Tax is very important to the whole country, so a scientific tax predictive model is needed. This paper introduces the theory of the cloud model. On this basis, it presents a cloud neural network, and analyzes the main...Tax is very important to the whole country, so a scientific tax predictive model is needed. This paper introduces the theory of the cloud model. On this basis, it presents a cloud neural network, and analyzes the main factors which influence the tax revenue. Then if proposes a tax predictive model based on the cloud neural network. The model combines the strongpoints of the cloud model and the neural network. The experiment and simulation results show the effectiveness of the algorithm in this paper.展开更多
Cloud computing aims to maximize the benefit of distributed resources and aggregate them to achieve higher throughput to solve large scale computation problems. In this technology, the customers rent the resources and...Cloud computing aims to maximize the benefit of distributed resources and aggregate them to achieve higher throughput to solve large scale computation problems. In this technology, the customers rent the resources and only pay per use. Job scheduling is one of the biggest issues in cloud computing. Scheduling of users’ requests means how to allocate resources to these requests to finish the tasks in minimum time. The main task of job scheduling system is to find the best resources for user’s jobs, taking into consideration some statistics and dynamic parameters restrictions of users’ jobs. In this research, we introduce cloud computing, genetic algorithm and artificial neural networks, and then review the literature of cloud job scheduling. Many researchers in the literature tried to solve the cloud job scheduling using different techniques. Most of them use artificial intelligence techniques such as genetic algorithm and ant colony to solve the problem of job scheduling and to find the optimal distribution of resources. Unfortunately, there are still some problems in this research area. Therefore, we propose implementing artificial neural networks to optimize the job scheduling results in cloud as it can find new set of classifications not only search within the available set.展开更多
The accuracy of present flatness predictive method is limited and it just belongs to software simulation. In order to improve it, a novel flatness predictive model via T-S cloud reasoning network implemented by digita...The accuracy of present flatness predictive method is limited and it just belongs to software simulation. In order to improve it, a novel flatness predictive model via T-S cloud reasoning network implemented by digital signal processor(DSP) is proposed. First, the combination of genetic algorithm(GA) and simulated annealing algorithm(SAA) is put forward, called GA-SA algorithm, which can make full use of the global search ability of GA and local search ability of SA. Later, based on T-S cloud reasoning neural network, flatness predictive model is designed in DSP. And it is applied to 900 HC reversible cold rolling mill. Experimental results demonstrate that the flatness predictive model via T-S cloud reasoning network can run on the hardware DSP TMS320 F2812 with high accuracy and robustness by using GA-SA algorithm to optimize the model parameter.展开更多
The classification of point cloud data is the key technology of point cloud data information acquisition and 3D reconstruction, which has a wide range of applications. However, the existing point cloud classification ...The classification of point cloud data is the key technology of point cloud data information acquisition and 3D reconstruction, which has a wide range of applications. However, the existing point cloud classification methods have some shortcomings when extracting point cloud features, such as insufficient extraction of local information and overlooking the information in other neighborhood features in the point cloud, and not focusing on the point cloud channel information and spatial information. To solve the above problems, a point cloud classification network based on graph convolution and fusion attention mechanism is proposed to achieve more accurate classification results. Firstly, the point cloud is regarded as a node on the graph, the k-nearest neighbor algorithm is used to compose the graph and the information between points is dynamically captured by stacking multiple graph convolution layers;then, with the assistance of 2D experience of attention mechanism, an attention mechanism which has the capability to integrate more attention to point cloud spatial and channel information is introduced to increase the feature information of point cloud, aggregate local useful features and suppress useless features. Through the classification experiments on ModelNet40 dataset, the experimental results show that compared with PointNet network without considering the local feature information of the point cloud, the average classification accuracy of the proposed model has a 4.4% improvement and the overall classification accuracy has a 4.4% improvement. Compared with other networks, the classification accuracy of the proposed model has also been improved.展开更多
The purpose of reverse engineering is to convert a large point cloud into a CAD model. In reverse engineering, the key issue is segmentation, i.e. studying how to subdivide the point cloud into smaller regions, where ...The purpose of reverse engineering is to convert a large point cloud into a CAD model. In reverse engineering, the key issue is segmentation, i.e. studying how to subdivide the point cloud into smaller regions, where each of them can be approximated by a single surface. Segmentation is relatively simple, if regions are bounded by sharp edges and small blends; problems arise when smoothly connected regions need to be separated. In this paper, a modified self-organizing feature map neural network (SOFM) is used to solve segmentation problem. Eight dimensional feature vectors (3-dimensional coordinates, 3-dimensional normal vectors, Gaussian curvature and mean curvature) are taken as input for SOFM. The weighted Euclidean distance measure is used to improve segmentation result. The method not only can deal with regions bounded by sharp edges, but also is very efficient to separating smoothly connected regions. The segmentation method using SOFM is robust to noise, and it operates directly on the point cloud. An examples is given to show the effect of SOFM algorithm.展开更多
For Microwave Humidity and Temperature sounder(MWHTS) measurements over the ocean, a cloud filtering method is presented to filter out cloud-and precipitation-affected observations by analyzing the sensitivity of the ...For Microwave Humidity and Temperature sounder(MWHTS) measurements over the ocean, a cloud filtering method is presented to filter out cloud-and precipitation-affected observations by analyzing the sensitivity of the simulated brightness temperatures of MWHTS to cloud liquid water, and using the root mean square error(RMSE)between observation and simulation in clear sky as a reference standard. The atmospheric temperature and humidity profiles are retrieved using MWHTS measurements with and without filtering by multiple linear regression(MLR),artificial neural networks(ANN) and one-dimensional variational(1DVAR) retrieval methods, respectively, and the effects of the filtering method on the retrieval accuracies are analyzed. The numerical results show that the filtering method can improve the retrieval accuracies of the MLR and the 1DVAR retrieval methods, but have little influence on that of the ANN. In addition, the dependencies of the retrieval methods upon the testing samples of brightness temperature are studied, and the results show that the 1DVAR retrieval method has great stability due to that the testing samples have great impact on the retrieval accuracies of the MLR and the ANN, but have little impact on that of the 1DVAR.展开更多
A Distributed Denial of Service Attack (DDoS) is an attack in which multiple systems compromised by a Trojan are maliciously used to target a single system. The attack leads to the denial of a certain service on the t...A Distributed Denial of Service Attack (DDoS) is an attack in which multiple systems compromised by a Trojan are maliciously used to target a single system. The attack leads to the denial of a certain service on the target system. In a DDoS attack, both the target system and the systems used to perform the attack are all victims of the attack. The compromised systems are also called Botnets. These attacks occur on networked systems, among them the cloud computing facet. Scholars have tried coming up with separate mechanisms for detecting and preventing such attacks long before they occur. However, as technology progresses in advancement so do the attack mechanisms. In cloud computing, security issues affect various stakeholders who plan on cloud adoption. DDoS attacks are such serious concerns that require mitigation in the cloud. This paper presents a survey of the various mechanisms, both traditional and modern, that are applied in detecting cloud-based DDoS attacks.展开更多
Three monitor models of enterprise crisis were introduced,i.e.,the monitoring model of enterprise crisis based on intelligent Meta search,the enterprise crisis management model based on artificial neural network and t...Three monitor models of enterprise crisis were introduced,i.e.,the monitoring model of enterprise crisis based on intelligent Meta search,the enterprise crisis management model based on artificial neural network and the combined early-warning model.Combined with the advantages of cloud computing,the prominent crisis management models are improved and more efficient,comprehensive and accurate in enterprise crisis management.Through the empirical study of the models,cloud computing makes the early warning structures of enterprise crisis tend to be more simple and efficient,cloud computing can effectively enhance the recognition ability and learning ability of the crisis management,and cloud computing can keep data information updating and realize the dynamic management of enterprise joint early-warning.At the same time,according to the comparative analysis and the experimental result,the crisis management models based on cloud computing also need some improvements.展开更多
点云的处理、传输、语义分割等是3维计算机视觉领域重要的分析任务.现如今,图神经网络和图结构在点云研究方面的有效性已被证实,基于图的点云(graph-based point cloud,GPC)研究不断涌现.因此,一种统一的研究角度、框架和方法论亟待形成...点云的处理、传输、语义分割等是3维计算机视觉领域重要的分析任务.现如今,图神经网络和图结构在点云研究方面的有效性已被证实,基于图的点云(graph-based point cloud,GPC)研究不断涌现.因此,一种统一的研究角度、框架和方法论亟待形成.系统性梳理了GPC研究的各种应用场景,包括配准、降噪、压缩、表示学习、分类、分割、检测等任务,概括出GPC研究的一般性框架,提出了一条覆盖当前GPC全域研究的技术路线.具体来说,给出了GPC研究的分层概念范畴,包括底层数据处理、中层表示学习、高层识别任务;综述了各领域中的GPC模型或算法,包括静态和动态点云的处理算法、有监督和无监督的表示学习模型、传统或机器学习的GPC识别算法;总结了其中代表性的成果及其核心思想,譬如动态更新每层特征空间对应的最近邻图、分层以及参数共享的动态点聚合模块,结合图划分和图卷积提高分割精度;对比了模型性能,包括总体精度(overall accuracy,OA)、平均精度(mean accuracy,mAcc)、平均交并比(mean intersection over union,mIoU);在分析比较现有模型和方法的基础上,归纳了GPC目前面临的主要挑战,提出相应的研究问题,并展望未来的研究方向.建立的GPC研究框架具有一般性和通用性,为后续研究者从事GPC这个新型交叉领域研究提供了领域定位、技术总结及宏观视角.点云研究的出现,是探测器硬件技术长足进步后应运而生的结果;点云研究的现状表明在理论和实践之间存在一些挑战,一些关键问题还有待解决.同时,点云研究的发展将推动人工智能进入新的时代.展开更多
文摘Tax is very important to the whole country, so a scientific tax predictive model is needed. This paper introduces the theory of the cloud model. On this basis, it presents a cloud neural network, and analyzes the main factors which influence the tax revenue. Then if proposes a tax predictive model based on the cloud neural network. The model combines the strongpoints of the cloud model and the neural network. The experiment and simulation results show the effectiveness of the algorithm in this paper.
文摘Cloud computing aims to maximize the benefit of distributed resources and aggregate them to achieve higher throughput to solve large scale computation problems. In this technology, the customers rent the resources and only pay per use. Job scheduling is one of the biggest issues in cloud computing. Scheduling of users’ requests means how to allocate resources to these requests to finish the tasks in minimum time. The main task of job scheduling system is to find the best resources for user’s jobs, taking into consideration some statistics and dynamic parameters restrictions of users’ jobs. In this research, we introduce cloud computing, genetic algorithm and artificial neural networks, and then review the literature of cloud job scheduling. Many researchers in the literature tried to solve the cloud job scheduling using different techniques. Most of them use artificial intelligence techniques such as genetic algorithm and ant colony to solve the problem of job scheduling and to find the optimal distribution of resources. Unfortunately, there are still some problems in this research area. Therefore, we propose implementing artificial neural networks to optimize the job scheduling results in cloud as it can find new set of classifications not only search within the available set.
基金Project(E2015203354)supported by Natural Science Foundation of Steel United Research Fund of Hebei Province,ChinaProject(ZD2016100)supported by the Science and the Technology Research Key Project of High School of Hebei Province,China+1 种基金Project(LJRC013)supported by the University Innovation Team of Hebei Province Leading Talent Cultivation,ChinaProject(16LGY015)supported by the Basic Research Special Breeding of Yanshan University,China
文摘The accuracy of present flatness predictive method is limited and it just belongs to software simulation. In order to improve it, a novel flatness predictive model via T-S cloud reasoning network implemented by digital signal processor(DSP) is proposed. First, the combination of genetic algorithm(GA) and simulated annealing algorithm(SAA) is put forward, called GA-SA algorithm, which can make full use of the global search ability of GA and local search ability of SA. Later, based on T-S cloud reasoning neural network, flatness predictive model is designed in DSP. And it is applied to 900 HC reversible cold rolling mill. Experimental results demonstrate that the flatness predictive model via T-S cloud reasoning network can run on the hardware DSP TMS320 F2812 with high accuracy and robustness by using GA-SA algorithm to optimize the model parameter.
文摘The classification of point cloud data is the key technology of point cloud data information acquisition and 3D reconstruction, which has a wide range of applications. However, the existing point cloud classification methods have some shortcomings when extracting point cloud features, such as insufficient extraction of local information and overlooking the information in other neighborhood features in the point cloud, and not focusing on the point cloud channel information and spatial information. To solve the above problems, a point cloud classification network based on graph convolution and fusion attention mechanism is proposed to achieve more accurate classification results. Firstly, the point cloud is regarded as a node on the graph, the k-nearest neighbor algorithm is used to compose the graph and the information between points is dynamically captured by stacking multiple graph convolution layers;then, with the assistance of 2D experience of attention mechanism, an attention mechanism which has the capability to integrate more attention to point cloud spatial and channel information is introduced to increase the feature information of point cloud, aggregate local useful features and suppress useless features. Through the classification experiments on ModelNet40 dataset, the experimental results show that compared with PointNet network without considering the local feature information of the point cloud, the average classification accuracy of the proposed model has a 4.4% improvement and the overall classification accuracy has a 4.4% improvement. Compared with other networks, the classification accuracy of the proposed model has also been improved.
基金Supported by the National Natural Science Foundation of China(60573177), the Aeronautical Science Foundation of China (04H53059) , the natural Science Foundation of Henan Province (200510078010) and Youth Science Foundation at North China Institute of Water Conservancy and Hydroelectric Power(HSQJ2004003)
文摘The purpose of reverse engineering is to convert a large point cloud into a CAD model. In reverse engineering, the key issue is segmentation, i.e. studying how to subdivide the point cloud into smaller regions, where each of them can be approximated by a single surface. Segmentation is relatively simple, if regions are bounded by sharp edges and small blends; problems arise when smoothly connected regions need to be separated. In this paper, a modified self-organizing feature map neural network (SOFM) is used to solve segmentation problem. Eight dimensional feature vectors (3-dimensional coordinates, 3-dimensional normal vectors, Gaussian curvature and mean curvature) are taken as input for SOFM. The weighted Euclidean distance measure is used to improve segmentation result. The method not only can deal with regions bounded by sharp edges, but also is very efficient to separating smoothly connected regions. The segmentation method using SOFM is robust to noise, and it operates directly on the point cloud. An examples is given to show the effect of SOFM algorithm.
基金Key Fostering Project of National Space Science Center,Chinese Academy of Sciences(Y62112f37s)National 863 Project of China(2015AA8126027)
文摘For Microwave Humidity and Temperature sounder(MWHTS) measurements over the ocean, a cloud filtering method is presented to filter out cloud-and precipitation-affected observations by analyzing the sensitivity of the simulated brightness temperatures of MWHTS to cloud liquid water, and using the root mean square error(RMSE)between observation and simulation in clear sky as a reference standard. The atmospheric temperature and humidity profiles are retrieved using MWHTS measurements with and without filtering by multiple linear regression(MLR),artificial neural networks(ANN) and one-dimensional variational(1DVAR) retrieval methods, respectively, and the effects of the filtering method on the retrieval accuracies are analyzed. The numerical results show that the filtering method can improve the retrieval accuracies of the MLR and the 1DVAR retrieval methods, but have little influence on that of the ANN. In addition, the dependencies of the retrieval methods upon the testing samples of brightness temperature are studied, and the results show that the 1DVAR retrieval method has great stability due to that the testing samples have great impact on the retrieval accuracies of the MLR and the ANN, but have little impact on that of the 1DVAR.
文摘A Distributed Denial of Service Attack (DDoS) is an attack in which multiple systems compromised by a Trojan are maliciously used to target a single system. The attack leads to the denial of a certain service on the target system. In a DDoS attack, both the target system and the systems used to perform the attack are all victims of the attack. The compromised systems are also called Botnets. These attacks occur on networked systems, among them the cloud computing facet. Scholars have tried coming up with separate mechanisms for detecting and preventing such attacks long before they occur. However, as technology progresses in advancement so do the attack mechanisms. In cloud computing, security issues affect various stakeholders who plan on cloud adoption. DDoS attacks are such serious concerns that require mitigation in the cloud. This paper presents a survey of the various mechanisms, both traditional and modern, that are applied in detecting cloud-based DDoS attacks.
基金The Central College Fund Free Exploration Projects,China(No.14D111002)The Research Achievements of Shanghai Public Crisis of Cross-Border Governance Research Achievements,China(No.15D111001)
文摘Three monitor models of enterprise crisis were introduced,i.e.,the monitoring model of enterprise crisis based on intelligent Meta search,the enterprise crisis management model based on artificial neural network and the combined early-warning model.Combined with the advantages of cloud computing,the prominent crisis management models are improved and more efficient,comprehensive and accurate in enterprise crisis management.Through the empirical study of the models,cloud computing makes the early warning structures of enterprise crisis tend to be more simple and efficient,cloud computing can effectively enhance the recognition ability and learning ability of the crisis management,and cloud computing can keep data information updating and realize the dynamic management of enterprise joint early-warning.At the same time,according to the comparative analysis and the experimental result,the crisis management models based on cloud computing also need some improvements.
文摘点云的处理、传输、语义分割等是3维计算机视觉领域重要的分析任务.现如今,图神经网络和图结构在点云研究方面的有效性已被证实,基于图的点云(graph-based point cloud,GPC)研究不断涌现.因此,一种统一的研究角度、框架和方法论亟待形成.系统性梳理了GPC研究的各种应用场景,包括配准、降噪、压缩、表示学习、分类、分割、检测等任务,概括出GPC研究的一般性框架,提出了一条覆盖当前GPC全域研究的技术路线.具体来说,给出了GPC研究的分层概念范畴,包括底层数据处理、中层表示学习、高层识别任务;综述了各领域中的GPC模型或算法,包括静态和动态点云的处理算法、有监督和无监督的表示学习模型、传统或机器学习的GPC识别算法;总结了其中代表性的成果及其核心思想,譬如动态更新每层特征空间对应的最近邻图、分层以及参数共享的动态点聚合模块,结合图划分和图卷积提高分割精度;对比了模型性能,包括总体精度(overall accuracy,OA)、平均精度(mean accuracy,mAcc)、平均交并比(mean intersection over union,mIoU);在分析比较现有模型和方法的基础上,归纳了GPC目前面临的主要挑战,提出相应的研究问题,并展望未来的研究方向.建立的GPC研究框架具有一般性和通用性,为后续研究者从事GPC这个新型交叉领域研究提供了领域定位、技术总结及宏观视角.点云研究的出现,是探测器硬件技术长足进步后应运而生的结果;点云研究的现状表明在理论和实践之间存在一些挑战,一些关键问题还有待解决.同时,点云研究的发展将推动人工智能进入新的时代.