期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Impact of Spectral Nudging on the Downscaling of Tropical Cyclones in Regional Climate Simulations 被引量:5
1
作者 Suk-Jin CHOI Dong-Kyou LEE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第6期730-742,共13页
This study investigated the simulations of three months of seasonal tropical cyclone (TC) activity over the western North Pacific using the Advanced Research WRF Model. In the control experiment (CTL), the TC freq... This study investigated the simulations of three months of seasonal tropical cyclone (TC) activity over the western North Pacific using the Advanced Research WRF Model. In the control experiment (CTL), the TC frequency was considerably overestimated. Additionally, the tracks of some TCs tended to have larger radii of curvature and were shifted eastward. The large-scale environments of westerly monsoon flows and subtropical Pacific highs were unreasonably simulated. The overestimated frequency of TC formation was attributed to a strengthened westerly wind field in the southern quadrants of the TC center. In comparison with the experiment with the spectral nudging method, the strengthened wind speed was mainly modulated by large-scale flow that was greater than approximately 1000 km in the model domain. The spurious formation and undesirable tracks of TCs in the CTL were considerably improved by reproducing realistic large-scale atmospheric monsoon circulation with substantial adjustment between large-scale flow in the model domain and large-scale boundary forcing modified by the spectral nudging method. The realistic monsoon circulation took a vital role in simulating realistic TCs. It revealed that, in the downscaling from large-scale fields for regional climate simulations, scale interaction between model-generated regional features and forced large-scale fields should be considered, and spectral nudging is a desirable method in the downscaling method. 展开更多
关键词 tropical cyclone spectral nudging technique dynamic downscaling regional climate simulation
下载PDF
A Review on Aspects of Climate Simulation Assessment 被引量:1
2
作者 王斌 谢歆 李立娟 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第4期736-747,共12页
This paper reviews some aspects of evaluation of climate simulation, including the ITCZ, the surface air temperature (SAT), and the monsoon. A brief introduction of some recently proposed approaches in weather forec... This paper reviews some aspects of evaluation of climate simulation, including the ITCZ, the surface air temperature (SAT), and the monsoon. A brief introduction of some recently proposed approaches in weather forecast verification is followed by a discussion on their possible application to evaluation of climate simulation. The authors suggest five strategies to extend the forecast verification methods to climate simulation evaluation regardless significant differences between the forecasts and climate simulations. It is argued that resolution, convection scheme, stratocumulus cloud cover, among other processes in the atmospheric general circulation model (AGCM) and the ocean-atmosphere feedback are the potential causes for the double ITCZ problem in coupled models and AGCM simulations, based on the system- and component-level evaluations as well as the downscaling strategies in some recent research. Evaluations of simulated SAT and monsoons suggest that both coupled models and AGCMs show good performance in representing the SAT evolution and its variability over the past century in terms of correlation and wavelet analysis but poor at reproducing rainfall, and in addition, the AGCM alone is not suitable for monsoon regions due to the lack of air-sea interactions. 展开更多
关键词 climate simulation evaluation forecast verification ITCZ surface air temperature MONSOON
下载PDF
Steric Sea Level Change in Twentieth Century Historical Climate Simulation and IPCC-RCP8.5 Scenario Projection: A Comparison of Two Versions of FGOALS Model 被引量:1
3
作者 董璐 周天军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第3期841-854,共14页
To reveal the steric sea level change in 20th century historical climate simulations and future climate change projections under the IPCC's Representative Concentration Pathway 8.5 (RCP8.5) scenario, the results of... To reveal the steric sea level change in 20th century historical climate simulations and future climate change projections under the IPCC's Representative Concentration Pathway 8.5 (RCP8.5) scenario, the results of two versions of LASG/IAP's Flexible Global Ocean-Atmosphere-Land System model (FGOALS) are analyzed. Both models reasonably reproduce the mean dynamic sea level features, with a spatial pattern correlation coefficient of 0.97 with the observation. Characteristics of steric sea level changes in the 20th century historical climate simulations and RCPS.5 scenario projections are investigated. The results show that, in the 20th century, negative trends covered most parts of the global ocean. Under the RCPS.5 scenario, global-averaged steric sea level exhibits a pronounced rising trend throughout the 21st century and the general rising trend appears in most parts of the global ocean. The magnitude of the changes in the 21st century is much larger than that in the 20th century. By the year 2100, the global-averaged steric sea level anomaly is 18 cm and 10 cm relative to the year 1850 in the second spectral version of FGOALS (FGOALS-s2) and the second grid-point version of FGOALS (FGOALS-g2), respectively. The separate contribution of the thermosteric and halosteric components from various ocean layers is further evaluated. In the 20th century, the steric sea level changes in FGOALS-s2 (FGOALS-g2) are largely attributed to the thermosteric (halosteric) component relative to the pre-industrial control run. In contrast, in the 21st century, the thermosteric component, mainly from the upper 1000 m, dominates the steric sea level change in both models under the RCPS.5 scenario. In addition, the steric sea level change in the marginal sea of China is attributed to the thermosteric component. 展开更多
关键词 steric sea level historical climate simulation RCP8.5 scenario FGOALS model
下载PDF
Applications and verification of a computational energy dynamics model for mine climate simulations 被引量:1
4
作者 G.Danko D.Bahrami C.Stewart 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第4期483-493,共11页
A complete thermodynamic model is described for temperature and heat flow distribution simulation for ventilation networks in underground mines.The method is called the Computational Energy Dynamics(CED)model of the h... A complete thermodynamic model is described for temperature and heat flow distribution simulation for ventilation networks in underground mines.The method is called the Computational Energy Dynamics(CED)model of the heat,mass,and energy transport.The Thermal and Humidity(TH)transport elements of the full model are described for advection,convection,and accumulation,encompassing heat capacity,radiation,latent heat for evaporation,and condensation in the airways,as well as variable heat conduction and accumulation in the rock strata.The thermal flywheel effect for time-dependent temperature field applications is included in the model solution.A CED model validation exercise is described,directly evaluating the iterated,minimized energy balance errors for the mechanical and thermal energy components for each network branch after a converged solution is determined.A simulation example relevant to mine safety and health is shown with the CED-TH model,demonstrating its capabilities in efficiency and accuracy in comparison with measurement results. 展开更多
关键词 Mine climate simulation Dynamic heat flow model Coupled heat and moisture transport Computational energy dynamics Mine safety and health
下载PDF
A Sensitivity Study of IAP AGCM to Radiation Changes: Climate Simulation of 125kyr and 115kyr before Present 被引量:1
5
作者 王会军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1993年第2期227-232,共6页
The IAP AGCM was used to simulate the climate of 125kyr and 115kyr before present. We analysed the results and then studied the sensitivity of the model to the changes of radiation distribution induced by orbital para... The IAP AGCM was used to simulate the climate of 125kyr and 115kyr before present. We analysed the results and then studied the sensitivity of the model to the changes of radiation distribution induced by orbital parameter changes. The reasonability of the results was also discussed. 展开更多
关键词 A Sensitivity Study of IAP AGCM to Radiation Changes climate simulation of 125kyr and 115kyr before Present IAP
下载PDF
Ventilation and climate simulation with the Multiflux code
6
作者 GEORGE Danko DAVOOD Bahrami PIERRE Mousset-Jones 《Journal of Coal Science & Engineering(China)》 2011年第3期243-250,共8页
Multiflux, a new thermal, hydrologic, and airflow model and software was being employed to solve the flow of heat, moisture, and air in and around an underground opening. The airway domain was solved with an integrate... Multiflux, a new thermal, hydrologic, and airflow model and software was being employed to solve the flow of heat, moisture, and air in and around an underground opening. The airway domain was solved with an integrated-parameter Computational Fluid Dynamic (CFD) module, which is an embedded part of the Multiflux code. The CFD model includes convection, conduction, and radiation for heat, as well as convection and diffusion for moist-ure transport in an air-filled opening. The surrounding rockmass model may be from any analytical solution, or from a complex thermal-hydrologic numerical model such as NUFT or TOUGH2. The rockmass model is interfaced to Multiflux using a novel technique called Numerical Transport Code Functionalization (NTCF). The purpose was to briefly describe the Multiflux model and show four example applications. The first example reports the results of Multiflux simulations for a mine drift, comparing calculations with CLIMSIM, a well known mine climate software, and with measured data. The second and third examples involve development ends in two coal mines. Another development-end ventilation model in Multiflux is also shown as the 4th example compared with field measurements from the Lucky Friday Mine in Idaho, USA for comparison.The results of the study show very good agreement between the Multiflux model and the available measured field results. 展开更多
关键词 mine ventilation health and safety MODELING climate simulation
下载PDF
Global Climate Internal Variability in a 2000-year Control Simulation with Community Earth System Model(CESM) 被引量:13
7
作者 WANG Zhiyuan LI Yao +1 位作者 LIU Bin LIU Jian 《Chinese Geographical Science》 SCIE CSCD 2015年第3期263-273,共11页
Using the low-resolution (T31, equivalent to 3.75°× 3.75°) version of the Community Earth System Model (CESM) from the National Center for Atmospheric Research (NCAR), a global climate simulation ... Using the low-resolution (T31, equivalent to 3.75°× 3.75°) version of the Community Earth System Model (CESM) from the National Center for Atmospheric Research (NCAR), a global climate simulation was carried out with fixed external forcing factors (1850 Common Era. (C.E.) conditions) for the past 2000 years. Based on the simulated results, spatio-temporal structures of surface air temperature, precipitation and internal variability, such as the E1 Nifio-Southem Oscillation (ENSO), the Atlantic Multi-decadal Oscilla- tion (AMO), the Pacific Decadal Oscillation (PDO), and the North Atlantic Oscillation (NAO), were compared with reanalysis datasets to evaluate the model performance. The results are as follows: 1) CESM showed a good performance in the long-term simulation and no significant climate drift over the past 2000 years; 2) climatological patterns of global and regional climate changes simulated by the CESM were reasonable compared with the reanalysis datasets; and 3) the CESM simulated internal natural variability of the climate system performs very well. The model not only reproduced the periodicity of ENSO, AMO and PDO events but also the 3-8 years vari- ability of the ENSO. The spatial distribution of the CESM-simulated NAO was also similar to the observed. However, because of weaker total irradiation and greenhouse gas concentration forcing in the simulation than the present, the model performances had some differences from the observations. Generally, the CESM showed a good performance in simulating the global climate and internal natu- ral variability of the climate system. This paves the way for other forced climate simulations for the past 2000 years by using the CESM. 展开更多
关键词 Community Earth System Model (CESM) climate simulation past 2000 years climate system intemal variability
下载PDF
SIMULATION OF PRESENT CLIMATE OVER EAST ASIA BY A REGIONAL CLIMATE MODEL 被引量:16
8
作者 张冬峰 高学杰 +1 位作者 欧阳里程 董文杰 《Journal of Tropical Meteorology》 SCIE 2008年第1期19-23,共5页
A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of the model in simulating p... A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of the model in simulating present climate over East Asia and China is investigated. Results show that RegCM3 can reproduce well the atmospheric circulation over East Asia. The simulation of the main distribution patterns of surface air temperature and precipitation over China and their seasonal cycle/evolution, are basically agree with that of the observation. Meanwhile a general cold bias is found in the simulation. As for the precipitation, the model tends to overestimate the precipitation in northern China while underestimate it in southern China, particularly in winter. In general, the model has better performance in simulating temperature than precipitation. 展开更多
关键词 regional climate model climate simulation EVALUATION East Asia region China
下载PDF
A Method for Improving Simulation of PNA Teleconnection Interannual Variation in a Climate Model 被引量:2
9
作者 LI Zhong-Xian ZHOU Tian-Jun +2 位作者 SUN Zhao-Bo CHEN Hai-Shan NI Dong-Hong 《Atmospheric and Oceanic Science Letters》 2011年第2期86-90,共5页
The climate modeling community has been challenged to develop a method for improving the simulation of the Pacific-North America (PNA) teleconnection pattern in climate models. The accuracy of PNA teleconnection sim... The climate modeling community has been challenged to develop a method for improving the simulation of the Pacific-North America (PNA) teleconnection pattern in climate models. The accuracy of PNA teleconnection simulation is significantly improved by considering mesoscale convection contributions to sea surface fluxes. The variation in the PNA over the past 22 years was simulated by the Grid Atmospheric Model of lAP LASG version 1.0 (GAMIL1.0), which was guided by observational SST from January 1979 to December 2000. Results show that heating in the tropical central-eastern Pacific is simulated more realistically, and sea surface latent heat flux and precipitation anomalies are more similar to the reanalysis data when mesoscale enhancement is considered during the parameterization scheme of sea surface turbulent fluxes in GAMIL1.0. Realistic heating in the tropical central-eastern Pacific in turn significantly improves the simulation of interannual variation and spatial patterns of PNA. 展开更多
关键词 sea surface turbulent flux parameterization PNA climate simulation
下载PDF
Effects of Dynamic Vegetation on Global Climate Simulation Using the NCEP GFS and SSiB4/TRIFFID 被引量:1
10
作者 Zhengqiu ZHANG Yongkang XUE +1 位作者 Panmao ZHAI Huiping DENG 《Journal of Meteorological Research》 SCIE CSCD 2021年第6期1041-1056,共16页
Two global experiments were carried out to investigate the effects of dynamic vegetation processes on numerical climate simulations from 1948 to 2008.The NCEP Global Forecast System(GFS)was coupled with a biophysical ... Two global experiments were carried out to investigate the effects of dynamic vegetation processes on numerical climate simulations from 1948 to 2008.The NCEP Global Forecast System(GFS)was coupled with a biophysical model,the Simplified Simple Biosphere Model(SSi B)version 2(GFS/SSi B2),and it was also coupled with a biophysical and dynamic vegetation model,SSi B version 4/Top-down Representation of Interactive Foliage and Flora Including Dynamics(TRIFFID)(GFS/SSi B4/TRIFFID).The effects of dynamic vegetation processes on the simulation of precipitation,near-surface temperature,and the surface energy budget were identified on monthly and annual scales by assessing the GFS/SSi B4/TRIFFID and GFS/SSi B2 results against the satellite-derived leaf area index(LAI)and albedo and the observed land surface temperature and precipitation.The results show that compared with the GFS/SSiB2 model,the temporal correlation coefficients between the globally averaged monthly simulated LAI and the Global Inventory Monitoring and Modeling System(GIMMS)/Global Land Surface Satellite(GLASS)LAI in the GFS/SSi B4/TRIFFID simulation increased from 0.31/0.29(SSiB2)to 0.47/0.46(SSiB4).The correlation coefficients between the simulated and observed monthly mean near-surface air temperature increased from 0.50(Africa),0.35(Southeast Asia),and 0.39(South America)to 0.56,0.41,and 0.44,respectively.The correlation coefficients between the simulated and observed monthly mean precipitation increased from 0.19(Africa),0.22(South Asia),and 0.22(East Asia)to 0.25,0.27,and 0.28,respectively.The greatest improvement occurred over arid and semiarid areas.The spatiotemporal variability and changes in vegetation and ground surface albedo modeled by the GFS with a dynamic vegetation model were more consistent with the observations.The dynamic vegetation processes contributed to the surface energy and water balance and in turn,improved the annual variations in the simulated regional temperature and precipitation.The dynamic vegetation processes had the greatest influence on the spatiotemporal changes in the latent heat flux.This study shows that dynamic vegetation processes in earth system models significantly improve simulations of the climate mean status. 展开更多
关键词 NCEP Global Forecast System(GFS) Simplified Simple Biosphere Model version 4/Top-down Representation of Interactive Foliage and Flora Including Dynamics(SSiB4/TRIFFID) global climate simulation effects of dynamic vegetation
原文传递
Simulation of Deep Water Wave Climate for the Indian Seas
11
作者 J.Swain P.A.Umesh +1 位作者 M.Baba A.S.N.Murty 《Journal of Marine Science》 2021年第2期30-49,共20页
The ocean wave climate has a variety of applications in Naval defence.However,a long-term and reliable wave climate for the Indian Seas(The Arabian Sea and The Bay of Bengal)over a desired grid resolution could not be... The ocean wave climate has a variety of applications in Naval defence.However,a long-term and reliable wave climate for the Indian Seas(The Arabian Sea and The Bay of Bengal)over a desired grid resolution could not be established so far due to several constraints.In this study,an attempt was made for the simulation of wave climate for the Indian Seas using the third-generation wave model(3g-WAM)developed by WAMDI group.The 3g-WAM as such was implemented at NPOL for research applications.The specific importance of this investigation was that,the model utilized a“mean climatic year of winds”estimated using historical wind measurements following statistical and probabilistic approaches as the winds which were considered for this purpose were widely scattered in space and time.Model computations were carried out only for the deep waters with current refraction.The gridded outputs of various wave parameters were stored at each grid point and the spectral outputs were stored at selected locations.Monthly,seasonal and annual distributions of significant wave parameters were obtained by post-processing some of the model outputs.A qualitative validation of simulated wave height and period parameters were also carried out by comparing with the observed data.The study revealed that the results of the wave climate simulation were quite promising and they can be utilized for various operational and ocean engineering applications.Therefore,this study will be a useful reference/demonstration for conducting such experiments in the areas where wind as well as wave measurements are insufficient. 展开更多
关键词 3g-WAM Wave climate simulation Wave model validation Mean climatic year of winds
下载PDF
Simulation of Climate Change Induced by CO_2 Increasing for East Asia with IAP/ LASG GOALS Model 被引量:1
12
作者 郭裕福 俞永强 +1 位作者 刘喜迎 张学洪 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第1期53-66,共14页
Two simulations, one for the control run and another for the perturbation run, with a global coupled ocean-atmosphere-land system model (IAP/LASG GOALS version 4) have been carried out to study the global warming, wit... Two simulations, one for the control run and another for the perturbation run, with a global coupled ocean-atmosphere-land system model (IAP/LASG GOALS version 4) have been carried out to study the global warming, with much detailed emphasis on East Asia. Results indicate that there is no climate drift in the control run and at the time of CO, doubling the global temperature increases about 1.65 degreesC. The GOALS model is able to simulate the observed spatial distribution and annual cycles of temperature and precipitation for East Asia quite well. But, in general, the model underestimates temperature and overestimates rainfall amount for regional annual average. For the climate change in East Asia, the temperature and precipitation in East Asia increase 2.1 degreesC and 5% respectively, and the maximum warming occurs at middle-latitude continent and the maximum precipitation increase occurs around 25 degreesN with reduced precipitation in the tropical western Pacific. 展开更多
关键词 climate change simulation coupled climate model East Asia
下载PDF
Simulation of Climate Change Induced by CO2 Increasing for East Asia with IAP/ LASG GOALS Model 被引量:42
13
作者 郭裕福 俞永强 +1 位作者 刘喜迎 张学洪 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第1期53-66,共页
Two simulations, one for the control run and another for the perturbation run, with a global coupled ocean-atmosphere-land system model(IAP / LASG GOALS version 4) have been carried out to study the global warming, wi... Two simulations, one for the control run and another for the perturbation run, with a global coupled ocean-atmosphere-land system model(IAP / LASG GOALS version 4) have been carried out to study the global warming, with much detailed emphasis on East Asia. Results indicate that there is no climate drift in the control run and at the time of CO2 doubling the global temperature increases about 1.65℃. The GOALS model is able to simulate the observed spatial distribution and annual cycles of temperature and precipitation for East Asia quite well. But, in general, the model underestimates temperature and overestimates rainfall amount for regional annual average. For the climate change in East Asia, the temperature and precipitation in East Asia increase 2.1 ℃ and 5% respectively, and the maximum warming occurs at middle-latitude continent and the maximum precipitation increase occurs around 25°N with reduced precipitation in the tropical western Pacific. 展开更多
关键词 climate change simulation Coupled climate model East Asia
全文增补中
Evaluation of CORDEX regional climate models in simulating temperature and precipitation over the Tibetan Plateau 被引量:12
14
作者 GUO Dong-Lin SUN Jian-Qi YU En-Tao 《Atmospheric and Oceanic Science Letters》 CSCD 2018年第3期219-227,共9页
Using a regional climate model(RCM) is generally regarded as a promising approach in researching the climate of the Tibetan Plateau, due to the advantages provided by the high resolutions of these models. Whilst pre... Using a regional climate model(RCM) is generally regarded as a promising approach in researching the climate of the Tibetan Plateau, due to the advantages provided by the high resolutions of these models. Whilst previous studies have focused mostly on individual RCM simulations, here, multiple RCMs from the Coordinated Regional Climate Downscaling Experiment are evaluated in simulating surface air temperature and precipitation changes over the Tibetan Plateau using station and gridded observations. The results show the following:(1) All RCMs consistently show similar spatial patterns, but a mean cold(wet) bias in the temperature(precipitation) climatology compared to station observations. The RCMs fail to reproduce the observed spatial patterns of temperature and precipitation trends, and on average produce greater trends in temperature and smaller trends in precipitation than observed results. The multi-model ensemble overall produces superior trends in both simulated temperature and precipitation relative to individual models. Meanwhile, Reg CM4 presents the most reasonable simulated trends among the five RCMs.(2) Considerable dissimilarities are shown in the simulated quantitative results from the different RCMs, which indicates a large model dependency in the simulation of climate over the Tibetan Plateau. This implies that caution may be needed when an individual RCM is used to estimate the amplitude of climate change over the Tibetan Plateau.(3) The temperature(precipitation) in 2016–35, relative to 1986–2005, is projected by the multi-model ensemble to increase by 1.38 ± 0.09 °C(0.8% ± 4.0%) and 1.77 ± 0.28 °C(7.3% ± 2.5%) under the RCP4.5 and RCP8.5 scenario, respectively. The results of this study advance our understanding of the applicability of RCMs in studies of climate change over the Tibetan Plateau from a multiple-RCM perspective. 展开更多
关键词 Tibetan Plateau RCM climate simulation CORDEX
下载PDF
Climate Changes in the 21st Century over the Asia-Pacific Region Simulated by the NCAR CSM and PCM 被引量:9
15
作者 Aiguo Dai, G.A. Meehl, W.M. Washington, and T.M.L. Wigley National Center for Atmospheric Research P.O. Box 3000, Boulder, CO 80307 ) Email: adai@ ucar. edu The National Center for Atmospheric Research is sponsored by the U S National Science Foundation. 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第5期639-658,共20页
The Climate System Model (CSM) and the Parallel Climate Model (PCM), two coupled global climate models without flux adjustments recently developed at NCAR, were used to simulate the 20th century climate using historic... The Climate System Model (CSM) and the Parallel Climate Model (PCM), two coupled global climate models without flux adjustments recently developed at NCAR, were used to simulate the 20th century climate using historical greenhouse gas and sulfate aerosol forcing. These simulations were extended through the 21st century under two newly developed scenarios, a business-as-usual case (BAU, CO2≈710 ppmv in 2100) and a CO2 stabilization case (STA550, CO2≈540 ppmv in 2100). The simulated changes in temperature, precipitation, and soil moisture over the Asia-Pacific region (10°-60°N, 55°-155°) are analyzed, with a focus on the East Asian summer monsoon rainfall and climate changes over the upper reaches of the Yangtze River. Under the BAU scenario, both the models produce surface warming of about 3-5℃ in winter and 2-3℃ in summer over most Asia. Under the STA550 scenario, the warming is reduced by 0.5-1.0℃ in winter and by 0.5℃ in summer. The warming is fairly uniform at the low latitudes and does not induce significant changes in the zonal mean Hadley circulation over the Asia-Pacific do- main While the regional precipitation changes from single CSM integrations are noisy, the PCM ensemble mean precipitation shows 10%-30% increases north of ~ 30°N and~10% decreases south of ~ 30°N over the Asia-Pacific region in winter and 10%-20% increases in summer precipitation over most of the region. Soil moisture changes are small over most Asia The CSM single simulation suggests a 30% increase in river runoff into the Three Gorges Dam, but the PCM ensemble simulations show small changes in the runoff 展开更多
关键词 climate simulation climate change Asian monsoon Ensemble simulation
下载PDF
The Extreme Summer Precipitation over East China during 1982-2007 Simulated by the LASG/IAP Regional Climate Model 被引量:6
16
作者 LIU Jing-Wei LI Bo +2 位作者 ZHOU Tian-Jun ZENG Xian-Feng FENG Lei 《Atmospheric and Oceanic Science Letters》 2012年第1期62-67,共6页
The extreme summer precipitation over East China during 1982-2007 was simulated using the LASG/IAP regional climate model CREM(the Climate version of a Regional Eta-coordinate Model).The results show that the probabil... The extreme summer precipitation over East China during 1982-2007 was simulated using the LASG/IAP regional climate model CREM(the Climate version of a Regional Eta-coordinate Model).The results show that the probability density functions(PDFs) of precipitation intensities are reasonably simulated,except that the PDFs of light and moderate rain are underestimated and that the PDFs of heavy rain are overestimated.The extreme precipitation amount(R95p) and the percent contribution of extreme precipitation to the total precipitation(R95pt) are also reasonably reproduced by the CREM.However,the R95p and R95pt over most of East China are generally overestimated,while the R95p along the coastal area of South China(SC) is underestimated.The bias of R95pt is consistent with the bias of precipitation intensity on wet days(SDII).The interannual variation for R95p anomalies(PC1) is well simulated,but that of R95pt anomalies(PC2) is poorly simulated.The skill of the model in simulating PC1(PC2) increases(decreases) from north to south.The bias of water vapor transport associated with the 95th percentile of summer daily precipitation(WVTr95) explains well the bias of the simulated extreme precipitation. 展开更多
关键词 regional climate simulation extreme precipi- tation East China CREM
下载PDF
Comparison of a Very-fine-resolution GCM with RCM Dynamical Downscaling in Simulating Climate in China 被引量:11
17
作者 Donglin GUO Huijun WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第5期559-570,共12页
Regional climate simulation can generally be improved by using an RCM nested within a coarser-resolution GCM.However, whether or not it can also be improved by the direct use of a state-of-the-art GCM with very fine r... Regional climate simulation can generally be improved by using an RCM nested within a coarser-resolution GCM.However, whether or not it can also be improved by the direct use of a state-of-the-art GCM with very fine resolution, close to that of an RCM, and, if so, which is the better approach, are open questions. These questions are important for understanding and using these two kinds of simulation approaches, but have not yet been investigated. Accordingly, the present reported work compared simulation results over China from a very-fine-resolution GCM(VFRGCM) and from RCM dynamical downscaling. The results showed that:(1) The VFRGCM reproduces the climatologies and trends of both air temperature and precipitation, as well as inter-monthly variations of air temperature in terms of spatial pattern and amount, closer to observations than the coarse-resolution version of the GCM. This is not the case, however, for the inter-monthly variations of precipitation.(2) The VFRGCM captures the climatology, trend, and inter-monthly variation of air temperature, as well as the trend in precipitation, more reasonably than the RCM dynamical downscaling method.(3) The RCM dynamical downscaling method performs better than the VFRGCM in terms of the climatology and inter-monthly variation of precipitation. Overall,the results suggest that VFRGCMs possess great potential with regard to their application in climate simulation in the future,and the RCM dynamical downscaling method is still dominant in terms of regional precipitation simulation. 展开更多
关键词 climate simulation dynamical downscaling GCM RCM
下载PDF
The Statistical Significance Test of Regional Climate Change Caused by Land Use and Land Cover Variation in West China 被引量:2
18
作者 王汉杰 施伟来 陈晓红 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第3期355-364,共10页
The West Development Policy being implemented in China is causing significant land use and land cover (LULC) changes in West China. With the up-to-date satellite database of the Global Land Cover Characteristics Dat... The West Development Policy being implemented in China is causing significant land use and land cover (LULC) changes in West China. With the up-to-date satellite database of the Global Land Cover Characteristics Database (GLCCD) that characterizes the lower boundary conditions, the regional climate model RIEMS-TEA is used to simulate possible impacts of the significant LULC variation. The model was run for five continuous three-month periods from 1 June to 1 September of 1993, 1994, 1995, 1996, and 1997, and the results of the five groups are examined by means of a student t-test to identify the statistical significance of regional climate variation. The main results are: (1) The regional climate is affected by the LULC variation because the equilibrium of water and heat transfer in the air-vegetation interface is changed. (2) The integrated impact of the LULC variation on regional climate is not only limited to West China where the LULC varies, but also to some areas in the model domain where the LULC does not vary at all. (3) The East Asian monsoon system and its vertical structure are adjusted by the large scale LULC variation in western China, where the consequences are the enhancement of the westward water vapor transfer from the east oast and the relevant increase of wet-hydrostatic energy in the middle-upper atmospheric layers. (4) The ecological engineering in West China affects significantly the regional climate in Northwest China, North China and the middle-lower reaches of the Yangtze River; there are obvious effects in South, Northeast, and Southwest China, but minor effects in Tibet. 展开更多
关键词 West Development Policy of China LULC variation regional climate simulation statistical t-test East Asian monsoon
下载PDF
Effect of Implementing Ecosystem Functional Type Data in a Mesoscale Climate Model
19
作者 Seung-Jae LEE E. Hugo BERBERY Domingo ALCARAZ-SEGURA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第5期1373-1386,共14页
In this paper, we introduce a new concept of land-surface state representation for southern South America, which is based on "functional" attributes of vegetation, and implement a new land-cover (Ecosystem Function... In this paper, we introduce a new concept of land-surface state representation for southern South America, which is based on "functional" attributes of vegetation, and implement a new land-cover (Ecosystem Functional Type, hereafter EFT) dataset in the Weather and Research Forecasting (WRF) model. We found that the EFT data enabled us to deal with functional attributes of vegetation and time-variant features more easily than the default land-cover data in the WRF. In order to explore the usefulness of the EFT data in simulations of surface and atmospheric variables, numerical simulations of the WRF model, using both the US Geological Survey (USGS) and the EFT data, were conducted over the La Plata Basin in South America for the austral spring of 1998 and compared with observations. Results showed that the model simulations were sensitive to the lower boundary conditions and that the use of the EFT data improved the climate simulation of 2-m temperature and precipitation, implying the need for this type of information to be included in numerical climate models. 展开更多
关键词 Ecosystem Functional Type WRF land cover climate simulation
下载PDF
Intercomparison of Precipitation Simulated by Regional Climate Models over East Asia in 1997 and 1998
20
作者 Dong-Kyou LEE William J.GUTOWSKI +1 位作者 Hyun-Suk KANG Chun-Ji KIM 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第4期539-554,共16页
Regional climate simulations in Asia from May 1997 to August 1998 were performed using the Seoul National University regional climate model (SNURCM) and Iowa State University regional climate model (ALT.MM5/LSM), ... Regional climate simulations in Asia from May 1997 to August 1998 were performed using the Seoul National University regional climate model (SNURCM) and Iowa State University regional climate model (ALT.MM5/LSM), which were developed by coupling the NCAR/Land Surface Model (LSM) and the Mesoscale Model (MM5). However, for physical processes of precipitation, the SNURCM used the Grell scheme for the convective parameterization scheme (CPS) and the simple ice scheme for the explicit moisture scheme (EMS), while the ALT.MM5/LSM used the Betts-Miller scheme for CPS and the mixed phase scheme for EMS.The simulated precipitation patterns and amounts over East Asia for the extreme climatic summer in 1997 (relative drought conditions) and 1998 (relative flood conditions) were especially focused upon. The ALT.MM5/LSM simulated more precipitation than was observed in 1997 due to more moisture and cloud water in the lower levels, despite weak upward motion. In the SNURCM, strong upward motion resulted in more precipitation than that was observed in 1998, with more moisture and cloud water in the middle levels. In the ALT.MM5/LSM, weak upward motion, unchanged moisture in the lower troposphere, and the decrease in latent heat flux at the surface increased convective precipitation only by 3% for the 1998 summer event. In the SNURCM, strong upward motion, the increase in moisture in the lower troposphere, and the increase in latent heat flux at the surface increased convective precipitation by 48% for the summer of 1998. The main differences between both simulations were moisture availability and horizontal momentum transport in the lower troposphere, which were also strongly influenced by large-scale forcing. 展开更多
关键词 regional climate simulation summer precipitation variability extreme climatic event physical process
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部