[Objective] The aim was to clone CBF3 gene from Arabidopsis thaliana and construct plant expression vector pCAMBIA1301-Rd29A-CBF3.[Method] CBF3 gene and stress-inducible promoter Rd29A were amplified from the genomic ...[Objective] The aim was to clone CBF3 gene from Arabidopsis thaliana and construct plant expression vector pCAMBIA1301-Rd29A-CBF3.[Method] CBF3 gene and stress-inducible promoter Rd29A were amplified from the genomic DNA of A.thaliana for the construction of plant expression vector.[Result] Sequencing results showed that the cloned CBF3 gene had 750 bp,and showed 100% identity with the sequence published on GenBank.The promoter Rd29A had 1 425 bp,and showed 100% identity with the sequence published on GenBank.[Conclusion] Based on the binary vector pCAMBIA1301,the plant expression vector pCAMBIA1301-Rd29A-CBF3 was constructed successfully,which could materially improve the salt resistance,drought-tolerance,cold resistance of plants.展开更多
A full-length cDNA sequence of xyloglucan endotransglycosylase gene (XET), abundantly expressed in the cambium of Anthocephalus chinensis was cloned by conserved PCR, rapid-amplification of cDNA ends and by chromoso...A full-length cDNA sequence of xyloglucan endotransglycosylase gene (XET), abundantly expressed in the cambium of Anthocephalus chinensis was cloned by conserved PCR, rapid-amplification of cDNA ends and by chromosome walking. Analytical results of the DNA sequence show that a 912 bp complete open reading frame (ORF) encoded a 303-amino acid protein was in the 1205 bp full cDNA sequence. The deduced amino acid sequence of AcXET, which contained the conserved specific EIDFE catalytic site sequence to XETs was homologous to the other known XET proteins. In order to study the gene function of AcXET and obtain transgenic plants, a plant expression vector pBIAcXET was constructed by recombinating the AcXET fragment from the cloning vector pMD19AcXET and the binary vector pBI121 between the XbaI and SmaI sites. The fragment ofAcXET gene was inserted between the CaMV 35S promotor and the coding region of the GUS gene in pBI121. The identification results show that the plant expression binary vector pBIAcXET was constructed successfully. These results lay the foundation for studying the molecular mechanism ofAcXET gene during wood formation.展开更多
To clone the murine α fetoprotein (AFP) gene, construct the eukaryotic expression vector of AFP and express in CHO cells, total RNA were extracted from Hepa 1 6 cells, and then the murine α fetoprotein gene was a...To clone the murine α fetoprotein (AFP) gene, construct the eukaryotic expression vector of AFP and express in CHO cells, total RNA were extracted from Hepa 1 6 cells, and then the murine α fetoprotein gene was amplified by RT PCR and cloned into the eukaryotic expression vector pcDNA3.1. The recombinant of vector was identified by restriction enzyme analysis and sequencing. After transient transfection of CHO cells with the vector, Western blotting was used to detect the expression of AFP. It is concluded that the 1.8kb murine α fetoprotein gene was successfully cloned and its eukaryotic expression vector was successfully constructed.展开更多
Objective: To facilitate manipulation of gene expression in different host cells, we used pEGFP-N1 as backbone to construct a versatile vector that can drive foreign gene expression in prokaryotic and eukaryotic cell...Objective: To facilitate manipulation of gene expression in different host cells, we used pEGFP-N1 as backbone to construct a versatile vector that can drive foreign gene expression in prokaryotic and eukaryotic cells. Methods: A cloning and expression vector, pEGFP-NI-lac, was constructed by inserting the prokaryotic lac promoter of pUC 19 into the eukaryotic expression vector, pEGFP-N1, between the eukaryotic PCMV promoter and enhanced green fluorescent protein (EGFP) open reading frames. To assess the function of pEGFP-NI-lac, the nucleotide sequence encoding the hepatitis C virus (HCV) core protein was cloned into the multiple cloning sites. Western blotting analysis was used to detect the expression of the HCV core protein in Escherichia coli DH5a and HepG2 cells. Results: Restriction enzyme digestion and sequence analysis indicated that pEGFP-NI-lac was successfully constructed and the HCV core gene was cloned into this vector. The Western blotting results showed that pEGFP-NI-lac promoted expression of HCV core gene in prokaryotic E. coli DH5a and eukaryotic HepG2 cells. Conclusion: The pEGFP-NI-lac vector has been successfully constructed and functions in both prokaryotic and eukaryotic cells. The EGFP reporter can be used as an insert-inactivation marker for clone selection or as an expression tag. This vector can be used for cloning and expression of genes in both prokaryotic and eukaryotic cells, making gene cloning, expression and functional studies convenient as well as time- and labor-efficient展开更多
In this study, we cloned human KGF (hKGF) genes using RT-PCR techniques and developed a eukaryotic expression plasmid vector capable of directing the expression of functional hKGF. Monolayer culture of human embryo lu...In this study, we cloned human KGF (hKGF) genes using RT-PCR techniques and developed a eukaryotic expression plasmid vector capable of directing the expression of functional hKGF. Monolayer culture of human embryo lung fibro-blast (HLF) was used for isolation of total RNA. Then the total RNA was purified and reverse- transcribed into cDNA using an oligo (dT) primer. A full PCR fragment for hKGF was generated and cloned. Restriction digestion and nucleo-tide sequence analysis validated the complete hKGF transcription. The hKGF cDNA fragment was inserted into pEGFP-C2 vector by means of recombinant DNA technology and verified by restriction analysis and sequencing. We have constructed pEGFP-C2-hKGF encoding the green fluorescent protein (GFP). Furthermore, hKGF had the effect on AEC II proliferation. These results suggest that the potential appli-cation of a hKGF plasmid of gene expression should be useful for sustained AEC proliferation, and its in vivo efficacy needs to be validated. Keywords:展开更多
BACKGROUND: The proliferation and metastasis of cancers depend on angiogenesis. This property provides the feasibility for the treatment of cancer by inhibition of angiogenesis, and many angiogenic inhibitors have bee...BACKGROUND: The proliferation and metastasis of cancers depend on angiogenesis. This property provides the feasibility for the treatment of cancer by inhibition of angiogenesis, and many angiogenic inhibitors have been demonstrated to effectively inhibit angiogenesis and consequently the growth of solid cancer. As for the newly identified angiogenesis inhibitor, arresten, some studies have found its high activity on restrainting tumor vessel. This study was to assess the anti-angiogenic activity of arresten. METHODS: The arresten gene was obtained from a healthy puerpera's placenta tissue by the reverse transcriptase-polymerase chain reaction (RT-PCR) method, and molecular cloning to prokaryotic expression plasmid pBV220 by recombination strategy. The prokaryotic expression plasmid pBV220/arr was identified by restriction enzyme digestion and sequenced. The pBV220/arr was transformed into E. coli JM109, DH5α, BL21 and BL21 (DE3) by the CaCl_2 transformation method. The arresten expression level was detected by SDS-PAGE. The expressed product was purlfled, re-naturalized and detected for its biological activity of inhibiting the angiogenesis of chorioallantoic membrane (CAM). RESULTS: The arresten gene was cloned and pBV220/arr was constructed. The arresten expression level of protein was highly increased after pBV220/arr was transformed into E. coli BL21 (DE3). SDS-PAGE showed that the expressed arresten proteins were mainly inclusion bodies and had a molecular weight of 26 kDa. The expressed arresten protein showed evident biological activities. CONCLUSIONS: The successful construction of recombinant plasmid pBV220/arr and the effective expression in E. coil have laid a foundation for further study of its anti-angiogenic function and may pave the way for future antitumor application.展开更多
The seed-specific promoter and transit peptide were amplified and fused to the three genes phbA, phbB and phbC encoding PHB synthetic enzymes, respectively. Seed-specific expression vectors pSCB containing phbC and ph...The seed-specific promoter and transit peptide were amplified and fused to the three genes phbA, phbB and phbC encoding PHB synthetic enzymes, respectively. Seed-specific expression vectors pSCB containing phbC and phbB, and pSCAB containing phbC, phbB and phbA, were constructed by introducing the genes with promoter and peptide into the binary vector pBI101. Transgenic Brassica napus H165 were obtained by Agrobacterium-mediated transformation with these vectors. They were confirmed by PCR, Southern and RT-PCR analyses.展开更多
Cytosine deaminase gene of Escherichia coli strain H30 was cloned, and its initiation codon of ’GTG’ was mutated to ’ATG’ by PCR. Prokaryotic recombinant expression vector pBV220CD was constructed. Clone with high...Cytosine deaminase gene of Escherichia coli strain H30 was cloned, and its initiation codon of ’GTG’ was mutated to ’ATG’ by PCR. Prokaryotic recombinant expression vector pBV220CD was constructed. Clone with high enzyme activity were selected by detecting their specific activity of cytosine deaminase. 5FC(5FC, 5fluorocytosine) could induce the lethal toxicity to cells containing active CD gene. DNA sequence analysis indicated that there were 16 altered bases and 5 of them resulted in the alteration of amino acids in predicted peptide by comparing DNA sequence of the clone H30CD11 with high enzyme activity with CD gene reported in Gene Bank.展开更多
High yield,high quality,stable yield,adaptability to growth period,and modern mechanization are the basic requirements for crops in the 21st century.Soybean oleic acid is a natural unsaturated fatty acid with strong a...High yield,high quality,stable yield,adaptability to growth period,and modern mechanization are the basic requirements for crops in the 21st century.Soybean oleic acid is a natural unsaturated fatty acid with strong antioxidant properties and stability.Known as a safe fatty acid,it has the ability to successfully prevent cardiovascular and cerebrovascular disorders.Improving the fatty acid composition of soybean seeds,can not only speed up the breeding process of high-quality high-oil and high-oleic soybeans,but also have important significance in human health,and provide the possibility for the development of soybean oil as a new energy source.Hence,the aim of this study was to analyze the high oleic acid elated gene GmSAM22 in soybean.In this research the soybean oleic acid-related gene GmSAM22 was screened out by Genome-wide association analysis,a 662 bp fragment was acquired by specific PCR amplification,and the pMD18T cloning vector was linked by the use of a seamless cloning technique.Bioinformatics analysis of the signal peptide prediction,subcellular localization,protein hydrophobicity,transmembrane region analysis,a phosphorylation site,protein secondary and tertiary structure and protein interaction analysis of the protein encoded by the SAM22 gene was carried out.The plasmid of the gene editing vector is pBK041.The overexpression vector was transformed from pCAMBIA3301 as the base vector,and overexpression vector were designed.Positive plants were obtained by genetic transformation by the pollen tube channel method.Fluorescence quantitative PCR was performed on the T2 generation plants to detect the relative expression levels in different tissues.Southern Blot was used to detect the presence of hybridization signal.Screening genes BAR,35S,and NOS in plants were identified by conventional PCR.10 seeds with high and low oleic acid content were chosen for quantitative PCR identification,and finally,the concentration and morphology of soybean fatty acids were identified by nearfar infrared spectroscopy.On 10 seeds with an upper and lower oleic acid content,a quantitative fluorescence analysis was done.In Southern blot hybridization,the SAM22 gene was integrated into the recipient soybean plant in hands of a sole copy.Fluorescence quantitative PCR appeared that the average relative expression of the SAM22 gene in roots,stems,leaves,and seeds was 1.70,1.67,3.83,and 4.41,respectively.Positive expression seeds had a 4.77%increase in oleic acid content.The level of oleic acid in the altered seeds was reduced by 4.13%when compared to CK,and it was discovered that the GmSAM22 gene could be a regulatory and secondary gene that promotes the conversion of stearic acid to oleic acid in soybean.There has not been a discussion of gene cloning or functional verification.The cloning and genetic transformation of the soybean SAM22 gene can effectively increase the content of oleic acid,which lays a foundation for the study of soybean with high oleic acid.展开更多
Plant expression vectors are essential tools for gene functional analysis and molecular plant breeding.The gene of interest is transferred to the vector by molecular cloning technology.Nimble Cloning is a newly develo...Plant expression vectors are essential tools for gene functional analysis and molecular plant breeding.The gene of interest is transferred to the vector by molecular cloning technology.Nimble Cloning is a newly developed molecular cloning method with the advantages of simplicity,efficiency,and standardization.In this study,we developed a"pNC"vector system that contains 55 Nimble Cloning-compatible vectors for functional analysis of genes in plants.These vectors contain the NC frame flanked by unique adapters for one-step and standardized Nimble Cloning.We demonstrate that the pNC vectors are convenient and effective for the functional analysis of plant genes,including the study of gene ectopic expression,protein subcellular localization,protein-protein interaction,gene silencing(RNAi),virus-induced gene silencing,promoter activity,and CRISPR-Cas9-mediated genome editing.The"pNC"vector system represents a high-throughput toolkit that can facilitate the large-scale analysis of plant functional genomics.展开更多
基金Supported by Cultivation for New Varieties of Genetically Modified Organisms Technology Projects(2008ZX08001-004)Key Projects of Nanjing Xiaozhuang University(2007NXY01)Natural ScienceFoundation for Jiangsu Province Universities(08KJD180011)~~
文摘[Objective] The aim was to clone CBF3 gene from Arabidopsis thaliana and construct plant expression vector pCAMBIA1301-Rd29A-CBF3.[Method] CBF3 gene and stress-inducible promoter Rd29A were amplified from the genomic DNA of A.thaliana for the construction of plant expression vector.[Result] Sequencing results showed that the cloned CBF3 gene had 750 bp,and showed 100% identity with the sequence published on GenBank.The promoter Rd29A had 1 425 bp,and showed 100% identity with the sequence published on GenBank.[Conclusion] Based on the binary vector pCAMBIA1301,the plant expression vector pCAMBIA1301-Rd29A-CBF3 was constructed successfully,which could materially improve the salt resistance,drought-tolerance,cold resistance of plants.
基金supported by the National Natural Science Foundation of China (Grant No. 30901158)the Key Project of Chinese Ministry of Education (Grant No. 104243)
文摘A full-length cDNA sequence of xyloglucan endotransglycosylase gene (XET), abundantly expressed in the cambium of Anthocephalus chinensis was cloned by conserved PCR, rapid-amplification of cDNA ends and by chromosome walking. Analytical results of the DNA sequence show that a 912 bp complete open reading frame (ORF) encoded a 303-amino acid protein was in the 1205 bp full cDNA sequence. The deduced amino acid sequence of AcXET, which contained the conserved specific EIDFE catalytic site sequence to XETs was homologous to the other known XET proteins. In order to study the gene function of AcXET and obtain transgenic plants, a plant expression vector pBIAcXET was constructed by recombinating the AcXET fragment from the cloning vector pMD19AcXET and the binary vector pBI121 between the XbaI and SmaI sites. The fragment ofAcXET gene was inserted between the CaMV 35S promotor and the coding region of the GUS gene in pBI121. The identification results show that the plant expression binary vector pBIAcXET was constructed successfully. These results lay the foundation for studying the molecular mechanism ofAcXET gene during wood formation.
文摘To clone the murine α fetoprotein (AFP) gene, construct the eukaryotic expression vector of AFP and express in CHO cells, total RNA were extracted from Hepa 1 6 cells, and then the murine α fetoprotein gene was amplified by RT PCR and cloned into the eukaryotic expression vector pcDNA3.1. The recombinant of vector was identified by restriction enzyme analysis and sequencing. After transient transfection of CHO cells with the vector, Western blotting was used to detect the expression of AFP. It is concluded that the 1.8kb murine α fetoprotein gene was successfully cloned and its eukaryotic expression vector was successfully constructed.
基金Supported by the National High Technology Research and Development Program of China (863 Program, 2009AA02Z111)the National Natural Science Foundation of China (30872223)the Funds of the State Key Laboratory of Pathogen and Biosecurity
文摘Objective: To facilitate manipulation of gene expression in different host cells, we used pEGFP-N1 as backbone to construct a versatile vector that can drive foreign gene expression in prokaryotic and eukaryotic cells. Methods: A cloning and expression vector, pEGFP-NI-lac, was constructed by inserting the prokaryotic lac promoter of pUC 19 into the eukaryotic expression vector, pEGFP-N1, between the eukaryotic PCMV promoter and enhanced green fluorescent protein (EGFP) open reading frames. To assess the function of pEGFP-NI-lac, the nucleotide sequence encoding the hepatitis C virus (HCV) core protein was cloned into the multiple cloning sites. Western blotting analysis was used to detect the expression of the HCV core protein in Escherichia coli DH5a and HepG2 cells. Results: Restriction enzyme digestion and sequence analysis indicated that pEGFP-NI-lac was successfully constructed and the HCV core gene was cloned into this vector. The Western blotting results showed that pEGFP-NI-lac promoted expression of HCV core gene in prokaryotic E. coli DH5a and eukaryotic HepG2 cells. Conclusion: The pEGFP-NI-lac vector has been successfully constructed and functions in both prokaryotic and eukaryotic cells. The EGFP reporter can be used as an insert-inactivation marker for clone selection or as an expression tag. This vector can be used for cloning and expression of genes in both prokaryotic and eukaryotic cells, making gene cloning, expression and functional studies convenient as well as time- and labor-efficient
文摘In this study, we cloned human KGF (hKGF) genes using RT-PCR techniques and developed a eukaryotic expression plasmid vector capable of directing the expression of functional hKGF. Monolayer culture of human embryo lung fibro-blast (HLF) was used for isolation of total RNA. Then the total RNA was purified and reverse- transcribed into cDNA using an oligo (dT) primer. A full PCR fragment for hKGF was generated and cloned. Restriction digestion and nucleo-tide sequence analysis validated the complete hKGF transcription. The hKGF cDNA fragment was inserted into pEGFP-C2 vector by means of recombinant DNA technology and verified by restriction analysis and sequencing. We have constructed pEGFP-C2-hKGF encoding the green fluorescent protein (GFP). Furthermore, hKGF had the effect on AEC II proliferation. These results suggest that the potential appli-cation of a hKGF plasmid of gene expression should be useful for sustained AEC proliferation, and its in vivo efficacy needs to be validated. Keywords:
基金This work was supported by a grant from Science and Technology Fund of Shanxi Province, China (No. 042082).
文摘BACKGROUND: The proliferation and metastasis of cancers depend on angiogenesis. This property provides the feasibility for the treatment of cancer by inhibition of angiogenesis, and many angiogenic inhibitors have been demonstrated to effectively inhibit angiogenesis and consequently the growth of solid cancer. As for the newly identified angiogenesis inhibitor, arresten, some studies have found its high activity on restrainting tumor vessel. This study was to assess the anti-angiogenic activity of arresten. METHODS: The arresten gene was obtained from a healthy puerpera's placenta tissue by the reverse transcriptase-polymerase chain reaction (RT-PCR) method, and molecular cloning to prokaryotic expression plasmid pBV220 by recombination strategy. The prokaryotic expression plasmid pBV220/arr was identified by restriction enzyme digestion and sequenced. The pBV220/arr was transformed into E. coli JM109, DH5α, BL21 and BL21 (DE3) by the CaCl_2 transformation method. The arresten expression level was detected by SDS-PAGE. The expressed product was purlfled, re-naturalized and detected for its biological activity of inhibiting the angiogenesis of chorioallantoic membrane (CAM). RESULTS: The arresten gene was cloned and pBV220/arr was constructed. The arresten expression level of protein was highly increased after pBV220/arr was transformed into E. coli BL21 (DE3). SDS-PAGE showed that the expressed arresten proteins were mainly inclusion bodies and had a molecular weight of 26 kDa. The expressed arresten protein showed evident biological activities. CONCLUSIONS: The successful construction of recombinant plasmid pBV220/arr and the effective expression in E. coil have laid a foundation for further study of its anti-angiogenic function and may pave the way for future antitumor application.
文摘The seed-specific promoter and transit peptide were amplified and fused to the three genes phbA, phbB and phbC encoding PHB synthetic enzymes, respectively. Seed-specific expression vectors pSCB containing phbC and phbB, and pSCAB containing phbC, phbB and phbA, were constructed by introducing the genes with promoter and peptide into the binary vector pBI101. Transgenic Brassica napus H165 were obtained by Agrobacterium-mediated transformation with these vectors. They were confirmed by PCR, Southern and RT-PCR analyses.
文摘Cytosine deaminase gene of Escherichia coli strain H30 was cloned, and its initiation codon of ’GTG’ was mutated to ’ATG’ by PCR. Prokaryotic recombinant expression vector pBV220CD was constructed. Clone with high enzyme activity were selected by detecting their specific activity of cytosine deaminase. 5FC(5FC, 5fluorocytosine) could induce the lethal toxicity to cells containing active CD gene. DNA sequence analysis indicated that there were 16 altered bases and 5 of them resulted in the alteration of amino acids in predicted peptide by comparing DNA sequence of the clone H30CD11 with high enzyme activity with CD gene reported in Gene Bank.
基金funded by the National Major Special Project for Breeding New Varieties of Genetically Modified Organisms(2016ZX08004-004)National Natural Science Foundation of China(31771817).
文摘High yield,high quality,stable yield,adaptability to growth period,and modern mechanization are the basic requirements for crops in the 21st century.Soybean oleic acid is a natural unsaturated fatty acid with strong antioxidant properties and stability.Known as a safe fatty acid,it has the ability to successfully prevent cardiovascular and cerebrovascular disorders.Improving the fatty acid composition of soybean seeds,can not only speed up the breeding process of high-quality high-oil and high-oleic soybeans,but also have important significance in human health,and provide the possibility for the development of soybean oil as a new energy source.Hence,the aim of this study was to analyze the high oleic acid elated gene GmSAM22 in soybean.In this research the soybean oleic acid-related gene GmSAM22 was screened out by Genome-wide association analysis,a 662 bp fragment was acquired by specific PCR amplification,and the pMD18T cloning vector was linked by the use of a seamless cloning technique.Bioinformatics analysis of the signal peptide prediction,subcellular localization,protein hydrophobicity,transmembrane region analysis,a phosphorylation site,protein secondary and tertiary structure and protein interaction analysis of the protein encoded by the SAM22 gene was carried out.The plasmid of the gene editing vector is pBK041.The overexpression vector was transformed from pCAMBIA3301 as the base vector,and overexpression vector were designed.Positive plants were obtained by genetic transformation by the pollen tube channel method.Fluorescence quantitative PCR was performed on the T2 generation plants to detect the relative expression levels in different tissues.Southern Blot was used to detect the presence of hybridization signal.Screening genes BAR,35S,and NOS in plants were identified by conventional PCR.10 seeds with high and low oleic acid content were chosen for quantitative PCR identification,and finally,the concentration and morphology of soybean fatty acids were identified by nearfar infrared spectroscopy.On 10 seeds with an upper and lower oleic acid content,a quantitative fluorescence analysis was done.In Southern blot hybridization,the SAM22 gene was integrated into the recipient soybean plant in hands of a sole copy.Fluorescence quantitative PCR appeared that the average relative expression of the SAM22 gene in roots,stems,leaves,and seeds was 1.70,1.67,3.83,and 4.41,respectively.Positive expression seeds had a 4.77%increase in oleic acid content.The level of oleic acid in the altered seeds was reduced by 4.13%when compared to CK,and it was discovered that the GmSAM22 gene could be a regulatory and secondary gene that promotes the conversion of stearic acid to oleic acid in soybean.There has not been a discussion of gene cloning or functional verification.The cloning and genetic transformation of the soybean SAM22 gene can effectively increase the content of oleic acid,which lays a foundation for the study of soybean with high oleic acid.
基金the Hainan Provincial Natural Science Foundation of China(320RC706 and 322RC760)the Central Public-interest Scientific Institution Basal Research Fund(no.1630052022004).
文摘Plant expression vectors are essential tools for gene functional analysis and molecular plant breeding.The gene of interest is transferred to the vector by molecular cloning technology.Nimble Cloning is a newly developed molecular cloning method with the advantages of simplicity,efficiency,and standardization.In this study,we developed a"pNC"vector system that contains 55 Nimble Cloning-compatible vectors for functional analysis of genes in plants.These vectors contain the NC frame flanked by unique adapters for one-step and standardized Nimble Cloning.We demonstrate that the pNC vectors are convenient and effective for the functional analysis of plant genes,including the study of gene ectopic expression,protein subcellular localization,protein-protein interaction,gene silencing(RNAi),virus-induced gene silencing,promoter activity,and CRISPR-Cas9-mediated genome editing.The"pNC"vector system represents a high-throughput toolkit that can facilitate the large-scale analysis of plant functional genomics.