Mutual fund investment continues to play a very important role in the world financial markets especially in developing economies where the capital market is not very matured and tolerant of small scale investors.The t...Mutual fund investment continues to play a very important role in the world financial markets especially in developing economies where the capital market is not very matured and tolerant of small scale investors.The total mutual fund asset globally as at the end of 2016 was in excess of$40.4 trillion.Despite its success there are uncertainties as to whether mutual funds in Ghana obtain optimal performance relative to their counterparts in United States,Luxembourg,Ireland,France,Australia,United Kingdom,Japan,China and Brazil.We contribute to the extant literature on mutual fund performance evaluation using a collection of more sophisticated econometric models.We selected six continuous historical years that is 2010-2011,2012-2013 and 2014-2015 to construct a mutual fund performance evaluation model utilizing the fast adaptive neural network classifier(FANNC),and to compare our results with those from an enhanced resilient back propagation neural networks(ERBPNN)model.Our FANNC model outperformed the existing models in terms of processing time and error rate.This makes it ideal for financial application that involves large volume of data and routine updates.展开更多
To study the capacity of artificial neural network (ANN) applying to battlefield target classification and result of classification, according to the characteristics of battlefield target acoustic and seismic sign...To study the capacity of artificial neural network (ANN) applying to battlefield target classification and result of classification, according to the characteristics of battlefield target acoustic and seismic signals, an on the spot experiment was carried out to derive acoustic and seismic signals of a tank and jeep by special experiment system. Experiment data processed by fast Fourier transform(FFT) were used to train the ANN to distinguish the two battlefield targets. The ANN classifier was performed by the special program based on the modified back propagation (BP) algorithm. The ANN classifier has high correct identification rates for acoustic and seismic signals of battlefield targets, and is suitable for the classification of battlefield targets. The modified BP algorithm eliminates oscillations and local minimum of the standard BP algorithm, and enhances the convergence rate of the ANN.展开更多
Edge devices in Internet of Things(IoT)applications can form peers to communicate in peer-to-peer(P2P)networks over P2P protocols.Using P2P networks ensures scalability and removes the need for centralized management....Edge devices in Internet of Things(IoT)applications can form peers to communicate in peer-to-peer(P2P)networks over P2P protocols.Using P2P networks ensures scalability and removes the need for centralized management.However,due to the open nature of P2P networks,they often suffer from the existence of malicious peers,especially malicious peers that unite in groups to raise each other’s ratings.This compromises users’safety and makes them lose their confidence about the files or services they are receiving.To address these challenges,we propose a neural networkbased algorithm,which uses the advantages of a machine learning algorithm to identify whether or not a peer is malicious.In this paper,a neural network(NN)was chosen as the machine learning algorithm due to its efficiency in classification.The experiments showed that the NNTrust algorithm is more effective and has a higher potential of reducing the number of invalid files and increasing success rates than other well-known trust management systems.展开更多
This paper presents an automatic system of vehicle number-plate recognition based on neural networks. In this system, location of number-plate and recognition of characters in number-plate can be automatically complet...This paper presents an automatic system of vehicle number-plate recognition based on neural networks. In this system, location of number-plate and recognition of characters in number-plate can be automatically completed. Pixel colors of Number-plate area are classified using neural network, then color features are extracted by analyzing scanning lines of the cross-section of number-plate. It takes full use of number-plate color features to locate number-plate. Characters in number-plate can be effectively recognized using the neural networks. Experimental results show that the correct rate of number-plate location is close to 100%, and the time of number-plate location is less than 1 second. Moreover, recognition rate of characters is improved due to the known number-plate type. It is also observed that this system is not sensitive to variations of weather, illumination and vehicle speed. In addition, and also the size of number-plate need not to be known in prior. This system is of crucial significance to apply and spread the automatic system of vehicle number-plate recognition.展开更多
Malaria is a leading cause of deaths globally. Rapid and accurate diagnosis of the disease is key to its effective treatment and management. Identification of plasmodium parasites life stages and species forms part of...Malaria is a leading cause of deaths globally. Rapid and accurate diagnosis of the disease is key to its effective treatment and management. Identification of plasmodium parasites life stages and species forms part of the diagnosis. In this study, a technique for identifying the parasites life stages and species using microscopic images of thin blood smears stained with Giemsa was developed. The technique entailed designing and training Artificial Neural Network (ANN) classifiers to perform the classification of infected erythrocytes into their respective stages and species. The outputs of the system were compared to the results of expert microscopists. A total of 205 infected erythrocytes images were used to train and test the performance of the system. The system recorded 99.9% in recognizing stages and 96.2% in recognizing plasmodium species.展开更多
In this study, a Multi-Layer BP neural network(MLBP) with dynamic thresholds is employed to build a classifier model.As to the design of the neural network structure, theoretical guidance and plentiful experiments are...In this study, a Multi-Layer BP neural network(MLBP) with dynamic thresholds is employed to build a classifier model.As to the design of the neural network structure, theoretical guidance and plentiful experiments are combined to optimize the hidden layers' parameters which include the number of hidden layers and their node numbers.The classifier with dynamic thresholds is used to standardize the output for the first time, and it improves the robustness of the model to a high level.Finally, the classifier is applied to forecast box office revenue of a movie before its theatrical release.The comparison results with the MLP method show that the MLBP classifier model achieves more satisfactory results, and it is more reliable and effective to solve the problem.展开更多
BACKGROUND A convolutional neural network(CNN) is a deep learning algorithm based on the principle of human brain visual cortex processing and image recognition.AIM To automatically identify the invasion depth and ori...BACKGROUND A convolutional neural network(CNN) is a deep learning algorithm based on the principle of human brain visual cortex processing and image recognition.AIM To automatically identify the invasion depth and origin of esophageal lesions based on a CNN.METHODS A total of 1670 white-light images were used to train and validate the CNN system.The method proposed in this paper included the following two parts:(1)Location module,an object detection network,locating the classified main image feature regions of the image for subsequent classification tasks;and(2) Classification module,a traditional classification CNN,classifying the images cut out by the object detection network.RESULTS The CNN system proposed in this study achieved an overall accuracy of 82.49%,sensitivity of 80.23%,and specificity of 90.56%.In this study,after follow-up pathology,726 patients were compared for endoscopic pathology.The misdiagnosis rate of endoscopic diagnosis in the lesion invasion range was approximately 9.5%;41 patients showed no lesion invasion to the muscularis propria,but 36 of them pathologically showed invasion to the superficial muscularis propria.The patients with invasion of the tunica adventitia were all treated by surgery with an accuracy rate of 100%.For the examination of submucosal lesions,the accuracy of endoscopic ultrasonography(EUS) was approximately 99.3%.Results of this study showed that EUS had a high accuracy rate for the origin of submucosal lesions,whereas the misdiagnosis rate was slightly high in the evaluation of the invasion scope of lesions.Misdiagnosis could be due to different operating and diagnostic levels of endoscopists,unclear ultrasound probes,and unclear lesions.CONCLUSION This study is the first to recognize esophageal EUS images through deep learning,which can automatically identify the invasion depth and lesion origin of submucosal tumors and classify such tumors,thereby achieving good accuracy.In future studies,this method can provide guidance and help to clinical endoscopists.展开更多
The medical community has more concern on lung cancer analysis.Medical experts’physical segmentation of lung cancers is time-consuming and needs to be automated.The research study’s objective is to diagnose lung tum...The medical community has more concern on lung cancer analysis.Medical experts’physical segmentation of lung cancers is time-consuming and needs to be automated.The research study’s objective is to diagnose lung tumors at an early stage to extend the life of humans using deep learning techniques.Computer-Aided Diagnostic(CAD)system aids in the diagnosis and shortens the time necessary to detect the tumor detected.The application of Deep Neural Networks(DNN)has also been exhibited as an excellent and effective method in classification and segmentation tasks.This research aims to separate lung cancers from images of Magnetic Resonance Imaging(MRI)with threshold segmentation.The Honey hook process categorizes lung cancer based on characteristics retrieved using several classifiers.Considering this principle,the work presents a solution for image compression utilizing a Deep Wave Auto-Encoder(DWAE).The combination of the two approaches significantly reduces the overall size of the feature set required for any future classification process performed using DNN.The proposed DWAE-DNN image classifier is applied to a lung imaging dataset with Radial Basis Function(RBF)classifier.The study reported promising results with an accuracy of 97.34%,whereas using the Decision Tree(DT)classifier has an accuracy of 94.24%.The proposed approach(DWAE-DNN)is found to classify the images with an accuracy of 98.67%,either as malignant or normal patients.In contrast to the accuracy requirements,the work also uses the benchmark standards like specificity,sensitivity,and precision to evaluate the efficiency of the network.It is found from an investigation that the DT classifier provides the maximum performance in the DWAE-DNN depending on the network’s performance on image testing,as shown by the data acquired by the categorizers themselves.展开更多
Because of computational complexity,the deep neural network(DNN)in embedded devices is usually trained on high-performance computers or graphic processing units(GPUs),and only the inference phase is implemented in emb...Because of computational complexity,the deep neural network(DNN)in embedded devices is usually trained on high-performance computers or graphic processing units(GPUs),and only the inference phase is implemented in embedded devices.Data processed by embedded devices,such as smartphones and wearables,are usually personalized,so the DNN model trained on public data sets may have poor accuracy when inferring the personalized data.As a result,retraining DNN with personalized data collected locally in embedded devices is necessary.Nevertheless,retraining needs labeled data sets,while the data collected locally are unlabeled,then how to retrain DNN with unlabeled data is a problem to be solved.This paper proves the necessity of retraining DNN model with personalized data collected in embedded devices after trained with public data sets.It also proposes a label generation method by which a fake label is generated for each unlabeled training case according to users’feedback,thus retraining can be performed with unlabeled data collected in embedded devices.The experimental results show that our fake label generation method has both good training effects and wide applicability.The advanced neural networks can be trained with unlabeled data from embedded devices and the individualized accuracy of the DNN model can be gradually improved along with personal using.展开更多
In this paper, polynomial fuzzy neural network classifiers (PFNNCs) is proposed by means of density fuzzy c-means and L2-norm regularization. The overall design of PFNNCs was realized by means of fuzzy rules that come...In this paper, polynomial fuzzy neural network classifiers (PFNNCs) is proposed by means of density fuzzy c-means and L2-norm regularization. The overall design of PFNNCs was realized by means of fuzzy rules that come in form of three parts, namely premise part, consequence part and aggregation part. The premise part was developed by density fuzzy c-means that helps determine the apex parameters of membership functions, while the consequence part was realized by means of two types of polynomials including linear and quadratic. L2-norm regularization that can alleviate the overfitting problem was exploited to estimate the parameters of polynomials, which constructed the aggregation part. Experimental results of several data sets demonstrate that the proposed classifiers show higher classification accuracy in comparison with some other classifiers reported in the literature.展开更多
In the energy regulation based varibable-speed electrohydraulic drive system, the supply energy and the demanded energy, which will affect the control performance greatly, are crucial. However, they are hard to be obt...In the energy regulation based varibable-speed electrohydraulic drive system, the supply energy and the demanded energy, which will affect the control performance greatly, are crucial. However, they are hard to be obtained via conventional methods for some reasons. This paper tries to a new route: the definitive numerical values of the supply energy and the demanded energy are not required, except for their relationship which is called energy state. A three-layer back propagation(BP) neural network was built up to act as an energy analysis unit to deduce the energy state. The neural network has three inputs: the reference displacement, the actual displacement of cylinder rod and the system flowrate supply. The output of the neural network is energy state. A Chebyshev type II filter was designed to calculate the cylinder speed for the estimation of system flowrate supply. The training and testing samples of neural network were collected by the system accurate simulation model. After off-line training, the neural network was tested by the testing data. And the testing result demonstrates that the designed neural network was successful. Then, the neural network acts as the energy analysis unit in real-time experiments of cylinder position control, where it works efficiently under square-wave and sine-wave reference displacement. The experimental results validate its feasibility and adaptability. Only a position sensor and some pressure sensors, which are cheap and have quick dynamic response, are necessary for the system control. And the neural network plays the role of identifying the energy state.展开更多
Vector neural network(VNN)is one of the most important methods to process interval data.However,the VNN,which contains a great number of multiply-accumulate(MAC)operations,often adopts pure numerical calculation metho...Vector neural network(VNN)is one of the most important methods to process interval data.However,the VNN,which contains a great number of multiply-accumulate(MAC)operations,often adopts pure numerical calculation method,and thus is difficult to be miniaturized for the embedded applications.In this paper,we propose a memristor based vector-type backpropagation(MVTBP)architecture which utilizes memristive arrays to accelerate the MAC operations of interval data.Owing to the unique brain-like synaptic characteristics of memristive devices,e.g.,small size,low power consumption,and high integration density,the proposed architecture can be implemented with low area and power consumption cost and easily applied to embedded systems.The simulation results indicate that the proposed architecture has better identification performance and noise tolerance.When the device precision is 6 bits and the error deviation level(EDL)is 20%,the proposed architecture can achieve an identification rate,which is about 92%higher than that for interval-value testing sample and 81%higher than that for scalar-value testing sample.展开更多
Predicting stock price movements is a challenging task for academicians and practitioners. In particular, forecasting price movements in emerging markets seems to be more elusive because they are usually more volatile...Predicting stock price movements is a challenging task for academicians and practitioners. In particular, forecasting price movements in emerging markets seems to be more elusive because they are usually more volatile often accompa-nied by thin trading-volumes and they are susceptible to more manipulation compared to mature markets. Technical analysis of stocks and commodities has become a science on its own;quantitative methods and techniques have been applied by many practitioners to forecast price movements. Lagging and sometimes leading technical indicators pro-vide rich quantitative tools for traders and investors in their attempt to gain advantage when making investment or trading decisions. Artificial Neural Networks (ANN) have been used widely in predicting stock prices because of their capability in capturing the non-linearity that often exists in price movements. Recently, Polynomial Classifiers (PC) have been applied to various recognition and classification application and showed favorable results in terms of recog-nition rates and computational complexity as compared to ANN. In this paper, we present two prediction models for predicting securities’ prices. The first model was developed using back propagation feed forward neural networks. The second model was developed using polynomial classifiers (PC), as a first time application for PC to be used in stock prices prediction. The inputs to both models were identical, and both models were trained and tested on the same data. The study was conducted on Dubai Financial Market as an emerging market and applied to two of the market’s leading stocks. In general, both models achieved very good results in terms of mean absolute error percentage. Both models show an average error around 1.5% predicting the next day price, an average error of 2.5% when predicting second day price, and an average error of 4% when predicted the third day price.展开更多
In a world where data is increasingly important for making breakthroughs,microelectronics is a field where data is sparse and hard to acquire.Only a few entities have the infrastructure that is required to automate th...In a world where data is increasingly important for making breakthroughs,microelectronics is a field where data is sparse and hard to acquire.Only a few entities have the infrastructure that is required to automate the fabrication and testing of semiconductor devices.This infrastructure is crucial for generating sufficient data for the use of new information technologies.This situation generates a cleavage between most of the researchers and the industry.To address this issue,this paper will introduce a widely applicable approach for creating custom datasets using simulation tools and parallel computing.The multi-I-V curves that we obtained were processed simultaneously using convolutional neural networks,which gave us the ability to predict a full set of device characteristics with a single inference.We prove the potential of this approach through two concrete examples of useful deep learning models that were trained using the generated data.We believe that this work can act as a bridge between the state-of-the-art of data-driven methods and more classical semiconductor research,such as device engineering,yield engineering or process monitoring.Moreover,this research gives the opportunity to anybody to start experimenting with deep neural networks and machine learning in the field of microelectronics,without the need for expensive experimentation infrastructure.展开更多
The paper describes the application of an ANN based approach to the identification of the parameters relevant to the steady state behavior of composite power electronic device models of circuit simulation software. ...The paper describes the application of an ANN based approach to the identification of the parameters relevant to the steady state behavior of composite power electronic device models of circuit simulation software. The identification of model parameters of IGBT in PSPICE using BP neural network is illustrated.展开更多
A graphic processing unit (GPU)-accelerated biological species recognition method using partially connected neural evolutionary network model is introduced in this paper. The partial connected neural evolutionary netw...A graphic processing unit (GPU)-accelerated biological species recognition method using partially connected neural evolutionary network model is introduced in this paper. The partial connected neural evolutionary network adopted in the paper can overcome the disadvantage of traditional neural network with small inputs. The whole image is considered as the input of the neural network, so the maximal features can be kept for recognition. To speed up the recognition process of the neural network, a fast implementation of the partially connected neural network was conducted on NVIDIA Tesla C1060 using the NVIDIA compute unified device architecture (CUDA) framework. Image sets of eight biological species were obtained to test the GPU implementation and counterpart serial CPU implementation, and experiment results showed GPU implementation works effectively on both recognition rate and speed, and gained 343 speedup over its counterpart CPU implementation. Comparing to feature-based recognition method on the same recognition task, the method also achieved an acceptable correct rate of 84.6% when testing on eight biological species.展开更多
Gene regulatory network (GRN) inference from gene expression data remains a big challenge in system biology. In this paper, flexible neural tree (FNT) model is proposed as a binary classifier for inference of gene reg...Gene regulatory network (GRN) inference from gene expression data remains a big challenge in system biology. In this paper, flexible neural tree (FNT) model is proposed as a binary classifier for inference of gene regulatory network. A novel tree-based evolutionary algorithm and firefly algorithm (FA) are used to optimize the structure and parameters of FNT model, respectively.The two E.coli networks are used to test FNT model and the results reveal that FNT model performs better than state-of-the-art unsupervised and supervised learning methods.展开更多
文摘Mutual fund investment continues to play a very important role in the world financial markets especially in developing economies where the capital market is not very matured and tolerant of small scale investors.The total mutual fund asset globally as at the end of 2016 was in excess of$40.4 trillion.Despite its success there are uncertainties as to whether mutual funds in Ghana obtain optimal performance relative to their counterparts in United States,Luxembourg,Ireland,France,Australia,United Kingdom,Japan,China and Brazil.We contribute to the extant literature on mutual fund performance evaluation using a collection of more sophisticated econometric models.We selected six continuous historical years that is 2010-2011,2012-2013 and 2014-2015 to construct a mutual fund performance evaluation model utilizing the fast adaptive neural network classifier(FANNC),and to compare our results with those from an enhanced resilient back propagation neural networks(ERBPNN)model.Our FANNC model outperformed the existing models in terms of processing time and error rate.This makes it ideal for financial application that involves large volume of data and routine updates.
文摘To study the capacity of artificial neural network (ANN) applying to battlefield target classification and result of classification, according to the characteristics of battlefield target acoustic and seismic signals, an on the spot experiment was carried out to derive acoustic and seismic signals of a tank and jeep by special experiment system. Experiment data processed by fast Fourier transform(FFT) were used to train the ANN to distinguish the two battlefield targets. The ANN classifier was performed by the special program based on the modified back propagation (BP) algorithm. The ANN classifier has high correct identification rates for acoustic and seismic signals of battlefield targets, and is suitable for the classification of battlefield targets. The modified BP algorithm eliminates oscillations and local minimum of the standard BP algorithm, and enhances the convergence rate of the ANN.
文摘Edge devices in Internet of Things(IoT)applications can form peers to communicate in peer-to-peer(P2P)networks over P2P protocols.Using P2P networks ensures scalability and removes the need for centralized management.However,due to the open nature of P2P networks,they often suffer from the existence of malicious peers,especially malicious peers that unite in groups to raise each other’s ratings.This compromises users’safety and makes them lose their confidence about the files or services they are receiving.To address these challenges,we propose a neural networkbased algorithm,which uses the advantages of a machine learning algorithm to identify whether or not a peer is malicious.In this paper,a neural network(NN)was chosen as the machine learning algorithm due to its efficiency in classification.The experiments showed that the NNTrust algorithm is more effective and has a higher potential of reducing the number of invalid files and increasing success rates than other well-known trust management systems.
基金the Key Development Plan Project of Science and Technology (No.991p0111).
文摘This paper presents an automatic system of vehicle number-plate recognition based on neural networks. In this system, location of number-plate and recognition of characters in number-plate can be automatically completed. Pixel colors of Number-plate area are classified using neural network, then color features are extracted by analyzing scanning lines of the cross-section of number-plate. It takes full use of number-plate color features to locate number-plate. Characters in number-plate can be effectively recognized using the neural networks. Experimental results show that the correct rate of number-plate location is close to 100%, and the time of number-plate location is less than 1 second. Moreover, recognition rate of characters is improved due to the known number-plate type. It is also observed that this system is not sensitive to variations of weather, illumination and vehicle speed. In addition, and also the size of number-plate need not to be known in prior. This system is of crucial significance to apply and spread the automatic system of vehicle number-plate recognition.
文摘Malaria is a leading cause of deaths globally. Rapid and accurate diagnosis of the disease is key to its effective treatment and management. Identification of plasmodium parasites life stages and species forms part of the diagnosis. In this study, a technique for identifying the parasites life stages and species using microscopic images of thin blood smears stained with Giemsa was developed. The technique entailed designing and training Artificial Neural Network (ANN) classifiers to perform the classification of infected erythrocytes into their respective stages and species. The outputs of the system were compared to the results of expert microscopists. A total of 205 infected erythrocytes images were used to train and test the performance of the system. The system recorded 99.9% in recognizing stages and 96.2% in recognizing plasmodium species.
基金Supported by National Natural Science Foundation of China (No. 60573172)
文摘In this study, a Multi-Layer BP neural network(MLBP) with dynamic thresholds is employed to build a classifier model.As to the design of the neural network structure, theoretical guidance and plentiful experiments are combined to optimize the hidden layers' parameters which include the number of hidden layers and their node numbers.The classifier with dynamic thresholds is used to standardize the output for the first time, and it improves the robustness of the model to a high level.Finally, the classifier is applied to forecast box office revenue of a movie before its theatrical release.The comparison results with the MLP method show that the MLBP classifier model achieves more satisfactory results, and it is more reliable and effective to solve the problem.
基金Supported by the Natural Science Foundation of Jiangsu,No.BK20171508.
文摘BACKGROUND A convolutional neural network(CNN) is a deep learning algorithm based on the principle of human brain visual cortex processing and image recognition.AIM To automatically identify the invasion depth and origin of esophageal lesions based on a CNN.METHODS A total of 1670 white-light images were used to train and validate the CNN system.The method proposed in this paper included the following two parts:(1)Location module,an object detection network,locating the classified main image feature regions of the image for subsequent classification tasks;and(2) Classification module,a traditional classification CNN,classifying the images cut out by the object detection network.RESULTS The CNN system proposed in this study achieved an overall accuracy of 82.49%,sensitivity of 80.23%,and specificity of 90.56%.In this study,after follow-up pathology,726 patients were compared for endoscopic pathology.The misdiagnosis rate of endoscopic diagnosis in the lesion invasion range was approximately 9.5%;41 patients showed no lesion invasion to the muscularis propria,but 36 of them pathologically showed invasion to the superficial muscularis propria.The patients with invasion of the tunica adventitia were all treated by surgery with an accuracy rate of 100%.For the examination of submucosal lesions,the accuracy of endoscopic ultrasonography(EUS) was approximately 99.3%.Results of this study showed that EUS had a high accuracy rate for the origin of submucosal lesions,whereas the misdiagnosis rate was slightly high in the evaluation of the invasion scope of lesions.Misdiagnosis could be due to different operating and diagnostic levels of endoscopists,unclear ultrasound probes,and unclear lesions.CONCLUSION This study is the first to recognize esophageal EUS images through deep learning,which can automatically identify the invasion depth and lesion origin of submucosal tumors and classify such tumors,thereby achieving good accuracy.In future studies,this method can provide guidance and help to clinical endoscopists.
基金the Researchers Supporting Project Number(RSP2023R 509)King Saud University,Riyadh,Saudi ArabiaThis work was supported in part by the Higher Education Sprout Project from the Ministry of Education(MOE)and National Science and Technology Council,Taiwan,(109-2628-E-224-001-MY3)in part by Isuzu Optics Corporation.Dr.Shih-Yu Chen is the corresponding author.
文摘The medical community has more concern on lung cancer analysis.Medical experts’physical segmentation of lung cancers is time-consuming and needs to be automated.The research study’s objective is to diagnose lung tumors at an early stage to extend the life of humans using deep learning techniques.Computer-Aided Diagnostic(CAD)system aids in the diagnosis and shortens the time necessary to detect the tumor detected.The application of Deep Neural Networks(DNN)has also been exhibited as an excellent and effective method in classification and segmentation tasks.This research aims to separate lung cancers from images of Magnetic Resonance Imaging(MRI)with threshold segmentation.The Honey hook process categorizes lung cancer based on characteristics retrieved using several classifiers.Considering this principle,the work presents a solution for image compression utilizing a Deep Wave Auto-Encoder(DWAE).The combination of the two approaches significantly reduces the overall size of the feature set required for any future classification process performed using DNN.The proposed DWAE-DNN image classifier is applied to a lung imaging dataset with Radial Basis Function(RBF)classifier.The study reported promising results with an accuracy of 97.34%,whereas using the Decision Tree(DT)classifier has an accuracy of 94.24%.The proposed approach(DWAE-DNN)is found to classify the images with an accuracy of 98.67%,either as malignant or normal patients.In contrast to the accuracy requirements,the work also uses the benchmark standards like specificity,sensitivity,and precision to evaluate the efficiency of the network.It is found from an investigation that the DT classifier provides the maximum performance in the DWAE-DNN depending on the network’s performance on image testing,as shown by the data acquired by the categorizers themselves.
基金supported by the National Natural Science Foundation of China under Grants No.61534002,No.61761136015,No.61701095.
文摘Because of computational complexity,the deep neural network(DNN)in embedded devices is usually trained on high-performance computers or graphic processing units(GPUs),and only the inference phase is implemented in embedded devices.Data processed by embedded devices,such as smartphones and wearables,are usually personalized,so the DNN model trained on public data sets may have poor accuracy when inferring the personalized data.As a result,retraining DNN with personalized data collected locally in embedded devices is necessary.Nevertheless,retraining needs labeled data sets,while the data collected locally are unlabeled,then how to retrain DNN with unlabeled data is a problem to be solved.This paper proves the necessity of retraining DNN model with personalized data collected in embedded devices after trained with public data sets.It also proposes a label generation method by which a fake label is generated for each unlabeled training case according to users’feedback,thus retraining can be performed with unlabeled data collected in embedded devices.The experimental results show that our fake label generation method has both good training effects and wide applicability.The advanced neural networks can be trained with unlabeled data from embedded devices and the individualized accuracy of the DNN model can be gradually improved along with personal using.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61673295the Natural Science Foundation of Tianjin under Grant 18JCYBJC85200by the National College Students’ innovation and entrepreneurship project under Grant 201710060041.
文摘In this paper, polynomial fuzzy neural network classifiers (PFNNCs) is proposed by means of density fuzzy c-means and L2-norm regularization. The overall design of PFNNCs was realized by means of fuzzy rules that come in form of three parts, namely premise part, consequence part and aggregation part. The premise part was developed by density fuzzy c-means that helps determine the apex parameters of membership functions, while the consequence part was realized by means of two types of polynomials including linear and quadratic. L2-norm regularization that can alleviate the overfitting problem was exploited to estimate the parameters of polynomials, which constructed the aggregation part. Experimental results of several data sets demonstrate that the proposed classifiers show higher classification accuracy in comparison with some other classifiers reported in the literature.
基金supported by National Natural Science Foundation of China (Grant No. 50505042)
文摘In the energy regulation based varibable-speed electrohydraulic drive system, the supply energy and the demanded energy, which will affect the control performance greatly, are crucial. However, they are hard to be obtained via conventional methods for some reasons. This paper tries to a new route: the definitive numerical values of the supply energy and the demanded energy are not required, except for their relationship which is called energy state. A three-layer back propagation(BP) neural network was built up to act as an energy analysis unit to deduce the energy state. The neural network has three inputs: the reference displacement, the actual displacement of cylinder rod and the system flowrate supply. The output of the neural network is energy state. A Chebyshev type II filter was designed to calculate the cylinder speed for the estimation of system flowrate supply. The training and testing samples of neural network were collected by the system accurate simulation model. After off-line training, the neural network was tested by the testing data. And the testing result demonstrates that the designed neural network was successful. Then, the neural network acts as the energy analysis unit in real-time experiments of cylinder position control, where it works efficiently under square-wave and sine-wave reference displacement. The experimental results validate its feasibility and adaptability. Only a position sensor and some pressure sensors, which are cheap and have quick dynamic response, are necessary for the system control. And the neural network plays the role of identifying the energy state.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61471377,61804181,61604177,and 61704191).
文摘Vector neural network(VNN)is one of the most important methods to process interval data.However,the VNN,which contains a great number of multiply-accumulate(MAC)operations,often adopts pure numerical calculation method,and thus is difficult to be miniaturized for the embedded applications.In this paper,we propose a memristor based vector-type backpropagation(MVTBP)architecture which utilizes memristive arrays to accelerate the MAC operations of interval data.Owing to the unique brain-like synaptic characteristics of memristive devices,e.g.,small size,low power consumption,and high integration density,the proposed architecture can be implemented with low area and power consumption cost and easily applied to embedded systems.The simulation results indicate that the proposed architecture has better identification performance and noise tolerance.When the device precision is 6 bits and the error deviation level(EDL)is 20%,the proposed architecture can achieve an identification rate,which is about 92%higher than that for interval-value testing sample and 81%higher than that for scalar-value testing sample.
文摘Predicting stock price movements is a challenging task for academicians and practitioners. In particular, forecasting price movements in emerging markets seems to be more elusive because they are usually more volatile often accompa-nied by thin trading-volumes and they are susceptible to more manipulation compared to mature markets. Technical analysis of stocks and commodities has become a science on its own;quantitative methods and techniques have been applied by many practitioners to forecast price movements. Lagging and sometimes leading technical indicators pro-vide rich quantitative tools for traders and investors in their attempt to gain advantage when making investment or trading decisions. Artificial Neural Networks (ANN) have been used widely in predicting stock prices because of their capability in capturing the non-linearity that often exists in price movements. Recently, Polynomial Classifiers (PC) have been applied to various recognition and classification application and showed favorable results in terms of recog-nition rates and computational complexity as compared to ANN. In this paper, we present two prediction models for predicting securities’ prices. The first model was developed using back propagation feed forward neural networks. The second model was developed using polynomial classifiers (PC), as a first time application for PC to be used in stock prices prediction. The inputs to both models were identical, and both models were trained and tested on the same data. The study was conducted on Dubai Financial Market as an emerging market and applied to two of the market’s leading stocks. In general, both models achieved very good results in terms of mean absolute error percentage. Both models show an average error around 1.5% predicting the next day price, an average error of 2.5% when predicting second day price, and an average error of 4% when predicted the third day price.
文摘In a world where data is increasingly important for making breakthroughs,microelectronics is a field where data is sparse and hard to acquire.Only a few entities have the infrastructure that is required to automate the fabrication and testing of semiconductor devices.This infrastructure is crucial for generating sufficient data for the use of new information technologies.This situation generates a cleavage between most of the researchers and the industry.To address this issue,this paper will introduce a widely applicable approach for creating custom datasets using simulation tools and parallel computing.The multi-I-V curves that we obtained were processed simultaneously using convolutional neural networks,which gave us the ability to predict a full set of device characteristics with a single inference.We prove the potential of this approach through two concrete examples of useful deep learning models that were trained using the generated data.We believe that this work can act as a bridge between the state-of-the-art of data-driven methods and more classical semiconductor research,such as device engineering,yield engineering or process monitoring.Moreover,this research gives the opportunity to anybody to start experimenting with deep neural networks and machine learning in the field of microelectronics,without the need for expensive experimentation infrastructure.
文摘The paper describes the application of an ANN based approach to the identification of the parameters relevant to the steady state behavior of composite power electronic device models of circuit simulation software. The identification of model parameters of IGBT in PSPICE using BP neural network is illustrated.
基金National Natural Science Foundation of China (No. 60975084)Natural Science Foundation of Fujian Province,China (No.2011J05159)
文摘A graphic processing unit (GPU)-accelerated biological species recognition method using partially connected neural evolutionary network model is introduced in this paper. The partial connected neural evolutionary network adopted in the paper can overcome the disadvantage of traditional neural network with small inputs. The whole image is considered as the input of the neural network, so the maximal features can be kept for recognition. To speed up the recognition process of the neural network, a fast implementation of the partially connected neural network was conducted on NVIDIA Tesla C1060 using the NVIDIA compute unified device architecture (CUDA) framework. Image sets of eight biological species were obtained to test the GPU implementation and counterpart serial CPU implementation, and experiment results showed GPU implementation works effectively on both recognition rate and speed, and gained 343 speedup over its counterpart CPU implementation. Comparing to feature-based recognition method on the same recognition task, the method also achieved an acceptable correct rate of 84.6% when testing on eight biological species.
文摘Gene regulatory network (GRN) inference from gene expression data remains a big challenge in system biology. In this paper, flexible neural tree (FNT) model is proposed as a binary classifier for inference of gene regulatory network. A novel tree-based evolutionary algorithm and firefly algorithm (FA) are used to optimize the structure and parameters of FNT model, respectively.The two E.coli networks are used to test FNT model and the results reveal that FNT model performs better than state-of-the-art unsupervised and supervised learning methods.