In order to solve the linear variable differential transformer (LVDT) displacement sensor nonlinearity of overall range and extend its working range, a novel line-element based adaptively seg- menting method for pie...In order to solve the linear variable differential transformer (LVDT) displacement sensor nonlinearity of overall range and extend its working range, a novel line-element based adaptively seg- menting method for piecewise compensating correction was proposed. According to the mechanical structure of LVDT, the output equation was calculated, and then the theoretic nonlinear source of output was analyzed. By the proposed line-element adaptive segmentation method, the nonlinear output of LVDT was divided into linear and nonlinear regions with a given threshold. Then the com- pensating correction function was designed for nonlinear parts employing polynomial regression tech- nique. The simulation of LVDT validates the feasibility of proposed scheme, and the results of cali- bration and testing experiments fully prove that the proposed method has higher accuracy than the state-of-art correction algorithms.展开更多
It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the ...It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the linear control is realized by the dynamic inverse nonlinear controlling theory and the three-time-scale separation method.The control ability and the simulation results are also tested and verified.The results show that the output responses of system track the expected curve well and the error is controlled in a given margin.The maximum correction is about±314 m in the lengthwise direction and±1 212 m in the crosswise direction from the moment of 5 s to the drop-point time when the angle of fire is 55°.Thus,based on the dynamic inverse control of feedback linearization,the trajectory correction capability of nose cone swinging can satisfy the requirements of two-dimensional ballistic correction,and the validity and effectiveness of the method are proved.展开更多
We discuss estimates for the rate of convergence of the method of successive subspace corrections in terms of condition number estimate for the method of parallel subspace corrections.We provide upper bounds and in a ...We discuss estimates for the rate of convergence of the method of successive subspace corrections in terms of condition number estimate for the method of parallel subspace corrections.We provide upper bounds and in a special case,a lower bound for preconditioners defined via the method of successive subspace corrections.展开更多
Several thousands of chemical substances are registered every year for different purposes, and sometimes many of them are claimed to play the same role. To establish and compare their toxicities, the determination of ...Several thousands of chemical substances are registered every year for different purposes, and sometimes many of them are claimed to play the same role. To establish and compare their toxicities, the determination of the lethal concentrations is usually necessary and should account for natural mortality. However, many of the statistical software packages used for that purpose do not readily integrate control mortality or adjust the best link function to the data during the process. This manuscript proposes an "lc" function in the R open source that aims at the effective determination of lethal concentrations. Furthermore, it performs the procedure with the appropriate link function. The "lc" application on the example provided revealed that the complementary log link function is adequate.展开更多
To solve the flight safety problem caused by nonlinear instabilities(category II pilot induced oscillations, PIOs) of the closed-loop pilot-vehicle system with rate-limiting actuator, the antiwindup(AW) compensati...To solve the flight safety problem caused by nonlinear instabilities(category II pilot induced oscillations, PIOs) of the closed-loop pilot-vehicle system with rate-limiting actuator, the antiwindup(AW) compensation method to avoid category II PIOs is investigated. Firstly, the AW compensation method originally used for controlling input magnitude limited system is introduced, then this method is extended for controlling input rate-limiting system through a circle criterion theorem. Secondly, the establishment of the AW compensator is transformed into the solving of linear matrix inequalities. Finally, an AW compensator establishment algorithm for the closed-loop pilot-vehicle system with the rate-limiting actuator is obtained. The effectiveness of the AW compensation method to avoid category II PIOs is validated by time-domain simulations,and compared with rate-limited feedback(RLF) command rate compensation method. The results show that the AW compensation method can effectively suppress category II PIOs and maintain the nominal performance when the closed-loop pilot-vehicle system is normal. Unlike the command rate compensator which works upon system uninterruptedly, the AW compensation method affects the closed-loop pilot-vehicle system only when the rate-limiting of actuator is activated, so it is a novel PIO avoidance method.展开更多
Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple the...Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.展开更多
Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust l...Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust localization method that integrates kernel density estimation(KDE)with damping linear correction to enhance the precision of microseismic/acoustic emission(MS/AE)source positioning.Our approach systematically addresses abnormal arrival times through a three-step process:initial location by 4-arrival combinations,elimination of outliers based on three-dimensional KDE,and refinement using a linear correction with an adaptive damping factor.We validate our method through lead-breaking experiments,demonstrating over a 23%improvement in positioning accuracy with a maximum error of 9.12 mm(relative error of 15.80%)—outperforming 4 existing methods.Simulations under various system errors,outlier scales,and ratios substantiate our method’s superior performance.Field blasting experiments also confirm the practical applicability,with an average positioning error of 11.71 m(relative error of 7.59%),compared to 23.56,66.09,16.95,and 28.52 m for other methods.This research is significant as it enhances the robustness of MS/AE source localization when confronted with data anomalies.It also provides a practical solution for real-world engineering and safety monitoring applications.展开更多
基金Supported by National High Technology Research and Development Program of China("863" Program)(2011AA041002)
文摘In order to solve the linear variable differential transformer (LVDT) displacement sensor nonlinearity of overall range and extend its working range, a novel line-element based adaptively seg- menting method for piecewise compensating correction was proposed. According to the mechanical structure of LVDT, the output equation was calculated, and then the theoretic nonlinear source of output was analyzed. By the proposed line-element adaptive segmentation method, the nonlinear output of LVDT was divided into linear and nonlinear regions with a given threshold. Then the com- pensating correction function was designed for nonlinear parts employing polynomial regression tech- nique. The simulation of LVDT validates the feasibility of proposed scheme, and the results of cali- bration and testing experiments fully prove that the proposed method has higher accuracy than the state-of-art correction algorithms.
基金Project(9140A05030109HK01)supported by Equipment Pre-research Foundation,China
文摘It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the linear control is realized by the dynamic inverse nonlinear controlling theory and the three-time-scale separation method.The control ability and the simulation results are also tested and verified.The results show that the output responses of system track the expected curve well and the error is controlled in a given margin.The maximum correction is about±314 m in the lengthwise direction and±1 212 m in the crosswise direction from the moment of 5 s to the drop-point time when the angle of fire is 55°.Thus,based on the dynamic inverse control of feedback linearization,the trajectory correction capability of nose cone swinging can satisfy the requirements of two-dimensional ballistic correction,and the validity and effectiveness of the method are proved.
文摘We discuss estimates for the rate of convergence of the method of successive subspace corrections in terms of condition number estimate for the method of parallel subspace corrections.We provide upper bounds and in a special case,a lower bound for preconditioners defined via the method of successive subspace corrections.
文摘Several thousands of chemical substances are registered every year for different purposes, and sometimes many of them are claimed to play the same role. To establish and compare their toxicities, the determination of the lethal concentrations is usually necessary and should account for natural mortality. However, many of the statistical software packages used for that purpose do not readily integrate control mortality or adjust the best link function to the data during the process. This manuscript proposes an "lc" function in the R open source that aims at the effective determination of lethal concentrations. Furthermore, it performs the procedure with the appropriate link function. The "lc" application on the example provided revealed that the complementary log link function is adequate.
基金supported by the National Basic Research Program(973Program)(2015CB755805)the National Natural Science Foundation of China(61374145)
文摘To solve the flight safety problem caused by nonlinear instabilities(category II pilot induced oscillations, PIOs) of the closed-loop pilot-vehicle system with rate-limiting actuator, the antiwindup(AW) compensation method to avoid category II PIOs is investigated. Firstly, the AW compensation method originally used for controlling input magnitude limited system is introduced, then this method is extended for controlling input rate-limiting system through a circle criterion theorem. Secondly, the establishment of the AW compensator is transformed into the solving of linear matrix inequalities. Finally, an AW compensator establishment algorithm for the closed-loop pilot-vehicle system with the rate-limiting actuator is obtained. The effectiveness of the AW compensation method to avoid category II PIOs is validated by time-domain simulations,and compared with rate-limited feedback(RLF) command rate compensation method. The results show that the AW compensation method can effectively suppress category II PIOs and maintain the nominal performance when the closed-loop pilot-vehicle system is normal. Unlike the command rate compensator which works upon system uninterruptedly, the AW compensation method affects the closed-loop pilot-vehicle system only when the rate-limiting of actuator is activated, so it is a novel PIO avoidance method.
基金supported by the NSFC Grant no.12271492the Natural Science Foundation of Henan Province of China Grant no.222300420550+1 种基金supported by the NSFC Grant no.12271498the National Key R&D Program of China Grant no.2022YFA1005202/2022YFA1005200.
文摘Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.
基金the financial support provided by the National Key Research and Development Program for Young Scientists(No.2021YFC2900400)Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(CPSF)(No.GZB20230914)+2 种基金National Natural Science Foundation of China(No.52304123)China Postdoctoral Science Foundation(No.2023M730412)Chongqing Outstanding Youth Science Foundation Program(No.CSTB2023NSCQ-JQX0027).
文摘Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust localization method that integrates kernel density estimation(KDE)with damping linear correction to enhance the precision of microseismic/acoustic emission(MS/AE)source positioning.Our approach systematically addresses abnormal arrival times through a three-step process:initial location by 4-arrival combinations,elimination of outliers based on three-dimensional KDE,and refinement using a linear correction with an adaptive damping factor.We validate our method through lead-breaking experiments,demonstrating over a 23%improvement in positioning accuracy with a maximum error of 9.12 mm(relative error of 15.80%)—outperforming 4 existing methods.Simulations under various system errors,outlier scales,and ratios substantiate our method’s superior performance.Field blasting experiments also confirm the practical applicability,with an average positioning error of 11.71 m(relative error of 7.59%),compared to 23.56,66.09,16.95,and 28.52 m for other methods.This research is significant as it enhances the robustness of MS/AE source localization when confronted with data anomalies.It also provides a practical solution for real-world engineering and safety monitoring applications.