In this paper,we prove existence results of soutions for the nonlinear implicit complementarity problems NICP(T,S,K) where K is a closed weakly locally compact convex cone in a reflexive Banach space E,T is a nonlinea...In this paper,we prove existence results of soutions for the nonlinear implicit complementarity problems NICP(T,S,K) where K is a closed weakly locally compact convex cone in a reflexive Banach space E,T is a nonlinear operator from K into E* (i. e.,the dual space of E) and S is a nonlinear operator from K into E. Our results are the essential improvements and extension of the results obtained previously by several authors including Thera,Ding,and Zeng.展开更多
In this paper we study the connection between the metric projection operator PK : B →K, where B is a reflexive Banach space with dual space B^* and K is a non-empty closed convex subset of B, and the generalized pr...In this paper we study the connection between the metric projection operator PK : B →K, where B is a reflexive Banach space with dual space B^* and K is a non-empty closed convex subset of B, and the generalized projection operators ∏K : B → K and πK : B^* → K. We also present some results in non-reflexive Banach spaces.展开更多
文摘In this paper,we prove existence results of soutions for the nonlinear implicit complementarity problems NICP(T,S,K) where K is a closed weakly locally compact convex cone in a reflexive Banach space E,T is a nonlinear operator from K into E* (i. e.,the dual space of E) and S is a nonlinear operator from K into E. Our results are the essential improvements and extension of the results obtained previously by several authors including Thera,Ding,and Zeng.
文摘In this paper we study the connection between the metric projection operator PK : B →K, where B is a reflexive Banach space with dual space B^* and K is a non-empty closed convex subset of B, and the generalized projection operators ∏K : B → K and πK : B^* → K. We also present some results in non-reflexive Banach spaces.