The research on underwater ship-hull cleaning robot was conducted on the purpose of realizing the automation of cleaning underwater ship hull so that service life of ship will be prolonged and ship speed will raised. ...The research on underwater ship-hull cleaning robot was conducted on the purpose of realizing the automation of cleaning underwater ship hull so that service life of ship will be prolonged and ship speed will raised. Moreover, fuel consumption and the work intensity of divers will be reduced. In this paper, the current situation and the latest technology in China and abroad were analyzed;meanwhile, the typical characteristics of the underwater cleaning robot were introduced. According to the work principle of the underwater cleaning robot, the emphasis was put on the analysis and study of permanent-magnetic absorption, magnetic wheel, airproof and anticorrosion, underwater cleaning equipment and control system. The robot is easy in rotation and simple in control.展开更多
Aiming at the complicated cleaning environment of high-voltage substation insulators,the cleaning robot design principles are put for ward.On this basis,the structure framework of cleaning robot is proposed,and its sy...Aiming at the complicated cleaning environment of high-voltage substation insulators,the cleaning robot design principles are put for ward.On this basis,the structure framework of cleaning robot is proposed,and its system composition is introduced,mainly including mobile mechanism,clamping mechanism and cleaning mechanism.The structure has the characteristics of light weight,small size and self-locking without motor.Pro/E software is used to complete the modeling of the cleaning robot.Finally,ADAMS is used to establish the simulation model for the cleaning robot,its moving and cleaning process on high-voltage substation insulators is simulated,and the simulation results are analyzed.The results show that the structural design of the cleaning robot is reasonable.展开更多
To tackle the problem of aquatic environment pollution,a vision-based autonomous underwater garbage cleaning robot has been developed in our laboratory.We propose a garbage detection method based on a modified YOLOv4,...To tackle the problem of aquatic environment pollution,a vision-based autonomous underwater garbage cleaning robot has been developed in our laboratory.We propose a garbage detection method based on a modified YOLOv4,allowing high-speed and high-precision object detection.Specifically,the YOLOv4 algorithm is chosen as a basic neural network framework to perform object detection.With the purpose of further improvement on the detection accuracy,YOLOv4 is transformed into a four-scale detection method.To improve the detection speed,model pruning is applied to the new model.By virtue of the improved detection methods,the robot can collect garbage autonomously.The detection speed is up to 66.67 frames/s with a mean average precision(mAP)of 95.099%,and experimental results demonstrate that both the detection speed and the accuracy of the improved YOLOv4 are excellent.展开更多
In order to solve the problem of the pipeline inspection and cleaning, combining the 3D modeling software Pro/Eningeer (Pro/E) and the dynamics analysis software RecurDyn, the main model, the track system model of t...In order to solve the problem of the pipeline inspection and cleaning, combining the 3D modeling software Pro/Eningeer (Pro/E) and the dynamics analysis software RecurDyn, the main model, the track system model of the tracked pipe duct cleaning robot and the road model are built, and the entity assembly in RecurDyn is applied and the simulation model is obtained. The paper RecurDyn. The speed, the torque of driving wheel and the carries out the dynamic simulation with the software vibration-acceleration of gravity of the whole robot in the vertical direction are obtained and analyzed. Finally, the simulation and the calculation results are compared, the two results are basically the same, it has guiding significance for the further study and the potential applications of the tracked pipe duct cleaning robot展开更多
This paper presents a comprehensive review and analysis of ship hull cleaning technologies.Various cleaning methods and devices applied to dry-dock cleaning and underwater cleaning are introduced in detail,including r...This paper presents a comprehensive review and analysis of ship hull cleaning technologies.Various cleaning methods and devices applied to dry-dock cleaning and underwater cleaning are introduced in detail,including rotary brushes,high-pressure and cavitation water jet technology,ultrasonic technology,and laser cleaning technology.The application of underwater robot technology in ship cleaning not only frees divers from engaging in heavy work but also creates safe and efficient industrial products.Damage to the underlying coating of the ship caused by the underwater cleaning operation can be minimized by optimizing the working process of the underwater cleaning robot.With regard to the adhesion technology mainly used in underwater robots,an overview of recent developments in permanent magnet and electromagnetic adhesion,negative pressure force adhesion,thrust force adhesion,and biologically inspired adhesion is provided.Through the analysis and comparison of current underwater robot products,this paper predicts that major changes in the application of artificial intelligence and multirobot cooperation,as well as optimization and combination of various technologies in underwater cleaning robots,could be expected to further lead to breakthroughs in developing next-generation robots for underwater cleaning.展开更多
基金Key Project funded by Department of Science & Technology of Heilongjiang Province (GB03A507)
文摘The research on underwater ship-hull cleaning robot was conducted on the purpose of realizing the automation of cleaning underwater ship hull so that service life of ship will be prolonged and ship speed will raised. Moreover, fuel consumption and the work intensity of divers will be reduced. In this paper, the current situation and the latest technology in China and abroad were analyzed;meanwhile, the typical characteristics of the underwater cleaning robot were introduced. According to the work principle of the underwater cleaning robot, the emphasis was put on the analysis and study of permanent-magnetic absorption, magnetic wheel, airproof and anticorrosion, underwater cleaning equipment and control system. The robot is easy in rotation and simple in control.
文摘Aiming at the complicated cleaning environment of high-voltage substation insulators,the cleaning robot design principles are put for ward.On this basis,the structure framework of cleaning robot is proposed,and its system composition is introduced,mainly including mobile mechanism,clamping mechanism and cleaning mechanism.The structure has the characteristics of light weight,small size and self-locking without motor.Pro/E software is used to complete the modeling of the cleaning robot.Finally,ADAMS is used to establish the simulation model for the cleaning robot,its moving and cleaning process on high-voltage substation insulators is simulated,and the simulation results are analyzed.The results show that the structural design of the cleaning robot is reasonable.
基金supported by the National Natural Science Foundation of China(Nos.61725305,U1909206,T2121002,and62073196)the Postdoctoral Innovative Talent Support Program(No.BX2021010)the S&T Program of Hebei Province,China(No.F2020203037)。
文摘To tackle the problem of aquatic environment pollution,a vision-based autonomous underwater garbage cleaning robot has been developed in our laboratory.We propose a garbage detection method based on a modified YOLOv4,allowing high-speed and high-precision object detection.Specifically,the YOLOv4 algorithm is chosen as a basic neural network framework to perform object detection.With the purpose of further improvement on the detection accuracy,YOLOv4 is transformed into a four-scale detection method.To improve the detection speed,model pruning is applied to the new model.By virtue of the improved detection methods,the robot can collect garbage autonomously.The detection speed is up to 66.67 frames/s with a mean average precision(mAP)of 95.099%,and experimental results demonstrate that both the detection speed and the accuracy of the improved YOLOv4 are excellent.
文摘In order to solve the problem of the pipeline inspection and cleaning, combining the 3D modeling software Pro/Eningeer (Pro/E) and the dynamics analysis software RecurDyn, the main model, the track system model of the tracked pipe duct cleaning robot and the road model are built, and the entity assembly in RecurDyn is applied and the simulation model is obtained. The paper RecurDyn. The speed, the torque of driving wheel and the carries out the dynamic simulation with the software vibration-acceleration of gravity of the whole robot in the vertical direction are obtained and analyzed. Finally, the simulation and the calculation results are compared, the two results are basically the same, it has guiding significance for the further study and the potential applications of the tracked pipe duct cleaning robot
基金Supported by the General Program of the National Natural Science Foundation of China under Grant No.51879157the“Construction of a Leading Innovation Team”project by the Hangzhou Municipal Governmentthe Startup Funding of Newjoined PI of Westlake University under Grant No.041030150118。
文摘This paper presents a comprehensive review and analysis of ship hull cleaning technologies.Various cleaning methods and devices applied to dry-dock cleaning and underwater cleaning are introduced in detail,including rotary brushes,high-pressure and cavitation water jet technology,ultrasonic technology,and laser cleaning technology.The application of underwater robot technology in ship cleaning not only frees divers from engaging in heavy work but also creates safe and efficient industrial products.Damage to the underlying coating of the ship caused by the underwater cleaning operation can be minimized by optimizing the working process of the underwater cleaning robot.With regard to the adhesion technology mainly used in underwater robots,an overview of recent developments in permanent magnet and electromagnetic adhesion,negative pressure force adhesion,thrust force adhesion,and biologically inspired adhesion is provided.Through the analysis and comparison of current underwater robot products,this paper predicts that major changes in the application of artificial intelligence and multirobot cooperation,as well as optimization and combination of various technologies in underwater cleaning robots,could be expected to further lead to breakthroughs in developing next-generation robots for underwater cleaning.