Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in p...Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in passive satellite radiometer observations, few operational satellite CBH products are currently available. This study presents a new method for retrieving CBH from satellite radiometers. The method first uses the combined measurements of satellite radiometers and ground-based cloud radars to develop a lookup table(LUT) of effective cloud water content(ECWC), representing the vertically varying cloud water content. This LUT allows for the conversion of cloud water path to cloud geometric thickness(CGT), enabling the estimation of CBH as the difference between cloud top height and CGT. Detailed comparative analysis of CBH estimates from the state-of-the-art ECWC LUT are conducted against four ground-based millimeter-wave cloud radar(MMCR) measurements, and results show that the mean bias(correlation coefficient) is0.18±1.79 km(0.73), which is lower(higher) than 0.23±2.11 km(0.67) as derived from the combined measurements of satellite radiometers and satellite radar-lidar(i.e., Cloud Sat and CALIPSO). Furthermore, the percentages of the CBH biases within 250 m increase by 5% to 10%, which varies by location. This indicates that the CBH estimates from our algorithm are more consistent with ground-based MMCR measurements. Therefore, this algorithm shows great potential for further improvement of the CBH retrievals as ground-based MMCR are being increasingly included in global surface meteorological observing networks, and the improved CBH retrievals will contribute to better cloud radiative effect estimates.展开更多
A prototype space-based cloud radar has been a precipitation system over Tianjin, China in July developed and was installed on an airplane to observe 2010. Ground-based S-band and Ka-band radars were used to examine t...A prototype space-based cloud radar has been a precipitation system over Tianjin, China in July developed and was installed on an airplane to observe 2010. Ground-based S-band and Ka-band radars were used to examine the observational capability of the prototype. A cross-comparison algorithm between different wavelengths, spatial resolutions and platform radars is presented. The reflectivity biases, correlation coefficients and standard deviations between the radars are analyzed. The equivalent reflectivity bias between the S- and Ka-band radars were simulated with a given raindrop size distribution. The results indicated that reflectivity bias between the S- and Ka-band radars due to scattering properties was less than 5 dB, and for weak precipitation the bias was negligible. The prototype space-based cloud radar was able to measure a reasonable vertical profile of reflectivity, but the reflectivity below an altitude of 1.5 km above ground level was obscured by ground clutter. The measured refiectivity by the prototype space-based cloud radar was approximately 10.9 dB stronger than that by the S-band Doppler radar (SA radar), and 13.7 dB stronger than that by the ground-based cloud radar. The reflectivity measured by the SA radar was 0.4 dB stronger than that by the ground-based cloud radar. This study could provide a method for the quantitative examination of the observation ability for space-based radars.展开更多
The development and evolution of precipitation microphysical parameters and the vertical structure characteristics associated with Typhoon Yagi(201814)are analyzed in the city of Jinan,Shandong Province based primaril...The development and evolution of precipitation microphysical parameters and the vertical structure characteristics associated with Typhoon Yagi(201814)are analyzed in the city of Jinan,Shandong Province based primarily on the observations of a micro rain radar(MRR),a cloud radar,and a disdrometer.The precipitation process is further subdivided into four types:convective,stratiform,mixed,and light precipitation according to the ground disdrometer data,which is in agreement with the vertical profile of the radar reflectivity detected by the MRR.Vertical winds may be the main source of MRR retrieval error during convective precipitation.Convective precipitation has the shortest duration but makes the largest contribution to the cumulative precipitation.Collision-coalescence is the main microphysical process of stratiform precipitation and light precipitation below the bright band observed by the MRR.It is worth noting that as Typhoon Yagi(201814)transformed into an extratropical cyclone,its raindrop size distributions no longer had the characteristics of maritime precipitation,but become more typical of the characteristic of continental precipitation,which represents a very different raindrop size distribution from that which is normally observed in a landfalling typhoon.展开更多
Cloud properties were investigated based on aircraft and cloud radar co-observation conducted at Yitong, Jilin, Northeast China. The aircraft provided in situ measurements of cloud droplet size distribution, while the...Cloud properties were investigated based on aircraft and cloud radar co-observation conducted at Yitong, Jilin, Northeast China. The aircraft provided in situ measurements of cloud droplet size distribution, while the millimeter-wavelength cloud radar vertically scanned the same cloud that the aircraft penetrated. The reflectivity factor calculated from aircraft measurements was compared in detail with sinmltaneous radar observations. The results showed that the two reflectivities were comparable in warm clouds, but in ice cloud there were more differences, which were probably associated with the occurrence of liquid water. The acceptable agreement between reflectivities obtained in water cloud confirmed that it is feasible to derive cloud properties by using aircraft data, and hence for cloud radar to remotely sense cloud properties. Based on the dataset collected in warm clouds, the threshold of reflectivity to diagnose drizzle and cloud particles was studied by analyses of the probability distribution function of reflectivity from cloud particles and drizzle drops. The relationship between refiectivity factor (Z) and cloud liquid water content (LWC) was also derived from data on both cloud particles and drizzle. In comparison with cloud droplets, the relationship for drizzle was blurred by many scatter points and thus was less evident. However, these scatters could be partly removed by filtering out the drop size distribution with a large ratio of reflectivity and large extinction coefficient but small effective radius. Empirical relationships of Z-LWC for both cloud particles and drizzle could then be derived.展开更多
Millimeter-wave cloud radar(MMCR)provides the capability of detecting the features of micro particles inside clouds and describing the internal microphysical structure of the clouds.Therefore,MMCR has been widely appl...Millimeter-wave cloud radar(MMCR)provides the capability of detecting the features of micro particles inside clouds and describing the internal microphysical structure of the clouds.Therefore,MMCR has been widely applied in cloud observations.However,due to the influence of non-meteorological factors such as insects,the cloud observations are often contaminated by non-meteorological echoes in the clear air,known as clear-air echoes.It is of great significance to automatically identify the clear-air echoes in order to extract effective meteorological information from the complex weather background.The characteristics of clear-air echoes are studied here by combining data from four devices:an MMCR,a laser-ceilometer,an L-band radiosonde,and an all-sky camera.In addition,a new algorithm,which includes feature extraction,feature selection,and classification,is proposed to achieve the automatic identification of clear-air echoes.The results show that the recognition algorithm is fairly satisfied in both simple and complex weather conditions.The recognition accuracy can reach up to 95.86%for the simple cases when cloud echoes and clear-air echoes are separate,and 88.38%for the complicated cases when low cloud echoes and clear-air echoes are mixed.展开更多
In this study,cloud base height(CBH) and cloud top height(CTH) observed by the Ka-band(33.44 GHz) cloud radar at the Boseong National Center for Intensive Observation of Severe Weather during fall 2013(Septembe...In this study,cloud base height(CBH) and cloud top height(CTH) observed by the Ka-band(33.44 GHz) cloud radar at the Boseong National Center for Intensive Observation of Severe Weather during fall 2013(September-November) were verified and corrected.For comparative verification,CBH and CTH were obtained using a ceilometer(CL51) and the Communication,Ocean and Meteorological Satellite(COMS).During rainfall,the CBH and CTH observed by the cloud radar were lower than observed by the ceilometer and COMS because of signal attenuation due to raindrops,and this difference increased with rainfall intensity.During dry periods,however,the CBH and CTH observed by the cloud radar,ceilometer,and COMS were similar.Thin and low-density clouds were observed more effectively by the cloud radar compared with the ceilometer and COMS.In cases of rainfall or missing cloud radar data,the ceilometer and COMS data were proven effective in correcting or compensating the cloud radar data.These corrected cloud data were used to classify cloud types,which revealed that low clouds occurred most frequently.展开更多
Based on cloud-probe data and airborne Ka-band cloud radar data collected in Baoding on 5 August 2018,the microphysical structural characteristics of cumulus(Cu)cloud at the precipitation stage were investigated.The c...Based on cloud-probe data and airborne Ka-band cloud radar data collected in Baoding on 5 August 2018,the microphysical structural characteristics of cumulus(Cu)cloud at the precipitation stage were investigated.The cloud droplets in the Cu cloud were found to be significantly larger than those in stratiform(STF)cloud.In the Cu cloud,most cloud particles were between 7 and 10μm in diameter,while in the STF cloud the majority of cloud particles grew no larger than 2μm.The sensitivity of cloud properties to aerosols varied with height.The cloud droplet effective radius showed a negative relationship with the aerosol number concentration(Na)in the cloud planetary boundary layer(PBL)and upper layer above the PBL.However,the cloud droplet concentration(Nc)varied little with decreased Na in the high liquid water content region above 1500 m.High Na values of between 300 and 1853 cm-3 were found in the PBL,and the maximum Na was sampled near the surface in August in the Hebei region,which was lower than that in autumn and winter.High radar reflectivity corresponded to large FCDP(fast cloud droplet probe)particle concentrations and small aerosol particle concentrations,and vice versa for low radar reflectivity.Strong updrafts in the Cu cloud increased the peak radius and Nc,and broadened cloud droplet spectrum;lower air temperature was favorable for particle condensational growth and produced larger droplets.展开更多
This study concerns a Ka-band solid-state transmitter cloud radar, made in China, which can operate in three different work modes, with different pulse widths, and coherent and incoherent integration numbers, to meet ...This study concerns a Ka-band solid-state transmitter cloud radar, made in China, which can operate in three different work modes, with different pulse widths, and coherent and incoherent integration numbers, to meet the requirements for cloud remote sensing over the Tibetan Plateau. Specifically, the design of the three operational modes of the radar(i.e., boundary mode M1, cirrus mode M2, and precipitation mode M3) is introduced. Also, a cloud radar data merging algorithm for the three modes is proposed. Using one month's continuous measurements during summertime at Naqu on the Tibetan Plateau,we analyzed the consistency between the cloud radar measurements of the three modes. The number of occurrences of radar detections of hydrometeors and the percentage contributions of the different modes' data to the merged data were estimated.The performance of the merging algorithm was evaluated. The results indicated that the minimum detectable reflectivity for each mode was consistent with theoretical results. Merged data provided measurements with a minimum reflectivity of -35 dBZ at the height of 5 km, and obtained information above the height of 0.2 km. Measurements of radial velocity by the three operational modes agreed very well, and systematic errors in measurements of reflectivity were less than 2 dB. However,large discrepancies existed in the measurements of the linear depolarization ratio taken from the different operational modes.The percentage of radar detections of hydrometeors in mid- and high-level clouds increased by 60% through application of pulse compression techniques. In conclusion, the merged data are appropriate for cloud and precipitation studies over the Tibetan Plateau.展开更多
Radar parameters including radar reflectivity, Doppler velocity, and Doppler spectrum width were obtained from Doppler spectrum moments. The Doppler spectrum moment is the convolution of both the particle spectrum and...Radar parameters including radar reflectivity, Doppler velocity, and Doppler spectrum width were obtained from Doppler spectrum moments. The Doppler spectrum moment is the convolution of both the particle spectrum and the mean air vertical motion. Unlike strong precipitation, the motion of particles in cirrus clouds is quite close to the air motion around them. In this study, a method of Doppler moments was developed and used to retrieve cirrus cloud microphysical properties such as the mean air vertical velocity, mass-weighted diameter, effective particle size, and ice content. Ice content values were retrieved using both the Doppler spectrum method and classic Z-IWC (radar reflectivity-ice water content) relationships; however, the former is a more reasonable method.展开更多
Cloud vertical structure(CVS)strongly affects atmospheric circulation and radiative transfer.Yet,long-term,groundbased observations are scarce over the Tibetan Plateau(TP)despite its vital role in global climate.This ...Cloud vertical structure(CVS)strongly affects atmospheric circulation and radiative transfer.Yet,long-term,groundbased observations are scarce over the Tibetan Plateau(TP)despite its vital role in global climate.This study utilizes ground-based lidar and Ka-band cloud profiling radar(KaCR)measurements at Yangbajain(YBJ),TP,from October 2021 to September 2022 to characterize cloud properties.A satisfactorily performing novel anomaly detection algorithm(LevelShiftAD)is proposed for lidar and KaCR profiles to identify cloud boundaries.Cloud base heights(CBH)retrieved from KaCR and lidar observations show good consistency,with a correlation coefficient of 0.78 and a mean difference of-0.06 km.Cloud top heights(CTH)derived from KaCR match the FengYun-4A and Himawari-8 products well.Thus,KaCR measurements serve as the primary dataset for investigating CVSs over the TP.Different diurnal cycles occur in summer and winter.The diurnal cycle is characterized by a pronounced increase in cloud occurrence frequency in the afternoon with an early-morning decrease in winter,while cloud amounts remain high all day,with scattered nocturnal increases in summer.Summer features more frequent clouds with larger geometrical thicknesses,a higher multi-layer ratio,and greater inter-cloud spacing.Around 26%of the cloud bases occur below 0.5 km.Winter exhibits a bimodal distribution of cloud base heights with peaks at 0-0.5 km and 2-2.5 km.Single-layer and geometrically thin clouds prevail at YBJ.This study enriches long-term measurements of CVSs over the TP,and the robust anomaly detection method helps quantify cloud macro-physical properties via synergistic lidar and radar observations.展开更多
By using the cloud echoes fi rst successfully observed by China’s indigenous 94-GHz SKY cloud radar, the macrostructure and microphysical properties of drizzling stratocumulus clouds in Anhui Province on 8 June 2013 ...By using the cloud echoes fi rst successfully observed by China’s indigenous 94-GHz SKY cloud radar, the macrostructure and microphysical properties of drizzling stratocumulus clouds in Anhui Province on 8 June 2013 are analyzed, and the detection capability of this cloud radar is discussed. The results are as follows. (1) The cloud radar is able to observe the time-varying macroscopic and microphysical parameters of clouds, and it can reveal the microscopic structure and small-scale changes of clouds. (2) The velocity spectral width of cloud droplets is small, but the spectral width of the cloud containing both cloud droplets and drizzle is large. When the spectral width is more than 0.4 m s-1, the radar refl ectivity factor is larger (over-10 dBZ). (3) The radar’s sensitivity is comparatively higher because the minimum radar refl ectivity factor is about-35 dBZ in this experiment, which exceeds the threshold for detecting the linear depolarized ratio (LDR) of stratocumulus (commonly -11 to -14 dBZ; decreases with increasing turbulence). (4) After distinguishing of cloud droplets from drizzle, cloud liquid water content and particle eff ective radius are retrieved. The liquid water content of drizzle is lower than that of cloud droplets at the same radar refl ectivity factor.展开更多
Millimeter-wavelength radar has proved to be an effective instrument for cloud observation and research. In this study, 8-mm-wavelength cloud radar (MMCR) with Doppler and polarization capabilities was used to inves...Millimeter-wavelength radar has proved to be an effective instrument for cloud observation and research. In this study, 8-mm-wavelength cloud radar (MMCR) with Doppler and polarization capabilities was used to investigate cloud dynamics in China for the first time. Its design, system specifications, calibration, and application in measuring clouds associated with typhoon are discussed in this article. The cloud radar measurements of radar reflectivity (Z), Doppler velocity (Vr), velocity spectrum width (Sw) and the depolar-ization ratio (LDR) at vertical incidence were used to analyze the microphysical and dynamic processes of the cloud system and precipitation associated with Typhoon Nuri, which occurred in southern China in August 2008. The results show the reflectivity observed using MMCR to be consistent with the echo height and the melting-layer location data obtained by the nearby China S-band new-generation weather radar (SA), but the Ka-band MMCR provided more detailed structural information about clouds and weak precipitation data than did the SA radar. The variation of radar reflectivity and LDR in vertical structure reveals the transformation of particle phase from ice to water. The vertical velocity and velocity spectrum width of MMCR observations indicate an updraft and strong turbulence in the stratiform cloud layer. MMCR provides a valuable new technology for meteorological research in China.展开更多
Dual-frequency and multi-polarization spaceborne rain and cloud measuring radar is the inevitable trend of remote sensing techniques.Techniques of new generation dual-frequency and multi-polarization spaceborne rain a...Dual-frequency and multi-polarization spaceborne rain and cloud measuring radar is the inevitable trend of remote sensing techniques.Techniques of new generation dual-frequency and multi-polarization spaceborne rain and cloud measuring radar are studied systematically.Radar block diagram and main parameters are presented.Antenna subsystem scheme is analyzed and antenna parameters are proposed.Central electronic device subsystem scheme is given and data rate of spaceborne radar is calculated.This paper is a meaningful try for carrying out spaceborne rain and cloud measuring radar design,acting as a reference to Chinese spaceborne rain and cloud measuring radar design and production in future.展开更多
Based on the data of satellite cloud image and Doppler radar,the rainstorm process from July 31st,2007 to August 1st,2007 in Liaoning was analyzed.The precipitation in Fushun and Haicheng was more than 100 mm,and 6 h ...Based on the data of satellite cloud image and Doppler radar,the rainstorm process from July 31st,2007 to August 1st,2007 in Liaoning was analyzed.The precipitation in Fushun and Haicheng was more than 100 mm,and 6 h precipitation in Fushun and Dandong was more than 50 mm.Through the analysis of strong precipitation period,the structure of clouds had a little decline from the stage of development to maturity.The gray value and gradient degree around were both larger in the center of heavy precipitation.展开更多
Assimilation configurations have significant impacts on analysis results and subsequent forecasts. A squall line system that occurred on 23 April 2007 over southern China was used to investigate the impacts of the dat...Assimilation configurations have significant impacts on analysis results and subsequent forecasts. A squall line system that occurred on 23 April 2007 over southern China was used to investigate the impacts of the data assimilation frequency of radar data on analyses and forecasts. A three-dimensional variational system was used to assimilate radial velocity data,and a cloud analysis system was used for reflectivity assimilation with a 2-h assimilation window covering the initial stage of the squall line. Two operators of radar reflectivity for cloud analyses corresponding to single-and double-moment schemes were used. In this study, we examined the sensitivity of assimilation frequency using 10-, 20-, 30-, and 60-min assimilation intervals. The results showed that analysis fields were not consistent with model dynamics and microphysics in general;thus, model states, including dynamic and microphysical variables, required approximately 20 min to reach a new balance after data assimilation in all experiments. Moreover, a 20-min data assimilation interval generally produced better forecasts for both single-and double-moment schemes in terms of equitable threat and bias scores. We conclude that a higher data assimilation frequency can produce a more intense cold pool and rear inflow jets but does not necessarily lead to a better forecast.展开更多
A cloud clustering and classification algorithm is developed for a ground-based Ka-band radar system in the vertically pointing mode. Cloud profiles are grouped based on the combination of a time–height clustering me...A cloud clustering and classification algorithm is developed for a ground-based Ka-band radar system in the vertically pointing mode. Cloud profiles are grouped based on the combination of a time–height clustering method and the k-means clustering method. The cloud classification algorithm, developed using a fuzzy logic method, uses nine physical parameters to classify clouds into nine types: cirrostratus, cirrocumulus, altocumulus, altostratus, stratus, stratocumulus, nimbostratus,cumulus or cumulonimbus. The performance of the clustering and classification algorithm is presented by comparison with all-sky images taken from January to June 2014. Overall, 92% of the cloud profiles are clustered successfully and the agreement in classification between the radar system and the all-sky imager is 87%. The distribution of cloud types in Beijing from January 2014 to December 2017 is studied based on the clustering and classification algorithm. The statistics show that cirrostratus clouds have the highest occurrence frequency(24%) among the nine cloud types. High-level clouds have the maximum occurrence frequency and low-level clouds the minimum occurrence frequency.展开更多
From first principles, we find that the radar threshold reflectivity between nonprecipitating clouds and precipitating clouds is strongly related to not only the cloud droplet number concentration but also the spectra...From first principles, we find that the radar threshold reflectivity between nonprecipitating clouds and precipitating clouds is strongly related to not only the cloud droplet number concentration but also the spectral dispersion of cloud droplet size distributions. The further investigation indicates that the threshold value is an increasing function of spectral dispersion and cloud droplet number concentration. These results may improve our understanding of the cloud-precipitation interaction and the aerosol indirect effect.展开更多
[Objective] The aim was to summarize the characteristics of refelectivity factors of Doppler radar of the cold front cloud system. [Method] Judging from the characteristics of reflectivity factors, by dint of the new ...[Objective] The aim was to summarize the characteristics of refelectivity factors of Doppler radar of the cold front cloud system. [Method] Judging from the characteristics of reflectivity factors, by dint of the new generation weather radar in Harbin from 2002 to 2007, the features of the reflectivity factors of the cold front cloud system were summarized. [Result] The cloud formed by the cold front was in banded form in general. However, there was void in the cloud and its intensity was uneven. Most fast moving cold front was long and narrow banded echo and basically the radial velocity turned from northwest wind to southwest. With the changes of month, the feature of the reflective rate also changed. In winter, the cold front cloud was in layer form. The feature of the reflectivity factors was weak and in large area. However, the structure was loose and there was space in the echo. Among them, there were several strong echoes. Strong convection cell echo formed in the two sides of the cold front, and it moved with the entire cloud belt. When the dry cold front moved, regional strong convective current formed, mainly by convective cloud and small echo area. Generally, the changes of the wind direction can not be expounded from the radial velocity. However, the intensity of the convection cell was distinct, 'three-body scattering', 'side lobe echo', and 'weak echo', as well as features of super convection cell. [Conclusion] The study provided positive role for the application of Doppler radar in the surveillance of weather in Heilongjiang Province.展开更多
Data from in situ probes and a vertically-pointing ram-wave Doppler radar aboard a research aircraft are used to study the cloud microphysical effect of glaciogenic seeding of cold-season orographic clouds. A previous...Data from in situ probes and a vertically-pointing ram-wave Doppler radar aboard a research aircraft are used to study the cloud microphysical effect of glaciogenic seeding of cold-season orographic clouds. A previous study (Geerts et al., 2010) has shown that radar reflectivity tends to be higher during seeding periods in a shallow layer above the ground downwind of ground-based silver iodide (AgI) nuclei generators. This finding is based on seven flights, conducted over a mountain in Wyoming (the Unites States), each with a no-seeding period followed by a seeding period. In order to assess this impact, geographically fixed flight tracks were flown over a target mountain, both upwind and downwind of the AgI generators. This paper examines data from the same flights for further evidence of the cloud seeding impact. Com- posite radar data show that the low-level reflectivity increase is best defined upwind of the mountain crest and downwind of the point where the cloud base intersects the terrain. The main argument that this increase can be attributed to AgI seeding is that it is confined to a shallow layer near the ground where the flow is turbulent. Yet during two flights when clouds were cumuliform and coherent updrafts to flight level were recorded by the radar, the seeding impact was evident in the flight-level updrafts (about 610 m above the mountain peak) as a significant increase in the ice crystal appears short-lived as it is not apparent just downwind of concentration in all size bins. The seeding effect the crest.展开更多
基金funded by the National Natural Science Foundation of China (Grant Nos. 42305150 and 42325501)the China Postdoctoral Science Foundation (Grant No. 2023M741774)。
文摘Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in passive satellite radiometer observations, few operational satellite CBH products are currently available. This study presents a new method for retrieving CBH from satellite radiometers. The method first uses the combined measurements of satellite radiometers and ground-based cloud radars to develop a lookup table(LUT) of effective cloud water content(ECWC), representing the vertically varying cloud water content. This LUT allows for the conversion of cloud water path to cloud geometric thickness(CGT), enabling the estimation of CBH as the difference between cloud top height and CGT. Detailed comparative analysis of CBH estimates from the state-of-the-art ECWC LUT are conducted against four ground-based millimeter-wave cloud radar(MMCR) measurements, and results show that the mean bias(correlation coefficient) is0.18±1.79 km(0.73), which is lower(higher) than 0.23±2.11 km(0.67) as derived from the combined measurements of satellite radiometers and satellite radar-lidar(i.e., Cloud Sat and CALIPSO). Furthermore, the percentages of the CBH biases within 250 m increase by 5% to 10%, which varies by location. This indicates that the CBH estimates from our algorithm are more consistent with ground-based MMCR measurements. Therefore, this algorithm shows great potential for further improvement of the CBH retrievals as ground-based MMCR are being increasingly included in global surface meteorological observing networks, and the improved CBH retrievals will contribute to better cloud radiative effect estimates.
基金the Chinese Academy of Meteorological Sciences Basic Scientific and Operational Project(observation and retrieval methods of microphysics and dynamic parameters of cloud and precipitation with multi-wavelength remote sensing)the National Key Program for Developing Basic Sciences under Grant 2012CB417202+1 种基金the Meteorological Special Project(study and data process and key technology for space-borne precipitation radar)the National Natural Science Foundation of China(Grant Nos.40775021 and 41075098)
文摘A prototype space-based cloud radar has been a precipitation system over Tianjin, China in July developed and was installed on an airplane to observe 2010. Ground-based S-band and Ka-band radars were used to examine the observational capability of the prototype. A cross-comparison algorithm between different wavelengths, spatial resolutions and platform radars is presented. The reflectivity biases, correlation coefficients and standard deviations between the radars are analyzed. The equivalent reflectivity bias between the S- and Ka-band radars were simulated with a given raindrop size distribution. The results indicated that reflectivity bias between the S- and Ka-band radars due to scattering properties was less than 5 dB, and for weak precipitation the bias was negligible. The prototype space-based cloud radar was able to measure a reasonable vertical profile of reflectivity, but the reflectivity below an altitude of 1.5 km above ground level was obscured by ground clutter. The measured refiectivity by the prototype space-based cloud radar was approximately 10.9 dB stronger than that by the S-band Doppler radar (SA radar), and 13.7 dB stronger than that by the ground-based cloud radar. The reflectivity measured by the SA radar was 0.4 dB stronger than that by the ground-based cloud radar. This study could provide a method for the quantitative examination of the observation ability for space-based radars.
基金Shandong Provincial Natural Science Foundation(ZR2020MD054)the Key Laboratory for Cloud Physics of the China Meteorological Administration(LCP/CMA,Grant No.2017Z016)+2 种基金the National Key Research and Development Program of China(Grant No.2018YFC1507903)the National Natural Science Foundation of China(Grant No.41475028)the Shandong Meteorological Bureau project(Grant Nos.2020sdqxz08,2020sdqxm10,2018SDQN09,2017sdqxz05)。
文摘The development and evolution of precipitation microphysical parameters and the vertical structure characteristics associated with Typhoon Yagi(201814)are analyzed in the city of Jinan,Shandong Province based primarily on the observations of a micro rain radar(MRR),a cloud radar,and a disdrometer.The precipitation process is further subdivided into four types:convective,stratiform,mixed,and light precipitation according to the ground disdrometer data,which is in agreement with the vertical profile of the radar reflectivity detected by the MRR.Vertical winds may be the main source of MRR retrieval error during convective precipitation.Convective precipitation has the shortest duration but makes the largest contribution to the cumulative precipitation.Collision-coalescence is the main microphysical process of stratiform precipitation and light precipitation below the bright band observed by the MRR.It is worth noting that as Typhoon Yagi(201814)transformed into an extratropical cyclone,its raindrop size distributions no longer had the characteristics of maritime precipitation,but become more typical of the characteristic of continental precipitation,which represents a very different raindrop size distribution from that which is normally observed in a landfalling typhoon.
基金supported by the National Key Program for Developing Basic Sciences under Grant 2012CB417202the National Natural Science Foundation of China under Grant Nos. 40975014, 41030962 and 41175038sponsored by the Program for Postgraduates Research Innovation of Jiangsu Higher Education Institutions (Grant No. CXZZ11-0615)
文摘Cloud properties were investigated based on aircraft and cloud radar co-observation conducted at Yitong, Jilin, Northeast China. The aircraft provided in situ measurements of cloud droplet size distribution, while the millimeter-wavelength cloud radar vertically scanned the same cloud that the aircraft penetrated. The reflectivity factor calculated from aircraft measurements was compared in detail with sinmltaneous radar observations. The results showed that the two reflectivities were comparable in warm clouds, but in ice cloud there were more differences, which were probably associated with the occurrence of liquid water. The acceptable agreement between reflectivities obtained in water cloud confirmed that it is feasible to derive cloud properties by using aircraft data, and hence for cloud radar to remotely sense cloud properties. Based on the dataset collected in warm clouds, the threshold of reflectivity to diagnose drizzle and cloud particles was studied by analyses of the probability distribution function of reflectivity from cloud particles and drizzle drops. The relationship between refiectivity factor (Z) and cloud liquid water content (LWC) was also derived from data on both cloud particles and drizzle. In comparison with cloud droplets, the relationship for drizzle was blurred by many scatter points and thus was less evident. However, these scatters could be partly removed by filtering out the drop size distribution with a large ratio of reflectivity and large extinction coefficient but small effective radius. Empirical relationships of Z-LWC for both cloud particles and drizzle could then be derived.
基金supported by the National Key R&D Program of China(Grant No.2018YFC1506605)Sichuan Provincial Department of Education Scientific research projects(Grant No.16ZB0211)Chengdu University of Information Technology research and development projects(Grant No.CRF201705)。
文摘Millimeter-wave cloud radar(MMCR)provides the capability of detecting the features of micro particles inside clouds and describing the internal microphysical structure of the clouds.Therefore,MMCR has been widely applied in cloud observations.However,due to the influence of non-meteorological factors such as insects,the cloud observations are often contaminated by non-meteorological echoes in the clear air,known as clear-air echoes.It is of great significance to automatically identify the clear-air echoes in order to extract effective meteorological information from the complex weather background.The characteristics of clear-air echoes are studied here by combining data from four devices:an MMCR,a laser-ceilometer,an L-band radiosonde,and an all-sky camera.In addition,a new algorithm,which includes feature extraction,feature selection,and classification,is proposed to achieve the automatic identification of clear-air echoes.The results show that the recognition algorithm is fairly satisfied in both simple and complex weather conditions.The recognition accuracy can reach up to 95.86%for the simple cases when cloud echoes and clear-air echoes are separate,and 88.38%for the complicated cases when low cloud echoes and clear-air echoes are mixed.
基金supported by the principal project, “Development and application of technology for weather forecasting (NIMR-2012-B-1)” of the National Institute of Meteorological Sciences of the Korea Meteorological Administration
文摘In this study,cloud base height(CBH) and cloud top height(CTH) observed by the Ka-band(33.44 GHz) cloud radar at the Boseong National Center for Intensive Observation of Severe Weather during fall 2013(September-November) were verified and corrected.For comparative verification,CBH and CTH were obtained using a ceilometer(CL51) and the Communication,Ocean and Meteorological Satellite(COMS).During rainfall,the CBH and CTH observed by the cloud radar were lower than observed by the ceilometer and COMS because of signal attenuation due to raindrops,and this difference increased with rainfall intensity.During dry periods,however,the CBH and CTH observed by the cloud radar,ceilometer,and COMS were similar.Thin and low-density clouds were observed more effectively by the cloud radar compared with the ceilometer and COMS.In cases of rainfall or missing cloud radar data,the ceilometer and COMS data were proven effective in correcting or compensating the cloud radar data.These corrected cloud data were used to classify cloud types,which revealed that low clouds occurred most frequently.
基金funded by the National Key Research and Devel-opment Program of China[grant number 2017YFC1501405]the National Natural Science Foundation of China[grant numbers 41975180,41705119,and 41575131]the National Center of Meteorology,Abu Dhabi,AE(UAE Research Program for Rain Enhancement Science)。
文摘Based on cloud-probe data and airborne Ka-band cloud radar data collected in Baoding on 5 August 2018,the microphysical structural characteristics of cumulus(Cu)cloud at the precipitation stage were investigated.The cloud droplets in the Cu cloud were found to be significantly larger than those in stratiform(STF)cloud.In the Cu cloud,most cloud particles were between 7 and 10μm in diameter,while in the STF cloud the majority of cloud particles grew no larger than 2μm.The sensitivity of cloud properties to aerosols varied with height.The cloud droplet effective radius showed a negative relationship with the aerosol number concentration(Na)in the cloud planetary boundary layer(PBL)and upper layer above the PBL.However,the cloud droplet concentration(Nc)varied little with decreased Na in the high liquid water content region above 1500 m.High Na values of between 300 and 1853 cm-3 were found in the PBL,and the maximum Na was sampled near the surface in August in the Hebei region,which was lower than that in autumn and winter.High radar reflectivity corresponded to large FCDP(fast cloud droplet probe)particle concentrations and small aerosol particle concentrations,and vice versa for low radar reflectivity.Strong updrafts in the Cu cloud increased the peak radius and Nc,and broadened cloud droplet spectrum;lower air temperature was favorable for particle condensational growth and produced larger droplets.
基金funded by the National Sciences Foundation of China(Grant No.91337103)the China Meteorological Administration Special Public Welfare Research Fund(Grant No.GYHY201406001)
文摘This study concerns a Ka-band solid-state transmitter cloud radar, made in China, which can operate in three different work modes, with different pulse widths, and coherent and incoherent integration numbers, to meet the requirements for cloud remote sensing over the Tibetan Plateau. Specifically, the design of the three operational modes of the radar(i.e., boundary mode M1, cirrus mode M2, and precipitation mode M3) is introduced. Also, a cloud radar data merging algorithm for the three modes is proposed. Using one month's continuous measurements during summertime at Naqu on the Tibetan Plateau,we analyzed the consistency between the cloud radar measurements of the three modes. The number of occurrences of radar detections of hydrometeors and the percentage contributions of the different modes' data to the merged data were estimated.The performance of the merging algorithm was evaluated. The results indicated that the minimum detectable reflectivity for each mode was consistent with theoretical results. Merged data provided measurements with a minimum reflectivity of -35 dBZ at the height of 5 km, and obtained information above the height of 0.2 km. Measurements of radial velocity by the three operational modes agreed very well, and systematic errors in measurements of reflectivity were less than 2 dB. However,large discrepancies existed in the measurements of the linear depolarization ratio taken from the different operational modes.The percentage of radar detections of hydrometeors in mid- and high-level clouds increased by 60% through application of pulse compression techniques. In conclusion, the merged data are appropriate for cloud and precipitation studies over the Tibetan Plateau.
基金the National Natural Science Foundation of China (Grant No. 40975014)the basic scientific and operational project "observation and retrieval of microphysical parameters with multiple wavelength radars"
文摘Radar parameters including radar reflectivity, Doppler velocity, and Doppler spectrum width were obtained from Doppler spectrum moments. The Doppler spectrum moment is the convolution of both the particle spectrum and the mean air vertical motion. Unlike strong precipitation, the motion of particles in cirrus clouds is quite close to the air motion around them. In this study, a method of Doppler moments was developed and used to retrieve cirrus cloud microphysical properties such as the mean air vertical velocity, mass-weighted diameter, effective particle size, and ice content. Ice content values were retrieved using both the Doppler spectrum method and classic Z-IWC (radar reflectivity-ice water content) relationships; however, the former is a more reasonable method.
基金jointly funded by the Second Tibetan Plateau Scientific Expedition and Research Program of China under Grant 2019QZKK0604the National Natural Science Foundation of China(Grant Nos.92044303 and 42001294).
文摘Cloud vertical structure(CVS)strongly affects atmospheric circulation and radiative transfer.Yet,long-term,groundbased observations are scarce over the Tibetan Plateau(TP)despite its vital role in global climate.This study utilizes ground-based lidar and Ka-band cloud profiling radar(KaCR)measurements at Yangbajain(YBJ),TP,from October 2021 to September 2022 to characterize cloud properties.A satisfactorily performing novel anomaly detection algorithm(LevelShiftAD)is proposed for lidar and KaCR profiles to identify cloud boundaries.Cloud base heights(CBH)retrieved from KaCR and lidar observations show good consistency,with a correlation coefficient of 0.78 and a mean difference of-0.06 km.Cloud top heights(CTH)derived from KaCR match the FengYun-4A and Himawari-8 products well.Thus,KaCR measurements serve as the primary dataset for investigating CVSs over the TP.Different diurnal cycles occur in summer and winter.The diurnal cycle is characterized by a pronounced increase in cloud occurrence frequency in the afternoon with an early-morning decrease in winter,while cloud amounts remain high all day,with scattered nocturnal increases in summer.Summer features more frequent clouds with larger geometrical thicknesses,a higher multi-layer ratio,and greater inter-cloud spacing.Around 26%of the cloud bases occur below 0.5 km.Winter exhibits a bimodal distribution of cloud base heights with peaks at 0-0.5 km and 2-2.5 km.Single-layer and geometrically thin clouds prevail at YBJ.This study enriches long-term measurements of CVSs over the TP,and the robust anomaly detection method helps quantify cloud macro-physical properties via synergistic lidar and radar observations.
基金Supported by China Meteorological Administration Special Public Welfare Research Fund(GYHY201206038,GYHY200906053,and GYHY201306040)National(Key)Basic Research and Development(973)Program of China(2013CB430102)+8 种基金National High Technology Research and Development Program(863)of China(2007AA061901)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(10KJA170030)State Key Laboratory Program(2013LASW-B16)Nanjing Weather Radar Open Laboratory Research Fund(BJG201208)Key Technology Projects of China Meteorological Bureau(CMAGJ2014M21)Young Scientists Fund of the Natural Science Foundation of Jiangsu Province(BK2012466)Postgraduate Science and Technology Innovation Project of Jiangsu Province(CXZZ13-0513)Non-Profit Industry Fund by Ministry of Science and Technology of China and Ministry of Water Resources(201201063)Young Scientists Fund of the National Natural Science Foundation of China(41305031)
文摘By using the cloud echoes fi rst successfully observed by China’s indigenous 94-GHz SKY cloud radar, the macrostructure and microphysical properties of drizzling stratocumulus clouds in Anhui Province on 8 June 2013 are analyzed, and the detection capability of this cloud radar is discussed. The results are as follows. (1) The cloud radar is able to observe the time-varying macroscopic and microphysical parameters of clouds, and it can reveal the microscopic structure and small-scale changes of clouds. (2) The velocity spectral width of cloud droplets is small, but the spectral width of the cloud containing both cloud droplets and drizzle is large. When the spectral width is more than 0.4 m s-1, the radar refl ectivity factor is larger (over-10 dBZ). (3) The radar’s sensitivity is comparatively higher because the minimum radar refl ectivity factor is about-35 dBZ in this experiment, which exceeds the threshold for detecting the linear depolarized ratio (LDR) of stratocumulus (commonly -11 to -14 dBZ; decreases with increasing turbulence). (4) After distinguishing of cloud droplets from drizzle, cloud liquid water content and particle eff ective radius are retrieved. The liquid water content of drizzle is lower than that of cloud droplets at the same radar refl ectivity factor.
基金National Meteorological Information Centerfunded by the National Natural Science Foundation of China (Grant No. 40775021)+2 种基金the National Key Basic Research and Development Project of China (Grant No. 2004CB418305)National 863 plans project "Re-search on Application System of Airborne Radar"the meteorological project "Tropical West Pacific Ocean Observation and Predictability"
文摘Millimeter-wavelength radar has proved to be an effective instrument for cloud observation and research. In this study, 8-mm-wavelength cloud radar (MMCR) with Doppler and polarization capabilities was used to investigate cloud dynamics in China for the first time. Its design, system specifications, calibration, and application in measuring clouds associated with typhoon are discussed in this article. The cloud radar measurements of radar reflectivity (Z), Doppler velocity (Vr), velocity spectrum width (Sw) and the depolar-ization ratio (LDR) at vertical incidence were used to analyze the microphysical and dynamic processes of the cloud system and precipitation associated with Typhoon Nuri, which occurred in southern China in August 2008. The results show the reflectivity observed using MMCR to be consistent with the echo height and the melting-layer location data obtained by the nearby China S-band new-generation weather radar (SA), but the Ka-band MMCR provided more detailed structural information about clouds and weak precipitation data than did the SA radar. The variation of radar reflectivity and LDR in vertical structure reveals the transformation of particle phase from ice to water. The vertical velocity and velocity spectrum width of MMCR observations indicate an updraft and strong turbulence in the stratiform cloud layer. MMCR provides a valuable new technology for meteorological research in China.
基金Supported by Horizontal Program of Space Long March Rocket Technology Co. Ltd (500036)
文摘Dual-frequency and multi-polarization spaceborne rain and cloud measuring radar is the inevitable trend of remote sensing techniques.Techniques of new generation dual-frequency and multi-polarization spaceborne rain and cloud measuring radar are studied systematically.Radar block diagram and main parameters are presented.Antenna subsystem scheme is analyzed and antenna parameters are proposed.Central electronic device subsystem scheme is given and data rate of spaceborne radar is calculated.This paper is a meaningful try for carrying out spaceborne rain and cloud measuring radar design,acting as a reference to Chinese spaceborne rain and cloud measuring radar design and production in future.
文摘Based on the data of satellite cloud image and Doppler radar,the rainstorm process from July 31st,2007 to August 1st,2007 in Liaoning was analyzed.The precipitation in Fushun and Haicheng was more than 100 mm,and 6 h precipitation in Fushun and Dandong was more than 50 mm.Through the analysis of strong precipitation period,the structure of clouds had a little decline from the stage of development to maturity.The gray value and gradient degree around were both larger in the center of heavy precipitation.
基金supported by the National Key R&D Program of China (Grant No.2017YFC1502104)the National Natural Science Foundation of China (Grant Nos.41775099 and 41605026)Grant No.NJCAR2016ZD02,and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Assimilation configurations have significant impacts on analysis results and subsequent forecasts. A squall line system that occurred on 23 April 2007 over southern China was used to investigate the impacts of the data assimilation frequency of radar data on analyses and forecasts. A three-dimensional variational system was used to assimilate radial velocity data,and a cloud analysis system was used for reflectivity assimilation with a 2-h assimilation window covering the initial stage of the squall line. Two operators of radar reflectivity for cloud analyses corresponding to single-and double-moment schemes were used. In this study, we examined the sensitivity of assimilation frequency using 10-, 20-, 30-, and 60-min assimilation intervals. The results showed that analysis fields were not consistent with model dynamics and microphysics in general;thus, model states, including dynamic and microphysical variables, required approximately 20 min to reach a new balance after data assimilation in all experiments. Moreover, a 20-min data assimilation interval generally produced better forecasts for both single-and double-moment schemes in terms of equitable threat and bias scores. We conclude that a higher data assimilation frequency can produce a more intense cold pool and rear inflow jets but does not necessarily lead to a better forecast.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41775032 and 41275040)
文摘A cloud clustering and classification algorithm is developed for a ground-based Ka-band radar system in the vertically pointing mode. Cloud profiles are grouped based on the combination of a time–height clustering method and the k-means clustering method. The cloud classification algorithm, developed using a fuzzy logic method, uses nine physical parameters to classify clouds into nine types: cirrostratus, cirrocumulus, altocumulus, altostratus, stratus, stratocumulus, nimbostratus,cumulus or cumulonimbus. The performance of the clustering and classification algorithm is presented by comparison with all-sky images taken from January to June 2014. Overall, 92% of the cloud profiles are clustered successfully and the agreement in classification between the radar system and the all-sky imager is 87%. The distribution of cloud types in Beijing from January 2014 to December 2017 is studied based on the clustering and classification algorithm. The statistics show that cirrostratus clouds have the highest occurrence frequency(24%) among the nine cloud types. High-level clouds have the maximum occurrence frequency and low-level clouds the minimum occurrence frequency.
基金Project supported by the Special Foundation for China Nonprofit Industry (Grant No. GYHY200706036)the National Excellent Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 40825008)the National Basic Research Program of China (Grant No. 2010CB833406)
文摘From first principles, we find that the radar threshold reflectivity between nonprecipitating clouds and precipitating clouds is strongly related to not only the cloud droplet number concentration but also the spectral dispersion of cloud droplet size distributions. The further investigation indicates that the threshold value is an increasing function of spectral dispersion and cloud droplet number concentration. These results may improve our understanding of the cloud-precipitation interaction and the aerosol indirect effect.
文摘[Objective] The aim was to summarize the characteristics of refelectivity factors of Doppler radar of the cold front cloud system. [Method] Judging from the characteristics of reflectivity factors, by dint of the new generation weather radar in Harbin from 2002 to 2007, the features of the reflectivity factors of the cold front cloud system were summarized. [Result] The cloud formed by the cold front was in banded form in general. However, there was void in the cloud and its intensity was uneven. Most fast moving cold front was long and narrow banded echo and basically the radial velocity turned from northwest wind to southwest. With the changes of month, the feature of the reflective rate also changed. In winter, the cold front cloud was in layer form. The feature of the reflectivity factors was weak and in large area. However, the structure was loose and there was space in the echo. Among them, there were several strong echoes. Strong convection cell echo formed in the two sides of the cold front, and it moved with the entire cloud belt. When the dry cold front moved, regional strong convective current formed, mainly by convective cloud and small echo area. Generally, the changes of the wind direction can not be expounded from the radial velocity. However, the intensity of the convection cell was distinct, 'three-body scattering', 'side lobe echo', and 'weak echo', as well as features of super convection cell. [Conclusion] The study provided positive role for the application of Doppler radar in the surveillance of weather in Heilongjiang Province.
基金supported by the WWMPP, which is funded by the State of Wyomingfunded by the National Science Foundation grant AGS-1058426Dr. MIAO Qun is partially sponsored by K.C.Wong Magna Fund in Ningbo University
文摘Data from in situ probes and a vertically-pointing ram-wave Doppler radar aboard a research aircraft are used to study the cloud microphysical effect of glaciogenic seeding of cold-season orographic clouds. A previous study (Geerts et al., 2010) has shown that radar reflectivity tends to be higher during seeding periods in a shallow layer above the ground downwind of ground-based silver iodide (AgI) nuclei generators. This finding is based on seven flights, conducted over a mountain in Wyoming (the Unites States), each with a no-seeding period followed by a seeding period. In order to assess this impact, geographically fixed flight tracks were flown over a target mountain, both upwind and downwind of the AgI generators. This paper examines data from the same flights for further evidence of the cloud seeding impact. Com- posite radar data show that the low-level reflectivity increase is best defined upwind of the mountain crest and downwind of the point where the cloud base intersects the terrain. The main argument that this increase can be attributed to AgI seeding is that it is confined to a shallow layer near the ground where the flow is turbulent. Yet during two flights when clouds were cumuliform and coherent updrafts to flight level were recorded by the radar, the seeding impact was evident in the flight-level updrafts (about 610 m above the mountain peak) as a significant increase in the ice crystal appears short-lived as it is not apparent just downwind of concentration in all size bins. The seeding effect the crest.