In this paper, a scheme of close-loop feedback is proposed to induce transition of spiral pattern in the excitable media, which is described with the modified FitzHugh-Nagumo model. The numerical simulation results co...In this paper, a scheme of close-loop feedback is proposed to induce transition of spiral pattern in the excitable media, which is described with the modified FitzHugh-Nagumo model. The numerical simulation results confirm that the stable rotating spiral wave is removed and the whole media becomes homogeneous when appropriate intensity of feedback is used no matter whether the coupling feedback is imposed on the whole media or the sites in one line in the media.展开更多
In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communic...In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communication,and computing modules to support various requirements of robots.In the task process,different modules assist the robots to perform tasks in a closed-loop way,which is referred to as a sensing-communication-computing-control(SC3)loop.In this work,we investigate a UAV-aided system containing multiple SC^(3)loops,which leverages non-orthogonal multiple access(NOMA)for efficient resource sharing.We describe and compare three different modelling levels for the SC^(3)loop.Based on the entropy SC^(3)loop model,a sum linear quadratic regulator(LQR)control cost minimization problem is formulated by optimizing the communication power.Further for the assure-to-be-stable case,we show that the original problem can be approximated by a modified user fairness problem,and accordingly gain more insights into the optimal solutions.Simulation results demonstrate the performance gain of using NOMA in such task-oriented systems,as well as the superiority of our proposed closed-loop-oriented design.展开更多
A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of contro...A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.展开更多
The existing kinematic parameter calibration method cannot further improve the absolute positioning accuracy of the robot due to the uncertainty of positioning error caused by robot joint backlash.In view of this prob...The existing kinematic parameter calibration method cannot further improve the absolute positioning accuracy of the robot due to the uncertainty of positioning error caused by robot joint backlash.In view of this problem,a closed‑loop feedback accuracy compensation method for robot joints was proposed.Firstly,a Chebyshev polynomial error estimation model was established which took geometric error and non‑geometric error into account.In addition,the absolute linear grating scale was installed at each joint of the robot and the positioning error of the robot end was mapped to the joint angle.And the joint angle corrected value was obtained.Furthermore,the closed‑loop feedback of robot joints was established to realize the online correction of the positioning error.Finally,an experiment on the KUKA KR210 industrial robot was conducted to demonstrate the effectiveness of the method.The result shows that the maximum absolute positioning error of the robot is reduced by 75%from 0.76 mm to 0.19 mm.This method can compensate the robot joint backlash effectively and further improve the absolute positioning accuracy of the robot.展开更多
A four-level atomic system with a closed interaction loop connected by two coherent driving fields and a microwave field is investigated. The results show that inversionless gain can be achieved on a higher frequency ...A four-level atomic system with a closed interaction loop connected by two coherent driving fields and a microwave field is investigated. The results show that inversionless gain can be achieved on a higher frequency transition outside the closed interaction loop, and the gain behaviour can be modulated by the phase of the closed loop as well as the amplitude of the microwave field. The phase sensitivity property in such a scheme is similar to that in an analogous configuration with spontaneously generated coherence, but it is beyond the rigorous condition of near-degenerate levels with non-orthogonal dipole moments. Therefore this scheme is much more convenient in experimental realization.展开更多
This paper presents an experimental study including visualization on a flat plate closed loop pulsating heat pipes.It consists of a total of 40 channels with square cross section(2 mm×2 mm,165 mm long) machined d...This paper presents an experimental study including visualization on a flat plate closed loop pulsating heat pipes.It consists of a total of 40 channels with square cross section(2 mm×2 mm,165 mm long) machined directly on an aluminum plate(180 mm×120 mm×3 mm) covered by a transparent plate.The working fluid employed is ethanol.As a result,various flow patterns and their transitions are observed and found to be related to the fluid fill ratio,input heat load and the device orientation.Also the operational characteristics and working mechanism are discussed.展开更多
Objective: To evaluate the efficiency of an implanted chip system for the control of heart rate (HR). Methods: The HR was recorded in six conscious Sprague-Dawley (SD) rats. An implanted chip system was designed...Objective: To evaluate the efficiency of an implanted chip system for the control of heart rate (HR). Methods: The HR was recorded in six conscious Sprague-Dawley (SD) rats. An implanted chip system was designed to regulate the HR by stimulating the right cervical vagus nerve according to the feedback of real time HR. Each rat was subjected to 30-min regulation and 30-min recovery. The change of HR during the regulation period was compared with the control. The ECG was recorded during the experiment for 24 h. Results: The ECG signals were successfully recorded during the experiment. The HR was significantly decreased during the period of regulation compared with control (-79.3 ± 34.5, P 〈 0.01, n = 6) and then recovered to normal after regulation. Conclusion: The described implanted chip system can regulate the HR to a designated set point.展开更多
Using ethanol or acetone as the working fluid, visualization of oscillations in steady state was observed visually by high-speed cameras, and temperature oscillating and heat transfer characteristics of closed-loop pl...Using ethanol or acetone as the working fluid, visualization of oscillations in steady state was observed visually by high-speed cameras, and temperature oscillating and heat transfer characteristics of closed-loop plate oscillating heat pipe with parallel channels(POHP-PC) were experimentally investigated by varying liquid filled ratios(50%, 70%, 85%), section scales(1 mm×1 mm and 1 mm×1.5 mm), inclination angles, working fluids and heating inputs. It was found that during operating there was mixed flow consisting of plug flow and annular flow in channels of oscillating heat pipe at steady-state. There was an equilibrium position for working fluid of condenser during oscillating, and periodic oscillations occurred up and down in the vicinity of equilibrium position. With heat input increasing, equilibrium position rose slowly as a result of vapor pressure of evaporation.Evaporation temperature oscillating amplitude possessed a trend of small-large-small and frequency trend was of small-large during steady-state. It may be generally concluded that temperature, whether evaporator or condenser, fluctuated sharply or rose continuously when oscillating heat pipe coming to dry burning state. Simultaneously, it was found that temperature difference of cooling water possibly dropped with heat input rising during dry burning state. Thermal resistance of No. 2 with acetone was lower than that of No. 1 during experiments, but No. 2 achieving heat transfer limit was earlier than No. 1. However, with ethanol, thermal resistance of No. 1 and No. 2 were similar with the heating input less than 110-120 W and filling ratios of 50% and 70%. And with filling ratio of 85%, heating transfer performance of No. 2 was better compared to No. 1 during all the experiments.展开更多
The closed loop control model was built up for compensating the springback and enhancing the work piece precision.A coupled closed loop algorithm and a finite element method were developed to simulate and correct the ...The closed loop control model was built up for compensating the springback and enhancing the work piece precision.A coupled closed loop algorithm and a finite element method were developed to simulate and correct the springback of incremental sheet forming.A three-dimensional finite element model was established for simulation of springback in incremental sheet forming process.The closed loop algorithm of trajectory profile for the incremental sheet forming based on the wavelet transform combined with fast Fourier transform was constructed.The profile of processing tool path of shallow dishing with spherical surface was designed on the basis of the profile correction algorithm.The result shows that the algorithm can predict an ideal profile of processing track,and the springback error of incremental sheet forming is eliminated effectively.It has good convergence efficiency,and can improve the workpiece dimensional accuracy greatly.展开更多
This paper presents an experimental study on a flat plate closed loop pulsating heat pipes. It consisted of total 40 channels with square cross section (2 × 2 mm^2, 165 mm long) machined directly on an aluminum...This paper presents an experimental study on a flat plate closed loop pulsating heat pipes. It consisted of total 40 channels with square cross section (2 × 2 mm^2, 165 mm long) machined directly on an aluminum plate(180×120×3 nm^2), which was covered by a transparent plate. The working fluid employed was ethanol. As the results, the influence parameters of thermal performance were investigated, such as filling ratio, heat load and operational orientations etc. Filling ratio was found to be a critical parameter, and its effect was rather complicated. According to its values the PHP plate could have four distinct working zones with different operational characteristics and heat transfer performance. The effect of heat load on thermal performance was found to be positive, and in general, iucrcasing the heat load would improve heat transfer performance. In order to analyze the effect of gravity on thermal performance, three different heat modes and total seven tilt angles were tested and compared. Successful operation at all orientations with respect to gravity was also achieved.展开更多
An open-plus-closed-loop (OPCL) control problem for the chaotic motion of a 3D rigid pendulum subjected to a constant gravitationM force is studied. The 3D rigid pendulum is assumed to be consist of a rigid body sup...An open-plus-closed-loop (OPCL) control problem for the chaotic motion of a 3D rigid pendulum subjected to a constant gravitationM force is studied. The 3D rigid pendulum is assumed to be consist of a rigid body supported by a fixed and frictionless pivot with three rotational degrees. In order to avoid the singular phenomenon of Euler's angular velocity equation, the quaternion kinematic equation is used to describe the motion of the 3D rigid pendulum. An OPCL controller for chaotic motion of a 3D rigid pendulum at equilibrium position is designed. This OPCL controller contains two parts: the open-loop part to construct an ideal trajectory and the closed-loop part to stabilize the 3D rigid pendulum. Simulation results show that the controller is effective and efficient.展开更多
To improve the penetrating ability and the welding quality of keyhole plasma arc welding, a novel penetration closed loop control system was established. In the system, welding current and plasma gas flow rate were se...To improve the penetrating ability and the welding quality of keyhole plasma arc welding, a novel penetration closed loop control system was established. In the system, welding current and plasma gas flow rate were selected as adjusting variables. The wavelet method was used to detect penetration status from welding arc voltage in real time. The control strategy of one keyhole per pulse was adapted to fulfill stable and high quality welding process. Experimental results show that the developed system can apparently increase the penetrating force of plasma arc and keyhole plasma arc welding is realized successfully in stainless steel with 10 mm in thickness. Moreover, the disturbances of gradual change and break change from 3 mm to 6 mm in thickness are come over due to the good response property of the developed system.展开更多
Goal oriented( GO) methodology is a kind of success oriented system reliability analysis method and has been used widely.The repairable system with dual input closed-loop feedback link( DICLFL) considering shutdown co...Goal oriented( GO) methodology is a kind of success oriented system reliability analysis method and has been used widely.The repairable system with dual input closed-loop feedback link( DICLFL) considering shutdown correlation didn't make reliability analysis accurately based on existing GO methodology. So, a reliability analysis method used to deal with DICLFL considering shutdown correlation is provided based on GO methodology.Firstly, a new operator, which is used to describe DICLFL considering shutdown correlation,whose number is 1,is created and named as Type 9C operator. And then,the formulas of type 9C operator are derived based on Markov process theory. Finally,the new method presented in this paper is adopted to conduct the reliability analysis of an electro-hydraulic servo speed control system. The analysis result is compared with those of Monte Carlo simulation and fault tree analysis( FTA). The comparison results show that this new reliability analysis method based on GO methodology is feasible and meaningful for reliability analysis of repairable systems with DICLFL considering shutdown correlation.Meantime,it will be useful for more other applications.展开更多
The closed-loop reservoir management technique enables a dynamic and real-time optimal production schedule under the existing reservoir conditions to be achieved by adjusting the injection and production strategies. T...The closed-loop reservoir management technique enables a dynamic and real-time optimal production schedule under the existing reservoir conditions to be achieved by adjusting the injection and production strategies. This is one of the most effective ways to exploit limited oil reserves more economically and efficiently. There are two steps in closed-loop reservoir management: automatic history matching and reservoir production opti- mization. Both of the steps are large-scale complicated optimization problems. This paper gives a general review of the two basic techniques in closed-loop reservoir man- agement; summarizes the applications of gradient-based algorithms, gradient-free algorithms, and artificial intelligence algorithms; analyzes the characteristics and application conditions of these optimization methods; and finally discusses the emphases and directions of future research on both automatic history matching and reservoir production optimization.展开更多
Fuel cells and electrolysis are promising candidates for future energy production from renewable energy sources. Usually, polymer electrolyte fuel cell systems run on hydrogen and air, while the most of electrolysis s...Fuel cells and electrolysis are promising candidates for future energy production from renewable energy sources. Usually, polymer electrolyte fuel cell systems run on hydrogen and air, while the most of electrolysis systems vent out oxygen as unused by-product. Replacing air with pure oxygen, fuel cell electrochemical performance, durability and system efficiency can be significantly increased with a further overall system simplification and increased reliability. This work, which represents the initial step for pure H;/O;polymer electrolyte fuel cell operation in closed-loop systems, focuses on performance validation of a single cell operating with pure H;/O;under different relative humidity(RH) levels, reactants stoichiometry conditions and temperature. As a result of this study, the most convenient and appropriate operative conditions for a polymer electrolyte fuel cell stack integrated in a closed loop system were selected.展开更多
The noise of closed loop micro-electromechanical systems(MEMS) capacitive accelerometer is treated as one of the significant performance specifications.Traditional optimization of noise performance often focuses on de...The noise of closed loop micro-electromechanical systems(MEMS) capacitive accelerometer is treated as one of the significant performance specifications.Traditional optimization of noise performance often focuses on designing large capacitive sensitivity accelerometer and applying closed loop structure to shape total noise,but different noise sources in closed loop and their behaviors at low frequencies are seldom carefully studied,especially their behaviors with different electronic parameters.In this work,a thorough noise analysis is established focusing on the four noise sources transfer functions near 0 Hz with simplified electronic parameters in closed loop,and it is found that the total electronic noise equivalent acceleration varies differently at different frequency points,such that the noise spectrum shape at low frequencies can be altered from 1/f noise-like shape to flat spectrum shape.The bias instability changes as a consequence.With appropriate parameters settings,the 670 Hz resonant frequency accelerometer can reach resolution of 2.6 μg/(Hz)1/2 at 2 Hz and 6 μg bias instability,and 1300 Hz accelerometer can achieve 5μg/(Hz)1/2 at 2 Hz and 31 μg bias instability.Both accelerometers have flat spectrum profile from 2 Hz to 15 Hz.展开更多
A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of ind...A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.展开更多
Recently novel mechanisms with compact size and without many mechanical elements such as bearing are strongly required for medical devices such as surgical operation devices. This paper describes analysis and synthesi...Recently novel mechanisms with compact size and without many mechanical elements such as bearing are strongly required for medical devices such as surgical operation devices. This paper describes analysis and synthesis of elastic link mechanisms of a single spring beam which can be manufactured by NC coiling machines. These mechanisms are expected as disposable micro forceps. Smooth Curvature Model(SCM) with 3rd order Legendre polynomial curvature functions is applied to calculate large deformation of a curved cantilever beam by taking account of the balance between external and internal elastic forces and moments. SCM is then extended to analyze large deformation of a closed-loop curved elastic beam which is composed of multiple free curved beams. A closed-loop elastic link is divided into two free curved cantilever beams each of which is assumed as serially connected free curved cantilever beams described with SCM. The sets of coefficients of Legendre polynomials of SCM in all free curved cantilever beams are determined by taking account of the force and moment balance at connecting point where external input force is applied. The sets of coefficients of Legendre polynomials of a nonleaded closed-loop elastic link are optimized to design a link mechanism which can generate specified output motion due to input force applied at the assumed dividing point. For example, two planar micro grippers with a single pulling input force are analyzed and designed. The elastic deformation analyzed with proposed method agrees very well with that calculated with FEM. The designed micro gripper can generate the desired pinching motion. The proposed method can contribute to design compact and simple elastic mechanisms without high calculation costs.展开更多
基金National Natural Science Foundation of China under Grant Nos.10747005 and 10602020Natural Science Foundation of the Education Department of Jiangsu Province of China under Grant No.08KJD110018
文摘In this paper, a scheme of close-loop feedback is proposed to induce transition of spiral pattern in the excitable media, which is described with the modified FitzHugh-Nagumo model. The numerical simulation results confirm that the stable rotating spiral wave is removed and the whole media becomes homogeneous when appropriate intensity of feedback is used no matter whether the coupling feedback is imposed on the whole media or the sites in one line in the media.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFA0711301in part by the National Natural Science Foundation of China under Grant 62341110, Grant U22A2002, and Grant 62025110in part by the Suzhou Science and Technology Project
文摘In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communication,and computing modules to support various requirements of robots.In the task process,different modules assist the robots to perform tasks in a closed-loop way,which is referred to as a sensing-communication-computing-control(SC3)loop.In this work,we investigate a UAV-aided system containing multiple SC^(3)loops,which leverages non-orthogonal multiple access(NOMA)for efficient resource sharing.We describe and compare three different modelling levels for the SC^(3)loop.Based on the entropy SC^(3)loop model,a sum linear quadratic regulator(LQR)control cost minimization problem is formulated by optimizing the communication power.Further for the assure-to-be-stable case,we show that the original problem can be approximated by a modified user fairness problem,and accordingly gain more insights into the optimal solutions.Simulation results demonstrate the performance gain of using NOMA in such task-oriented systems,as well as the superiority of our proposed closed-loop-oriented design.
基金supported by the National Natural Science Foundation of China(11272027)
文摘A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(Nos.51875287, 52075250)the Special Fund for Transformation of Scientific,and Technological Achievements of Jiangsu Province(No.BA2018053)
文摘The existing kinematic parameter calibration method cannot further improve the absolute positioning accuracy of the robot due to the uncertainty of positioning error caused by robot joint backlash.In view of this problem,a closed‑loop feedback accuracy compensation method for robot joints was proposed.Firstly,a Chebyshev polynomial error estimation model was established which took geometric error and non‑geometric error into account.In addition,the absolute linear grating scale was installed at each joint of the robot and the positioning error of the robot end was mapped to the joint angle.And the joint angle corrected value was obtained.Furthermore,the closed‑loop feedback of robot joints was established to realize the online correction of the positioning error.Finally,an experiment on the KUKA KR210 industrial robot was conducted to demonstrate the effectiveness of the method.The result shows that the maximum absolute positioning error of the robot is reduced by 75%from 0.76 mm to 0.19 mm.This method can compensate the robot joint backlash effectively and further improve the absolute positioning accuracy of the robot.
基金Project supported by the Natural Science Foundation of Guangdong Province (Grant No 05301018), the Research and Development Fund of Shenzhen University, China (Grant No 200549), and the National Natural Science Foundation of China (Grant Nos 10334010 and 10404009).
文摘A four-level atomic system with a closed interaction loop connected by two coherent driving fields and a microwave field is investigated. The results show that inversionless gain can be achieved on a higher frequency transition outside the closed interaction loop, and the gain behaviour can be modulated by the phase of the closed loop as well as the amplitude of the microwave field. The phase sensitivity property in such a scheme is similar to that in an analogous configuration with spontaneously generated coherence, but it is beyond the rigorous condition of near-degenerate levels with non-orthogonal dipole moments. Therefore this scheme is much more convenient in experimental realization.
基金the Ger man National Science Foundation (GR-412/33-2)Shanghai Leading Academic Discipline Project (No.B604)
文摘This paper presents an experimental study including visualization on a flat plate closed loop pulsating heat pipes.It consists of a total of 40 channels with square cross section(2 mm×2 mm,165 mm long) machined directly on an aluminum plate(180 mm×120 mm×3 mm) covered by a transparent plate.The working fluid employed is ethanol.As a result,various flow patterns and their transitions are observed and found to be related to the fluid fill ratio,input heat load and the device orientation.Also the operational characteristics and working mechanism are discussed.
基金supported by grant from National Nature Science Found (30670767)
文摘Objective: To evaluate the efficiency of an implanted chip system for the control of heart rate (HR). Methods: The HR was recorded in six conscious Sprague-Dawley (SD) rats. An implanted chip system was designed to regulate the HR by stimulating the right cervical vagus nerve according to the feedback of real time HR. Each rat was subjected to 30-min regulation and 30-min recovery. The change of HR during the regulation period was compared with the control. The ECG was recorded during the experiment for 24 h. Results: The ECG signals were successfully recorded during the experiment. The HR was significantly decreased during the period of regulation compared with control (-79.3 ± 34.5, P 〈 0.01, n = 6) and then recovered to normal after regulation. Conclusion: The described implanted chip system can regulate the HR to a designated set point.
基金Project(51306198)supported by the National Natural Science Foundation of ChinaProject(NR2013K07)supported by Beijing Key Lab of Heating,Gas Supply,Ventilating and Air Conditioning Engineering,China+1 种基金Project(331614013)supported by Beijing University of Civil Engineering and Architecture,ChinaProject(00921915023)supported by Organization Department of Beijing,China
文摘Using ethanol or acetone as the working fluid, visualization of oscillations in steady state was observed visually by high-speed cameras, and temperature oscillating and heat transfer characteristics of closed-loop plate oscillating heat pipe with parallel channels(POHP-PC) were experimentally investigated by varying liquid filled ratios(50%, 70%, 85%), section scales(1 mm×1 mm and 1 mm×1.5 mm), inclination angles, working fluids and heating inputs. It was found that during operating there was mixed flow consisting of plug flow and annular flow in channels of oscillating heat pipe at steady-state. There was an equilibrium position for working fluid of condenser during oscillating, and periodic oscillations occurred up and down in the vicinity of equilibrium position. With heat input increasing, equilibrium position rose slowly as a result of vapor pressure of evaporation.Evaporation temperature oscillating amplitude possessed a trend of small-large-small and frequency trend was of small-large during steady-state. It may be generally concluded that temperature, whether evaporator or condenser, fluctuated sharply or rose continuously when oscillating heat pipe coming to dry burning state. Simultaneously, it was found that temperature difference of cooling water possibly dropped with heat input rising during dry burning state. Thermal resistance of No. 2 with acetone was lower than that of No. 1 during experiments, but No. 2 achieving heat transfer limit was earlier than No. 1. However, with ethanol, thermal resistance of No. 1 and No. 2 were similar with the heating input less than 110-120 W and filling ratios of 50% and 70%. And with filling ratio of 85%, heating transfer performance of No. 2 was better compared to No. 1 during all the experiments.
基金Project(50175034) supported by the National Natural Science Foundation of China
文摘The closed loop control model was built up for compensating the springback and enhancing the work piece precision.A coupled closed loop algorithm and a finite element method were developed to simulate and correct the springback of incremental sheet forming.A three-dimensional finite element model was established for simulation of springback in incremental sheet forming process.The closed loop algorithm of trajectory profile for the incremental sheet forming based on the wavelet transform combined with fast Fourier transform was constructed.The profile of processing tool path of shallow dishing with spherical surface was designed on the basis of the profile correction algorithm.The result shows that the algorithm can predict an ideal profile of processing track,and the springback error of incremental sheet forming is eliminated effectively.It has good convergence efficiency,and can improve the workpiece dimensional accuracy greatly.
基金Supported by the Ger man National Science Foundation (DFG)(No. GR412/33)
文摘This paper presents an experimental study on a flat plate closed loop pulsating heat pipes. It consisted of total 40 channels with square cross section (2 × 2 mm^2, 165 mm long) machined directly on an aluminum plate(180×120×3 nm^2), which was covered by a transparent plate. The working fluid employed was ethanol. As the results, the influence parameters of thermal performance were investigated, such as filling ratio, heat load and operational orientations etc. Filling ratio was found to be a critical parameter, and its effect was rather complicated. According to its values the PHP plate could have four distinct working zones with different operational characteristics and heat transfer performance. The effect of heat load on thermal performance was found to be positive, and in general, iucrcasing the heat load would improve heat transfer performance. In order to analyze the effect of gravity on thermal performance, three different heat modes and total seven tilt angles were tested and compared. Successful operation at all orientations with respect to gravity was also achieved.
基金supported by the National Natural Science Foundation of China(No.11072038)the Municipal Key Programs of Natural Science Foundation of Beijing(No.KZ201110772039)
文摘An open-plus-closed-loop (OPCL) control problem for the chaotic motion of a 3D rigid pendulum subjected to a constant gravitationM force is studied. The 3D rigid pendulum is assumed to be consist of a rigid body supported by a fixed and frictionless pivot with three rotational degrees. In order to avoid the singular phenomenon of Euler's angular velocity equation, the quaternion kinematic equation is used to describe the motion of the 3D rigid pendulum. An OPCL controller for chaotic motion of a 3D rigid pendulum at equilibrium position is designed. This OPCL controller contains two parts: the open-loop part to construct an ideal trajectory and the closed-loop part to stabilize the 3D rigid pendulum. Simulation results show that the controller is effective and efficient.
文摘To improve the penetrating ability and the welding quality of keyhole plasma arc welding, a novel penetration closed loop control system was established. In the system, welding current and plasma gas flow rate were selected as adjusting variables. The wavelet method was used to detect penetration status from welding arc voltage in real time. The control strategy of one keyhole per pulse was adapted to fulfill stable and high quality welding process. Experimental results show that the developed system can apparently increase the penetrating force of plasma arc and keyhole plasma arc welding is realized successfully in stainless steel with 10 mm in thickness. Moreover, the disturbances of gradual change and break change from 3 mm to 6 mm in thickness are come over due to the good response property of the developed system.
基金Technical Basis Projects of China's MIIT(Nos.ZQ092012B003,2012090003)
文摘Goal oriented( GO) methodology is a kind of success oriented system reliability analysis method and has been used widely.The repairable system with dual input closed-loop feedback link( DICLFL) considering shutdown correlation didn't make reliability analysis accurately based on existing GO methodology. So, a reliability analysis method used to deal with DICLFL considering shutdown correlation is provided based on GO methodology.Firstly, a new operator, which is used to describe DICLFL considering shutdown correlation,whose number is 1,is created and named as Type 9C operator. And then,the formulas of type 9C operator are derived based on Markov process theory. Finally,the new method presented in this paper is adopted to conduct the reliability analysis of an electro-hydraulic servo speed control system. The analysis result is compared with those of Monte Carlo simulation and fault tree analysis( FTA). The comparison results show that this new reliability analysis method based on GO methodology is feasible and meaningful for reliability analysis of repairable systems with DICLFL considering shutdown correlation.Meantime,it will be useful for more other applications.
基金the Important National Science & Technology Specific Projects of China (Grant No. 2011ZX05024-004)the Natural Science Foundation for Distinguished Young Scholars of Shandong Province, China (Grant No. JQ201115)+2 种基金the Program for New Century Excellent Talents in University (Grant No. NCET-11-0734)the Fundamental Research Funds for the Central Universities (Grant No. 13CX05007A, 13CX05016A)the Program for Changjiang Scholars and Innovative Research Team in University (IRT1294)
文摘The closed-loop reservoir management technique enables a dynamic and real-time optimal production schedule under the existing reservoir conditions to be achieved by adjusting the injection and production strategies. This is one of the most effective ways to exploit limited oil reserves more economically and efficiently. There are two steps in closed-loop reservoir management: automatic history matching and reservoir production opti- mization. Both of the steps are large-scale complicated optimization problems. This paper gives a general review of the two basic techniques in closed-loop reservoir man- agement; summarizes the applications of gradient-based algorithms, gradient-free algorithms, and artificial intelligence algorithms; analyzes the characteristics and application conditions of these optimization methods; and finally discusses the emphases and directions of future research on both automatic history matching and reservoir production optimization.
文摘Fuel cells and electrolysis are promising candidates for future energy production from renewable energy sources. Usually, polymer electrolyte fuel cell systems run on hydrogen and air, while the most of electrolysis systems vent out oxygen as unused by-product. Replacing air with pure oxygen, fuel cell electrochemical performance, durability and system efficiency can be significantly increased with a further overall system simplification and increased reliability. This work, which represents the initial step for pure H;/O;polymer electrolyte fuel cell operation in closed-loop systems, focuses on performance validation of a single cell operating with pure H;/O;under different relative humidity(RH) levels, reactants stoichiometry conditions and temperature. As a result of this study, the most convenient and appropriate operative conditions for a polymer electrolyte fuel cell stack integrated in a closed loop system were selected.
基金Project(61404122)supported by the National Natural Science Foundation of China
文摘The noise of closed loop micro-electromechanical systems(MEMS) capacitive accelerometer is treated as one of the significant performance specifications.Traditional optimization of noise performance often focuses on designing large capacitive sensitivity accelerometer and applying closed loop structure to shape total noise,but different noise sources in closed loop and their behaviors at low frequencies are seldom carefully studied,especially their behaviors with different electronic parameters.In this work,a thorough noise analysis is established focusing on the four noise sources transfer functions near 0 Hz with simplified electronic parameters in closed loop,and it is found that the total electronic noise equivalent acceleration varies differently at different frequency points,such that the noise spectrum shape at low frequencies can be altered from 1/f noise-like shape to flat spectrum shape.The bias instability changes as a consequence.With appropriate parameters settings,the 670 Hz resonant frequency accelerometer can reach resolution of 2.6 μg/(Hz)1/2 at 2 Hz and 6 μg bias instability,and 1300 Hz accelerometer can achieve 5μg/(Hz)1/2 at 2 Hz and 31 μg bias instability.Both accelerometers have flat spectrum profile from 2 Hz to 15 Hz.
文摘A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.
文摘Recently novel mechanisms with compact size and without many mechanical elements such as bearing are strongly required for medical devices such as surgical operation devices. This paper describes analysis and synthesis of elastic link mechanisms of a single spring beam which can be manufactured by NC coiling machines. These mechanisms are expected as disposable micro forceps. Smooth Curvature Model(SCM) with 3rd order Legendre polynomial curvature functions is applied to calculate large deformation of a curved cantilever beam by taking account of the balance between external and internal elastic forces and moments. SCM is then extended to analyze large deformation of a closed-loop curved elastic beam which is composed of multiple free curved beams. A closed-loop elastic link is divided into two free curved cantilever beams each of which is assumed as serially connected free curved cantilever beams described with SCM. The sets of coefficients of Legendre polynomials of SCM in all free curved cantilever beams are determined by taking account of the force and moment balance at connecting point where external input force is applied. The sets of coefficients of Legendre polynomials of a nonleaded closed-loop elastic link are optimized to design a link mechanism which can generate specified output motion due to input force applied at the assumed dividing point. For example, two planar micro grippers with a single pulling input force are analyzed and designed. The elastic deformation analyzed with proposed method agrees very well with that calculated with FEM. The designed micro gripper can generate the desired pinching motion. The proposed method can contribute to design compact and simple elastic mechanisms without high calculation costs.