In the research of emotion recognition based on EEG,it is a common problem that the results of individual emotion classification vary greatly under the same scheme of emotion recognition,which affects the engineering application of emotion recognition.In order to improve the overall emotion recognition rate of the emotion classification system,we propose the CSP_VAR_CNN(CVC)emotion recognition system,which is based on the convolutional neural network(CNN)algorithm to classify emotions of EEG signals.Firstly,the emotion recognition system using common spatial patterns(CSP)to reduce the EEG data,then the standardized variance(VAR)is selected as the parameter to form the emotion feature vectors.Lastly,a 5-layer CNN model is built to classify the EEG signal.The classification results show that this emotion recognition system can better the overall emotion recognition rate:the variance has been reduced to 0.0067,which is a decrease of 64%compared to that of the CSP_VAR_SVM(CVS)system.On the other hand,the average accuracy reaches 69.84%,which is 0.79%higher than that of the CVS system.It shows that the overall emotion recognition rate of the proposed emotion recognition system is more stable,and its emotion recognition rate is higher.
基金NSERC (Natural Sciences and Engineering Research Council of Canada) for the financial support provided to this research through a Collaborative Research Development grant (Grant No. 11R74149 Mine-to-Mill Integration for Block Cave Mines)
文摘Discrete fracture network(DFN) models have been proved to be effective tools for the characterisation of rock masses by using statistical distributions to generate realistic three-dimensional(3 D) representations of a natural fracture network. The quality of DFN modelling relies on the quality of the field data and their interpretation. In this context, advancements in remote data acquisition have now made it possible to acquire high-quality data potentially not accessible by conventional scanline and window mapping. This paper presents a comparison between aggregate and disaggregate approaches to define fracture sets, and their role with respect to the definition of key input parameters required to generate DFN models. The focal point of the discussion is the characterisation of in situ block size distribution(IBSD) using DFN methods. An application of IBSD is the assessment of rock mass quality through rock mass classification systems such as geological strength index(GSI). As DFN models are becoming an almost integral part of many geotechnical and mining engineering problems, the authors present a method whereby realistic representation of 3 D fracture networks and block size analysis are used to estimate GSI ratings, with emphasis on the limitations that exist in rock engineering design when assigning a unique GSI value to spatially variable rock masses.
基金This work has supported by the Xiamen University Malaysia Research Fund(XMUMRF)(Grant No:XMUMRF/2019-C3/IECE/0007)。
文摘Internet of Things(IoT)defines a network of devices connected to the internet and sharing a massive amount of data between each other and a central location.These IoT devices are connected to a network therefore prone to attacks.Various management tasks and network operations such as security,intrusion detection,Quality-of-Service provisioning,performance monitoring,resource provisioning,and traffic engineering require traffic classification.Due to the ineffectiveness of traditional classification schemes,such as port-based and payload-based methods,researchers proposed machine learning-based traffic classification systems based on shallow neural networks.Furthermore,machine learning-based models incline to misclassify internet traffic due to improper feature selection.In this research,an efficient multilayer deep learning based classification system is presented to overcome these challenges that can classify internet traffic.To examine the performance of the proposed technique,Moore-dataset is used for training the classifier.The proposed scheme takes the pre-processed data and extracts the flow features using a deep neural network(DNN).In particular,the maximum entropy classifier is used to classify the internet traffic.The experimental results show that the proposed hybrid deep learning algorithm is effective and achieved high accuracy for internet traffic classification,i.e.,99.23%.Furthermore,the proposed algorithm achieved the highest accuracy compared to the support vector machine(SVM)based classification technique and k-nearest neighbours(KNNs)based classification technique.
基金the Higher Education Commission(HEC),Pakistan throughits initiative of National Center for Cyber Security for the affiliated Security Testing-Innovative SecuredSystems Lab(ISSL)established at University of Engineering&Technology(UET)Peshawar,Grant No.2(1078)/HEC/M&E/2018/707.
文摘Over the last decade,a significant increase has been observed in the use of web-based Information systems that process sensitive information,e.g.,personal,financial,medical.With this increased use,the security of such systems became a crucial aspect to ensure safety,integrity and authenticity of the data.To achieve the objectives of data safety,security testing is performed.However,with growth and diversity of information systems,it is challenging to apply security testing for each and every system.Therefore,it is important to classify the assets based on their required level of security using an appropriate technique.In this paper,we propose an asset security classification technique to classify the System Under Test(SUT)based on various factors such as system exposure,data criticality and security requirements.We perform an extensive evaluation of our technique on a sample of 451 information systems.Further,we use security testing on a sample extracted from the resulting prioritized systems to investigate the presence of vulnerabilities.Our technique achieved promising results of successfully assigning security levels to various assets in the tested environments and also found several vulnerabilities in them.