Clouds are crucial regulators of both weather and climate. Properties such as the amount,type,height,distribution and movement of them have an impact on the earth's radiation budget and the hydrological cycle,thus...Clouds are crucial regulators of both weather and climate. Properties such as the amount,type,height,distribution and movement of them have an impact on the earth's radiation budget and the hydrological cycle,thus cloud observation is very important. The disadvantages of zenith pointing measuring instruments and whole sky visible imagers limit the application of them.A summary of the actuality and application of ground-based whole sky infrared cloud measuring instruments and analyses of the techniques of radiometric calibrations,removal of atmospheric emission and calculation of cloud cover,amount,type are conducted to promote the automatically observation of the whole sky. Fully considering whole sky infrared cloud sounding theories,techniques and applications,there are still a lot of studies on improving the properties of instruments,enhancing the techniques of cloud base height measurements and establishing instrumental cloud classification criterion before actual operations.展开更多
It has been several years since the Greenhouse Gases Observing Satellite (GOSAT) began to observe the distribution of CO2 and CH4 over the globe from space. Results from Thermal and Near-infrared Sensor for Carbon O...It has been several years since the Greenhouse Gases Observing Satellite (GOSAT) began to observe the distribution of CO2 and CH4 over the globe from space. Results from Thermal and Near-infrared Sensor for Carbon Observation-Cloud and Aerosol Imager (TANSO-CAI) cloud screening are necessary for the retrieval of CO2 and CH4 gas concentrations for GOSAT TANSO-Fourier Transform Spectrometer (FTS) observations. In this study, TANSO-CAI cloud flag data were compared with ground-based cloud data collected by an all-sky imager (ASI) over Beijing from June 2009 to May 2012 to examine the data quality. The results showed that the CAI has an obvious cloudy tendency bias over Beijing, especially in winter. The main reason might be that heavy aerosols in the sky are incorrectly determined as cloudy pixels by the CAI algorithm. Results also showed that the CAI algorithm sometimes neglects some high thin cirrus cloud over this area.展开更多
基金supported by National Natural Science Foundation of China ( Grant No. 41575024 and Grant No. 41205125)
文摘Clouds are crucial regulators of both weather and climate. Properties such as the amount,type,height,distribution and movement of them have an impact on the earth's radiation budget and the hydrological cycle,thus cloud observation is very important. The disadvantages of zenith pointing measuring instruments and whole sky visible imagers limit the application of them.A summary of the actuality and application of ground-based whole sky infrared cloud measuring instruments and analyses of the techniques of radiometric calibrations,removal of atmospheric emission and calculation of cloud cover,amount,type are conducted to promote the automatically observation of the whole sky. Fully considering whole sky infrared cloud sounding theories,techniques and applications,there are still a lot of studies on improving the properties of instruments,enhancing the techniques of cloud base height measurements and establishing instrumental cloud classification criterion before actual operations.
基金support from the Strategic Pilot Science and Technology project of the Chinese Academy of Sciences(Grant No.XDA05040200)the National Natural Science Foundation of China(Grant No.41275040)
文摘It has been several years since the Greenhouse Gases Observing Satellite (GOSAT) began to observe the distribution of CO2 and CH4 over the globe from space. Results from Thermal and Near-infrared Sensor for Carbon Observation-Cloud and Aerosol Imager (TANSO-CAI) cloud screening are necessary for the retrieval of CO2 and CH4 gas concentrations for GOSAT TANSO-Fourier Transform Spectrometer (FTS) observations. In this study, TANSO-CAI cloud flag data were compared with ground-based cloud data collected by an all-sky imager (ASI) over Beijing from June 2009 to May 2012 to examine the data quality. The results showed that the CAI has an obvious cloudy tendency bias over Beijing, especially in winter. The main reason might be that heavy aerosols in the sky are incorrectly determined as cloudy pixels by the CAI algorithm. Results also showed that the CAI algorithm sometimes neglects some high thin cirrus cloud over this area.