This study introduced a two-stage cultivation method for sweet pepper seedlings, integrating the strengths of a closed plant factory and solar greenhouse, to mitigate the environmental constraints in Northeast China d...This study introduced a two-stage cultivation method for sweet pepper seedlings, integrating the strengths of a closed plant factory and solar greenhouse, to mitigate the environmental constraints in Northeast China during the early spring season. In the first stage, seedlings were cultivated in a closed plant factory, followed by a second stage in a solar greenhouse. Four treatments- T1 (9 and 36 d), T2 (12 and 33 d), T3 (15 and 30 d), and T4 (18 and 27 d) - were designed for the first and second stages, respectively, with solar greenhouse-only approach serving as the control (CK). The findings reveal that the two-stage methodology significantly outperformed the control across multiple metrics, including seedling health index, chlorophyll content, photosynthetic capacity, yield, etc. Specifically, T3 emerged as optimal, boosting the health index by 38.59%, elevating chlorophyll content by 39.61%, increasing net photosynthesis by 34.61%, and augmenting yield per plant by 40.67%. Additionally, T3 expedited the time to harvest by 25 d compared to the control. Although the seedling cost for T3 was 0.12 RMB yuan higher, the benefits offset the additional investment. In conclusion, the two-stage cultivation method effectively leverages the advantages of both closed-plant factories and solar greenhouses, resulting in superior seedling quality compared to using only solar greenhouses. It offers a practical and economically viable solution for enhancing the quality and yield of sweet pepper seedlings, thus contributing to the progress in the field of facility seedling cultivation research.展开更多
The cultivated area of jujube in Xinjiang has increased rapidly in recent years.While the jujube harvest by hand has the shortage of high labor intensity,low efficiency and high labor cost,in addition,the harvesting m...The cultivated area of jujube in Xinjiang has increased rapidly in recent years.While the jujube harvest by hand has the shortage of high labor intensity,low efficiency and high labor cost,in addition,the harvesting machinery applying to dwarf and dense planting mode of jujubes is unavailable in Xinjiang.The 4ZZ-4A2 based on the full-hydraulic self-propelled jujube harvester was designed to solve the above problems.The harvester was mainly composed of a frame,a vibrating device,a jujube collecting and conveying device,an air separation device,a steering system,a hydraulic system and a jujube suction device and was capable of completing vibration,collection,conveying,cleaning and sundries removal work of jujubes through one step.The jujubes dropped on the ground were picked up at the same time.The AMESim simulation software was adopted to perform simulation analysis on the overall hydraulic system.The results showed that the speed of the vibrating motor was stable at about 650 r/min(the corresponding vibration frequency is 10.83 Hz)with the torque of 80 N·m,the speed of the conveyor motor was stable at 77 r/min with the torque of 77 N·m;the speed of the fan motor was stable at 54 r/min with the torque of 53.6 N·m;the speed of the walking motor fluctuated around 100 r/min with the torque of about 1000 N·m;the hydraulic steering system responded rapidly and could satisfy the actual working requirements of the jujube harvester.The jujube garden test results showed that the harvester could reach to the optimum harvesting effect when running at the speed of 0.5 m/s.Under such speed,the ground jujube picking rate was 45.1%,the tree jujube harvesting rate was 93.2%,the loss rate was 2.9%,and the damage rate was 0.9%.This study can provide theoretical basis and technical support for the jujube harvester.展开更多
基金supported by the China Agricultural Research System of MOF and MARA (Grant No.CARS-24-G-05)Jilin Province Science and Technology Development Plan Talent Special Project (Grant No.232695HJ0101110676).
文摘This study introduced a two-stage cultivation method for sweet pepper seedlings, integrating the strengths of a closed plant factory and solar greenhouse, to mitigate the environmental constraints in Northeast China during the early spring season. In the first stage, seedlings were cultivated in a closed plant factory, followed by a second stage in a solar greenhouse. Four treatments- T1 (9 and 36 d), T2 (12 and 33 d), T3 (15 and 30 d), and T4 (18 and 27 d) - were designed for the first and second stages, respectively, with solar greenhouse-only approach serving as the control (CK). The findings reveal that the two-stage methodology significantly outperformed the control across multiple metrics, including seedling health index, chlorophyll content, photosynthetic capacity, yield, etc. Specifically, T3 emerged as optimal, boosting the health index by 38.59%, elevating chlorophyll content by 39.61%, increasing net photosynthesis by 34.61%, and augmenting yield per plant by 40.67%. Additionally, T3 expedited the time to harvest by 25 d compared to the control. Although the seedling cost for T3 was 0.12 RMB yuan higher, the benefits offset the additional investment. In conclusion, the two-stage cultivation method effectively leverages the advantages of both closed-plant factories and solar greenhouses, resulting in superior seedling quality compared to using only solar greenhouses. It offers a practical and economically viable solution for enhancing the quality and yield of sweet pepper seedlings, thus contributing to the progress in the field of facility seedling cultivation research.
基金Thanks the National Natural Science Foundation of China-Based on Self-excited Vibration and Force Compensation Theory Jujube Vibration Recovery Mechanism Research(51365049)National Key Research and Development Plan-Jujube Harvesting Technical Equipment and Development(2016YFD0701504)for supporting the project,and Xinjiang Production&Construction Corps major scientific research projects:The optimization and pilot test of self-propelled harvester of dwarf and close planting jujube(2013AA001-3).
文摘The cultivated area of jujube in Xinjiang has increased rapidly in recent years.While the jujube harvest by hand has the shortage of high labor intensity,low efficiency and high labor cost,in addition,the harvesting machinery applying to dwarf and dense planting mode of jujubes is unavailable in Xinjiang.The 4ZZ-4A2 based on the full-hydraulic self-propelled jujube harvester was designed to solve the above problems.The harvester was mainly composed of a frame,a vibrating device,a jujube collecting and conveying device,an air separation device,a steering system,a hydraulic system and a jujube suction device and was capable of completing vibration,collection,conveying,cleaning and sundries removal work of jujubes through one step.The jujubes dropped on the ground were picked up at the same time.The AMESim simulation software was adopted to perform simulation analysis on the overall hydraulic system.The results showed that the speed of the vibrating motor was stable at about 650 r/min(the corresponding vibration frequency is 10.83 Hz)with the torque of 80 N·m,the speed of the conveyor motor was stable at 77 r/min with the torque of 77 N·m;the speed of the fan motor was stable at 54 r/min with the torque of 53.6 N·m;the speed of the walking motor fluctuated around 100 r/min with the torque of about 1000 N·m;the hydraulic steering system responded rapidly and could satisfy the actual working requirements of the jujube harvester.The jujube garden test results showed that the harvester could reach to the optimum harvesting effect when running at the speed of 0.5 m/s.Under such speed,the ground jujube picking rate was 45.1%,the tree jujube harvesting rate was 93.2%,the loss rate was 2.9%,and the damage rate was 0.9%.This study can provide theoretical basis and technical support for the jujube harvester.