期刊文献+
共找到18,878篇文章
< 1 2 250 >
每页显示 20 50 100
MCWOA Scheduler:Modified Chimp-Whale Optimization Algorithm for Task Scheduling in Cloud Computing 被引量:1
1
作者 Chirag Chandrashekar Pradeep Krishnadoss +1 位作者 Vijayakumar Kedalu Poornachary Balasundaram Ananthakrishnan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2593-2616,共24页
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ... Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO). 展开更多
关键词 cloud computing SCHEDULING chimp optimization algorithm whale optimization algorithm
下载PDF
Hybrid Approach for Cost Efficient Application Placement in Fog-Cloud Computing Environments
2
作者 Abdulelah Alwabel Chinmaya Kumar Swain 《Computers, Materials & Continua》 SCIE EI 2024年第6期4127-4148,共22页
Fog computing has recently developed as a new paradigm with the aim of addressing time-sensitive applications better than with cloud computing by placing and processing tasks in close proximity to the data sources.How... Fog computing has recently developed as a new paradigm with the aim of addressing time-sensitive applications better than with cloud computing by placing and processing tasks in close proximity to the data sources.However,the majority of the fog nodes in this environment are geographically scattered with resources that are limited in terms of capabilities compared to cloud nodes,thus making the application placement problem more complex than that in cloud computing.An approach for cost-efficient application placement in fog-cloud computing environments that combines the benefits of both fog and cloud computing to optimize the placement of applications and services while minimizing costs.This approach is particularly relevant in scenarios where latency,resource constraints,and cost considerations are crucial factors for the deployment of applications.In this study,we propose a hybrid approach that combines a genetic algorithm(GA)with the Flamingo Search Algorithm(FSA)to place application modules while minimizing cost.We consider four cost-types for application deployment:Computation,communication,energy consumption,and violations.The proposed hybrid approach is called GA-FSA and is designed to place the application modules considering the deadline of the application and deploy them appropriately to fog or cloud nodes to curtail the overall cost of the system.An extensive simulation is conducted to assess the performance of the proposed approach compared to other state-of-the-art approaches.The results demonstrate that GA-FSA approach is superior to the other approaches with respect to task guarantee ratio(TGR)and total cost. 展开更多
关键词 Placement mechanism application module placement fog computing cloud computing genetic algorithm flamingo search algorithm
下载PDF
Performance Comparison of Hyper-V and KVM for Cryptographic Tasks in Cloud Computing
3
作者 Nader Abdel Karim Osama A.Khashan +4 位作者 Waleed K.Abdulraheem Moutaz Alazab Hasan Kanaker Mahmoud E.Farfoura Mohammad Alshinwan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2023-2045,共23页
As the extensive use of cloud computing raises questions about the security of any personal data stored there,cryptography is being used more frequently as a security tool to protect data confidentiality and privacy i... As the extensive use of cloud computing raises questions about the security of any personal data stored there,cryptography is being used more frequently as a security tool to protect data confidentiality and privacy in the cloud environment.A hypervisor is a virtualization software used in cloud hosting to divide and allocate resources on various pieces of hardware.The choice of hypervisor can significantly impact the performance of cryptographic operations in the cloud environment.An important issue that must be carefully examined is that no hypervisor is completely superior in terms of performance;Each hypervisor should be examined to meet specific needs.The main objective of this study is to provide accurate results to compare the performance of Hyper-V and Kernel-based Virtual Machine(KVM)while implementing different cryptographic algorithms to guide cloud service providers and end users in choosing the most suitable hypervisor for their cryptographic needs.This study evaluated the efficiency of two hypervisors,Hyper-V and KVM,in implementing six cryptographic algorithms:Rivest,Shamir,Adleman(RSA),Advanced Encryption Standard(AES),Triple Data Encryption Standard(TripleDES),Carlisle Adams and Stafford Tavares(CAST-128),BLOWFISH,and TwoFish.The study’s findings show that KVM outperforms Hyper-V,with 12.2%less Central Processing Unit(CPU)use and 12.95%less time overall for encryption and decryption operations with various file sizes.The study’s findings emphasize how crucial it is to pick a hypervisor that is appropriate for cryptographic needs in a cloud environment,which could assist both cloud service providers and end users.Future research may focus more on how various hypervisors perform while handling cryptographic workloads. 展开更多
关键词 cloud computing performance VIRTUALIZATION hypervisors HYPER-V KVM cryptographic algorithm
下载PDF
Hybrid Prairie Dog and Beluga Whale Optimization Algorithm for Multi-Objective Load Balanced-Task Scheduling in Cloud Computing Environments
4
作者 K Ramya Senthilselvi Ayothi 《China Communications》 SCIE CSCD 2024年第7期307-324,共18页
The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource pr... The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource provisioning,but the necessitated constraints of rapid turnaround time,minimal execution cost,high rate of resource utilization and limited makespan transforms the Load Balancing(LB)process-based Task Scheduling(TS)problem into an NP-hard optimization issue.In this paper,Hybrid Prairie Dog and Beluga Whale Optimization Algorithm(HPDBWOA)is propounded for precise mapping of tasks to virtual machines with the due objective of addressing the dynamic nature of cloud environment.This capability of HPDBWOA helps in decreasing the SLA violations and Makespan with optimal resource management.It is modelled as a scheduling strategy which utilizes the merits of PDOA and BWOA for attaining reactive decisions making with respect to the process of assigning the tasks to virtual resources by considering their priorities into account.It addresses the problem of pre-convergence with wellbalanced exploration and exploitation to attain necessitated Quality of Service(QoS)for minimizing the waiting time incurred during TS process.It further balanced exploration and exploitation rates for reducing the makespan during the task allocation with complete awareness of VM state.The results of the proposed HPDBWOA confirmed minimized energy utilization of 32.18% and reduced cost of 28.94% better than approaches used for investigation.The statistical investigation of the proposed HPDBWOA conducted using ANOVA confirmed its efficacy over the benchmarked systems in terms of throughput,system,and response time. 展开更多
关键词 Beluga Whale Optimization Algorithm(BWOA) cloud computing Improved Hopcroft-Karp algorithm Infrastructure as a Service(IaaS) Prairie Dog Optimization Algorithm(PDOA) Virtual Machine(VM)
下载PDF
Quantum-Edge Cloud Computing for IoT: Bridging the Gap between Cloud, Edge, and Quantum Technologies
5
作者 Shahanaz Akter Md. Khairul Islam Bhuiyan +3 位作者 Md. Bahauddin Badhon Habib Md. Hasan Fatema Akter Mohammad Nahid Ul Islam 《Advances in Internet of Things》 2024年第4期99-120,共22页
The rapid expansion of the Internet of Things (IoT) has driven the need for advanced computational frameworks capable of handling the complex data processing and security challenges that modern IoT applications demand... The rapid expansion of the Internet of Things (IoT) has driven the need for advanced computational frameworks capable of handling the complex data processing and security challenges that modern IoT applications demand. However, traditional cloud computing frameworks face significant latency, scalability, and security issues. Quantum-Edge Cloud Computing (QECC) offers an innovative solution by integrating the computational power of quantum computing with the low-latency advantages of edge computing and the scalability of cloud computing resources. This study is grounded in an extensive literature review, performance improvements, and metrics data from Bangladesh, focusing on smart city infrastructure, healthcare monitoring, and the industrial IoT sector. The discussion covers vital elements, including integrating quantum cryptography to enhance data security, the critical role of edge computing in reducing response times, and cloud computing’s ability to support large-scale IoT networks with its extensive resources. Through case studies such as the application of quantum sensors in autonomous vehicles, the practical impact of QECC is demonstrated. Additionally, the paper outlines future research opportunities, including developing quantum-resistant encryption techniques and optimizing quantum algorithms for edge computing. The convergence of these technologies in QECC has the potential to overcome the current limitations of IoT frameworks, setting a new standard for future IoT applications. 展开更多
关键词 Quantum-Edge cloud computing (QECC) Internet of Things (IoT) Low Latency Quantum computing (QC) Scalable cloud Services
下载PDF
A Study on Technology Application and Performance of Small and Medium-sized Enterprises in the Context of Cloud Computing Application-A Case Study of Hotel Industry in Henan,China
6
作者 Zhang Hui Alireza Mohammadi 《Journal of Sustainable Business and Economics》 2024年第2期69-75,共7页
This paper examines how the adoption of cloud computing affects the relationship between the technical and environmental capabilities of small and medium-sized enterprises(SMEs)in the tourism industry in Henan Provinc... This paper examines how the adoption of cloud computing affects the relationship between the technical and environmental capabilities of small and medium-sized enterprises(SMEs)in the tourism industry in Henan Province,China,thereby promoting the stable and sustainable development of the tourism industry,combining the laws of tourism market development,vigorously constructing a smart tourism project,guiding tourism cloud service providers to strengthen the cooperation and contact with the market’s tourism enterprises,introducing and utilizing cloud computing technology,optimizing and improving the functions of various tourism services of the enterprises,and enhancing the processing and analysis of enterprise-related data to provide tourism information.Strengthen the processing and analysis of enterprise-related data to provide tourism information,and further study the adoption of cloud computing and its impact on small and medium-sized enterprises(SMEs)in terms of technology and business environment knowledge,so as to make the best enterprise management decisions and realize the overall enhancement of the enterprise’s tourism brand value. 展开更多
关键词 SMES cloud computing Technology Adoption Performance Henan Hotels
下载PDF
QoS-Constrained,Reliable and Energy-Efficient Task Deployment in Cloud Computing
7
作者 Zhenghui Zhang Yuqi Fan 《计算机科学与技术汇刊(中英文版)》 2024年第1期22-31,共10页
Reliability,QoS and energy consumption are three important concerns of cloud service providers.Most of the current research on reliable task deployment in cloud computing focuses on only one or two of the three concer... Reliability,QoS and energy consumption are three important concerns of cloud service providers.Most of the current research on reliable task deployment in cloud computing focuses on only one or two of the three concerns.However,these three factors have intrinsic trade-off relationships.The existing studies show that load concentration can reduce the number of servers and hence save energy.In this paper,we deal with the problem of reliable task deployment in data centers,with the goal of minimizing the number of servers used in cloud data centers under the constraint that the job execution deadline can be met upon single server failure.We propose a QoS-Constrained,Reliable and Energy-efficient task replica deployment(QSRE)algorithm for the problem by combining task replication and re-execution.For each task in a job that cannot finish executing by re-execution within deadline,we initiate two replicas for the task:main task and task replica.Each main task runs on an individual server.The associated task replica is deployed on a backup server and completes part of the whole task load before the main task failure.Different from the main tasks,multiple task replicas can be allocated to the same backup server to reduce the energy consumption of cloud data centers by minimizing the number of servers required for running the task replicas.Specifically,QSRE assigns the task replicas with the longest and the shortest execution time to the backup servers in turn,such that the task replicas can meet the QoS-specified job execution deadline under the main task failure.We conduct experiments through simulations.The experimental results show that QSRE can effectively reduce the number of servers used,while ensuring the reliability and QoS of job execution. 展开更多
关键词 cloud computing Task Deployment RELIABILITY Quality of Service Energy Consumption
下载PDF
Security Implications of Edge Computing in Cloud Networks 被引量:1
8
作者 Sina Ahmadi 《Journal of Computer and Communications》 2024年第2期26-46,共21页
Security issues in cloud networks and edge computing have become very common. This research focuses on analyzing such issues and developing the best solutions. A detailed literature review has been conducted in this r... Security issues in cloud networks and edge computing have become very common. This research focuses on analyzing such issues and developing the best solutions. A detailed literature review has been conducted in this regard. The findings have shown that many challenges are linked to edge computing, such as privacy concerns, security breaches, high costs, low efficiency, etc. Therefore, there is a need to implement proper security measures to overcome these issues. Using emerging trends, like machine learning, encryption, artificial intelligence, real-time monitoring, etc., can help mitigate security issues. They can also develop a secure and safe future in cloud computing. It was concluded that the security implications of edge computing can easily be covered with the help of new technologies and techniques. 展开更多
关键词 Edge computing cloud Networks Artificial Intelligence Machine Learning cloud Security
下载PDF
Cloud Computing: Purpose and Future
9
作者 Robb Shawe 《Journal of Software Engineering and Applications》 2024年第10期763-769,共7页
Cloud computing is the new norm within business entities as businesses try to keep up with technological advancements and user needs. The concept is defined as a computing environment allowing for remote outsourcing o... Cloud computing is the new norm within business entities as businesses try to keep up with technological advancements and user needs. The concept is defined as a computing environment allowing for remote outsourcing of storage and computing resources. A hybrid cloud environment is an excellent example of cloud computing. Specifically, the hybrid system provides organizations with increased scalability and control over their data and support for a remote workforce. However, hybrid cloud systems are expensive as organizations operate different infrastructures while introducing complexity to the organization’s activities. Data security is critical among the most vital concerns that have resulted from the use of cloud computing, thus, affecting the rate of user adoption and acceptance. This article, borrowing from the hybrid cloud computing system, recommends combining traditional and modern data security systems. Traditional data security systems have proven effective in their respective roles, with the main challenge arising from their recognition of context and connectivity. Therefore, integrating traditional and modern designs is recommended to enhance effectiveness, context, connectivity, and efficiency. 展开更多
关键词 cloud computing Hybrid cloud Private cloud Public cloud IAAS PAAS SAAS On-Premises PLATFORM Data Security Systems
下载PDF
Hybrid Hierarchical Particle Swarm Optimization with Evolutionary Artificial Bee Colony Algorithm for Task Scheduling in Cloud Computing
10
作者 Shasha Zhao Huanwen Yan +3 位作者 Qifeng Lin Xiangnan Feng He Chen Dengyin Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期1135-1156,共22页
Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the chall... Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios.In this work,the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm(HPSO-EABC)has been proposed,which hybrids our presented Evolutionary Artificial Bee Colony(EABC),and Hierarchical Particle Swarm Optimization(HPSO)algorithm.The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.Comprehensive testing including evaluations of algorithm convergence speed,resource execution time,load balancing,and operational costs has been done.The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm.Compared with the Particle Swarm Optimization algorithm,the HPSO algorithmnot only improves the global search capability but also effectively mitigates getting stuck in local optima.As a result,the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover,it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments,effectively reducing execution time and cost,which also is verified by the ablation experimental. 展开更多
关键词 cloud computing distributed processing evolutionary artificial bee colony algorithm hierarchical particle swarm optimization load balancing
下载PDF
Enhancing Cybersecurity through Cloud Computing Solutions in the United States
11
作者 Omolola F. Hassan Folorunsho O. Fatai +4 位作者 Oluwadare Aderibigbe Abdullah Oladoyin Akinde Tolulope Onasanya Mariam Adetoun Sanusi Oduwunmi Odukoya 《Intelligent Information Management》 2024年第4期176-193,共18页
This study investigates how cybersecurity can be enhanced through cloud computing solutions in the United States. The motive for this study is due to the rampant loss of data, breaches, and unauthorized access of inte... This study investigates how cybersecurity can be enhanced through cloud computing solutions in the United States. The motive for this study is due to the rampant loss of data, breaches, and unauthorized access of internet criminals in the United States. The study adopted a survey research design, collecting data from 890 cloud professionals with relevant knowledge of cybersecurity and cloud computing. A machine learning approach was adopted, specifically a random forest classifier, an ensemble, and a decision tree model. Out of the features in the data, ten important features were selected using random forest feature importance, which helps to achieve the objective of the study. The study’s purpose is to enable organizations to develop suitable techniques to prevent cybercrime using random forest predictions as they relate to cloud services in the United States. The effectiveness of the models used is evaluated by utilizing validation matrices that include recall values, accuracy, and precision, in addition to F1 scores and confusion matrices. Based on evaluation scores (accuracy, precision, recall, and F1 scores) of 81.9%, 82.6%, and 82.1%, the results demonstrated the effectiveness of the random forest model. It showed the importance of machine learning algorithms in preventing cybercrime and boosting security in the cloud environment. It recommends that other machine learning models be adopted to see how to improve cybersecurity through cloud computing. 展开更多
关键词 CYBERSECURITY cloud computing cloud Solutions Machine Learning Algorithm
下载PDF
Secure and Efficient Outsourced Computation in Cloud Computing Environments
12
作者 Varun Dixit Davinderjit Kaur 《Journal of Software Engineering and Applications》 2024年第9期750-762,共13页
Secure and efficient outsourced computation in cloud computing environments is crucial for ensuring data confidentiality, integrity, and resource optimization. In this research, we propose novel algorithms and methodo... Secure and efficient outsourced computation in cloud computing environments is crucial for ensuring data confidentiality, integrity, and resource optimization. In this research, we propose novel algorithms and methodologies to address these challenges. Through a series of experiments, we evaluate the performance, security, and efficiency of the proposed algorithms in real-world cloud environments. Our results demonstrate the effectiveness of homomorphic encryption-based secure computation, secure multiparty computation, and trusted execution environment-based approaches in mitigating security threats while ensuring efficient resource utilization. Specifically, our homomorphic encryption-based algorithm exhibits encryption times ranging from 20 to 1000 milliseconds and decryption times ranging from 25 to 1250 milliseconds for payload sizes varying from 100 KB to 5000 KB. Furthermore, our comparative analysis against state-of-the-art solutions reveals the strengths of our proposed algorithms in terms of security guarantees, encryption overhead, and communication latency. 展开更多
关键词 Secure computation cloud computing Homomorphic Encryption Secure Multiparty computation Resource Optimization
下载PDF
Systematic Review:Load Balancing in Cloud Computing by Using Metaheuristic Based Dynamic Algorithms
13
作者 Darakhshan Syed Ghulam Muhammad Safdar Rizvi 《Intelligent Automation & Soft Computing》 2024年第3期437-476,共40页
Cloud Computing has the ability to provide on-demand access to a shared resource pool.It has completely changed the way businesses are managed,implement applications,and provide services.The rise in popularity has led... Cloud Computing has the ability to provide on-demand access to a shared resource pool.It has completely changed the way businesses are managed,implement applications,and provide services.The rise in popularity has led to a significant increase in the user demand for services.However,in cloud environments efficient load balancing is essential to ensure optimal performance and resource utilization.This systematic review targets a detailed description of load balancing techniques including static and dynamic load balancing algorithms.Specifically,metaheuristic-based dynamic load balancing algorithms are identified as the optimal solution in case of increased traffic.In a cloud-based context,this paper describes load balancing measurements,including the benefits and drawbacks associated with the selected load balancing techniques.It also summarizes the algorithms based on implementation,time complexity,adaptability,associated issue(s),and targeted QoS parameters.Additionally,the analysis evaluates the tools and instruments utilized in each investigated study.Moreover,comparative analysis among static,traditional dynamic and metaheuristic algorithms based on response time by using the CloudSim simulation tool is also performed.Finally,the key open problems and potential directions for the state-of-the-art metaheuristic-based approaches are also addressed. 展开更多
关键词 cloud computing load balancing metaheuristic algorithm dynamic algorithm load balancer QOS
下载PDF
Research on the Application of Big Data and Cloud Computing Technology in Smart Campus
14
作者 Shengtao Zhou 《Journal of Electronic Research and Application》 2024年第5期6-11,共6页
The current education field is experiencing an innovation driven by big data and cloud technologies,and these advanced technologies play a central role in the construction of smart campuses.Big data technology has a w... The current education field is experiencing an innovation driven by big data and cloud technologies,and these advanced technologies play a central role in the construction of smart campuses.Big data technology has a wide range of applications in student learning behavior analysis,teaching resource management,campus safety monitoring,and decision support,which improves the quality of education and management efficiency.Cloud computing technology supports the integration,distribution,and optimal use of educational resources through cloud resource sharing,virtual classrooms,intelligent campus management systems,and Infrastructure-as-a-Service(IaaS)models,which reduce costs and increase flexibility.This paper comprehensively discusses the practical application of big data and cloud computing technologies in smart campuses,showing how these technologies can contribute to the development of smart campuses,and laying the foundation for the future innovation of education models. 展开更多
关键词 Big data cloud computing technology Smart campus APPLICATION
下载PDF
A Privacy-Based SLA Violation Detection Model for the Security of Cloud Computing 被引量:4
15
作者 Shengli Zhou Lifa Wu Canghong Jin 《China Communications》 SCIE CSCD 2017年第9期155-165,共11页
A Service Level Agreement(SLA) is a legal contract between any two parties to ensure an adequate Quality of Service(Qo S). Most research on SLAs has concentrated on protecting the user data through encryption. However... A Service Level Agreement(SLA) is a legal contract between any two parties to ensure an adequate Quality of Service(Qo S). Most research on SLAs has concentrated on protecting the user data through encryption. However, these methods can not supervise a cloud service provider(CSP) directly. In order to address this problem, we propose a privacy-based SLA violation detection model for cloud computing based on Markov decision process theory. This model can recognize and regulate CSP's actions based on specific requirements of various users. Additionally, the model could make effective evaluation to the credibility of CSP, and can monitor events that user privacy is violated. Experiments and analysis indicate that the violation detection model can achieve good results in both the algorithm's convergence and prediction effect. 展开更多
关键词 SECURITY and PRIVACY markovchain cloud computing REPUTATION manage-ment SLA
下载PDF
On the Privacy-Preserving Outsourcing Scheme of Reversible Data Hiding over Encrypted Image Data in Cloud Computing 被引量:11
16
作者 Lizhi Xiong Yunqing Shi 《Computers, Materials & Continua》 SCIE EI 2018年第6期523-539,共17页
Advanced cloud computing technology provides cost saving and flexibility of services for users.With the explosion of multimedia data,more and more data owners would outsource their personal multimedia data on the clou... Advanced cloud computing technology provides cost saving and flexibility of services for users.With the explosion of multimedia data,more and more data owners would outsource their personal multimedia data on the cloud.In the meantime,some computationally expensive tasks are also undertaken by cloud servers.However,the outsourced multimedia data and its applications may reveal the data owner’s private information because the data owners lose the control of their data.Recently,this thought has aroused new research interest on privacy-preserving reversible data hiding over outsourced multimedia data.In this paper,two reversible data hiding schemes are proposed for encrypted image data in cloud computing:reversible data hiding by homomorphic encryption and reversible data hiding in encrypted domain.The former is that additional bits are extracted after decryption and the latter is that extracted before decryption.Meanwhile,a combined scheme is also designed.This paper proposes the privacy-preserving outsourcing scheme of reversible data hiding over encrypted image data in cloud computing,which not only ensures multimedia data security without relying on the trustworthiness of cloud servers,but also guarantees that reversible data hiding can be operated over encrypted images at the different stages.Theoretical analysis confirms the correctness of the proposed encryption model and justifies the security of the proposed scheme.The computation cost of the proposed scheme is acceptable and adjusts to different security levels. 展开更多
关键词 cloud data security re-encryption reversible data hiding cloud computing privacy-preserving.
下载PDF
Energy-Optimal and Delay-Bounded Computation Offloading in Mobile Edge Computing with Heterogeneous Clouds 被引量:24
17
作者 Tianchu Zhao Sheng Zhou +3 位作者 Linqi Song Zhiyuan Jiang Xueying Guo Zhisheng Niu 《China Communications》 SCIE CSCD 2020年第5期191-210,共20页
By Mobile Edge Computing(MEC), computation-intensive tasks are offloaded from mobile devices to cloud servers, and thus the energy consumption of mobile devices can be notably reduced. In this paper, we study task off... By Mobile Edge Computing(MEC), computation-intensive tasks are offloaded from mobile devices to cloud servers, and thus the energy consumption of mobile devices can be notably reduced. In this paper, we study task offloading in multi-user MEC systems with heterogeneous clouds, including edge clouds and remote clouds. Tasks are forwarded from mobile devices to edge clouds via wireless channels, and they can be further forwarded to remote clouds via the Internet. Our objective is to minimize the total energy consumption of multiple mobile devices, subject to bounded-delay requirements of tasks. Based on dynamic programming, we propose an algorithm that minimizes the energy consumption, by jointly allocating bandwidth and computational resources to mobile devices. The algorithm is of pseudo-polynomial complexity. To further reduce the complexity, we propose an approximation algorithm with energy discretization, and its total energy consumption is proved to be within a bounded gap from the optimum. Simulation results show that, nearly 82.7% energy of mobile devices can be saved by task offloading compared with mobile device execution. 展开更多
关键词 mobile edge computing heterogeneous clouds energy saving delay bounds dynamic programming
下载PDF
Attribute-Based Access Control for Multi-Authority Systems with Constant Size Ciphertext in Cloud Computing 被引量:16
18
作者 CHEN Yanli SONG Lingling YANG Geng 《China Communications》 SCIE CSCD 2016年第2期146-162,共17页
In most existing CP-ABE schemes, there is only one authority in the system and all the public keys and private keys are issued by this authority, which incurs ciphertext size and computation costs in the encryption an... In most existing CP-ABE schemes, there is only one authority in the system and all the public keys and private keys are issued by this authority, which incurs ciphertext size and computation costs in the encryption and decryption operations that depend at least linearly on the number of attributes involved in the access policy. We propose an efficient multi-authority CP-ABE scheme in which the authorities need not interact to generate public information during the system initialization phase. Our scheme has constant ciphertext length and a constant number of pairing computations. Our scheme can be proven CPA-secure in random oracle model under the decision q-BDHE assumption. When user's attributes revocation occurs, the scheme transfers most re-encryption work to the cloud service provider, reducing the data owner's computational cost on the premise of security. Finally the analysis and simulation result show that the schemes proposed in this thesis ensure the privacy and secure access of sensitive data stored in the cloud server, and be able to cope with the dynamic changes of users' access privileges in large-scale systems. Besides, the multi-authority ABE eliminates the key escrow problem, achieves the length of ciphertext optimization and enhances the effi ciency of the encryption and decryption operations. 展开更多
关键词 cloud computing attribute-basedencryption access control multi-authority constant ciphertext length attribute revocation
下载PDF
Alliance-Authentication Protocol in Clouds Computing Environment 被引量:7
19
作者 Zhang Qikun Li Yuanzhang +1 位作者 Song Danjie Tan Yuan 《China Communications》 SCIE CSCD 2012年第7期42-54,共13页
Security has been regarded as one of the hardest problems in the development of cloud computing. This paper proposes an AllianceAuthentication protocol among Hybrid Clouds that include multiple private clouds and/or p... Security has been regarded as one of the hardest problems in the development of cloud computing. This paper proposes an AllianceAuthentication protocol among Hybrid Clouds that include multiple private clouds and/or public clouds. Mu tual authentication protocol among entities in the IntraCloud and InterCloud is proposed. Blind signature and bilinear mapping of automorphism groups are adopted to achieve the InterCloud Alli anceAuthentication, which overcome the complexi ty of certificate transmission and the problem of communication bottlenecks that happen in tradi tional certificatebased scheme. Blind key, instead of private key, is adopted for register, which avoids 展开更多
关键词 Alliance-Authentication direct product DECOMPOSITION bilinear mapping cloud computing
下载PDF
Public cloud computing for seismological research:Calculating large-scale noise cross-correlations using ALIYUN 被引量:3
20
作者 Weitao Wang Baoshan Wang Xiufen Zheng 《Earthquake Science》 CSCD 2018年第5期227-233,共7页
The amount of seismological data is rapidly increasing with accumulating observational time and increasing number of stations, requiring modern technique to provide adequate computing power. In present study, we propo... The amount of seismological data is rapidly increasing with accumulating observational time and increasing number of stations, requiring modern technique to provide adequate computing power. In present study, we proposed a framework to calculate large-scale noise crosscorrelation functions(NCFs) using public cloud service from ALIYUN. The entire computation is factorized into small pieces which are performed parallelly on specified number of virtual servers provided by the cloud. Using data from most seismic stations in China, five NCF databases are built. The results show that, comparing to the time cost using a single server, the entire time can be reduced over two orders of magnitude depending number of evoked virtual servers. This could reduce computation time from months to less than 12 hours. Based on obtained massive NCFs, the global body waves are retrieved through array interferometry and agree well with those from earthquakes. This leads to a solution to process massive seismic dataset within an affordable time and is applicable to other large-scale computing in seismological researches. 展开更多
关键词 cloud computing ambient noise CROSS-CORRELATION global body wave
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部