In order to develop the liquid phase sintering process of WC-Ni3Al-B composites,the preparation process of WC+Ni3Al prealloyed powder by reaction synthesis of carbonyl Ni,analytical purity Al and coarse WC powders wa...In order to develop the liquid phase sintering process of WC-Ni3Al-B composites,the preparation process of WC+Ni3Al prealloyed powder by reaction synthesis of carbonyl Ni,analytical purity Al and coarse WC powders was investigated.DSC and XRD were adopted to study the procedure of phase transformation for the 3Ni+Al and 70%WC+(3Ni+Al) mixed powders in temperature ranges of 550-1200 °C and 25-1400 °C,respectively.The results demonstrate that the formation mechanism of Ni3Al depends on the reaction temperature.Besides WC phase,there exist Ni2Al3,NiAl and Ni3Al intermetallics in the powder mixture after heat treatment at 200-660 °C,while only NiAl and Ni3Al exist at 660-1100 °C.Homogeneous WC+Ni3Al powder mixture can be obtained in the temperature range of 1100-1200 °C.The WC-30%(Ni3Al-B) composites prepared from the mixed powders by conventional powder metallurgy technology show nearly full density and the shape of WC is round.WC-30%(Ni3Al-B) composites exhibit higher hardness of 9.7 GPa,inferior bending strength of 1800 MPa and similar fracture toughness of 18 MPa-m1/2 compared with commercial cemented carbides YGR45(WC-30%(Co-Ni-Cr)).展开更多
It was shown by TEM and X-ray analysis that there are four types of grains of the main Ni3Al phase in the structure of the intermetallic obtained by the self-propagation high temperature method (SHS). Every type of gr...It was shown by TEM and X-ray analysis that there are four types of grains of the main Ni3Al phase in the structure of the intermetallic obtained by the self-propagation high temperature method (SHS). Every type of grains has its own domain and dislocation structure. There are mono- and polydomains with and without dislocations. The grains of the main phase of monoand polydomains without dislocations and polydomains with dislocations were formed by diffusion in the solid phase. In these conditions NiAl3 phase is located on the grain boundary of the main phase. The Ni2Al3 phase is located at the triple joints of the main phase.展开更多
A series of single bcc,bcc plus fcc duplex and single fcc microcrystalline coatings of 1Cr18Ni9Ti stainless steel were prepared by using sputtering technique.The resistance against pitting corrosion was studied by mea...A series of single bcc,bcc plus fcc duplex and single fcc microcrystalline coatings of 1Cr18Ni9Ti stainless steel were prepared by using sputtering technique.The resistance against pitting corrosion was studied by measurements of pitting corrosion potentials and electrochemical noise during initiation of corrosion pits.The results show that the sputtered coatings with single bcc phase or single fcc structure are more resistant to pitting corrosion than those with bcc plus fcc duplex phase structure.展开更多
The effect of trace amount of active element Si on the wetting and interface characteristics of 1Cr18Ni11Nb/TiO was investigated. Based on the results, a new binder phase for TiO based cermets imitated gold materials ...The effect of trace amount of active element Si on the wetting and interface characteristics of 1Cr18Ni11Nb/TiO was investigated. Based on the results, a new binder phase for TiO based cermets imitated gold materials was developed, and the related mechanisms were studied. The results indicated that there was small wet-ability of the 1Cr18Ni11Nb alloy on TiO, and the interface binding strength of 1Cr18Ni11Nb/TiO was low. 1.5%Si in 1Cr18Ni11Nb could not only make the alloy wet TiO, but also lead to mutual dissolving near the interface, forming high interface binding strength and matching with the thermal expansion coefficient of TiO.展开更多
FeAl/TiC composites were fabricated by reactive hot pressing blended elemental powders. The effects of TiC content, composition of the binder phase and Ni alloying on the densification process and mechanical propertie...FeAl/TiC composites were fabricated by reactive hot pressing blended elemental powders. The effects of TiC content, composition of the binder phase and Ni alloying on the densification process and mechanical properties of the composites were studied. The results show that the densities of the composites decrease with the increase of TiC content. Closely related with their porosities and flaw densities, the hardness and bend strength of the composites show peak values with the increase of TiC content. Higher content of Al in the binder phase was beneficial to densification, however it deteriorates the mechanical properties of the composites. The addition of Ni significantly improves the densities of the composites by enhancing matter transfer in the binder phase. By alloying with Ni, the mechanical properties of the composites are greatly improved due to the increase of the density, together with solid solution-strengthening the binder phase and promoting ductile fracture of FeAl.展开更多
基金Project (2012CB723906) supported by the National Basic Research Program of China
文摘In order to develop the liquid phase sintering process of WC-Ni3Al-B composites,the preparation process of WC+Ni3Al prealloyed powder by reaction synthesis of carbonyl Ni,analytical purity Al and coarse WC powders was investigated.DSC and XRD were adopted to study the procedure of phase transformation for the 3Ni+Al and 70%WC+(3Ni+Al) mixed powders in temperature ranges of 550-1200 °C and 25-1400 °C,respectively.The results demonstrate that the formation mechanism of Ni3Al depends on the reaction temperature.Besides WC phase,there exist Ni2Al3,NiAl and Ni3Al intermetallics in the powder mixture after heat treatment at 200-660 °C,while only NiAl and Ni3Al exist at 660-1100 °C.Homogeneous WC+Ni3Al powder mixture can be obtained in the temperature range of 1100-1200 °C.The WC-30%(Ni3Al-B) composites prepared from the mixed powders by conventional powder metallurgy technology show nearly full density and the shape of WC is round.WC-30%(Ni3Al-B) composites exhibit higher hardness of 9.7 GPa,inferior bending strength of 1800 MPa and similar fracture toughness of 18 MPa-m1/2 compared with commercial cemented carbides YGR45(WC-30%(Co-Ni-Cr)).
文摘It was shown by TEM and X-ray analysis that there are four types of grains of the main Ni3Al phase in the structure of the intermetallic obtained by the self-propagation high temperature method (SHS). Every type of grains has its own domain and dislocation structure. There are mono- and polydomains with and without dislocations. The grains of the main phase of monoand polydomains without dislocations and polydomains with dislocations were formed by diffusion in the solid phase. In these conditions NiAl3 phase is located on the grain boundary of the main phase. The Ni2Al3 phase is located at the triple joints of the main phase.
文摘A series of single bcc,bcc plus fcc duplex and single fcc microcrystalline coatings of 1Cr18Ni9Ti stainless steel were prepared by using sputtering technique.The resistance against pitting corrosion was studied by measurements of pitting corrosion potentials and electrochemical noise during initiation of corrosion pits.The results show that the sputtered coatings with single bcc phase or single fcc structure are more resistant to pitting corrosion than those with bcc plus fcc duplex phase structure.
文摘The effect of trace amount of active element Si on the wetting and interface characteristics of 1Cr18Ni11Nb/TiO was investigated. Based on the results, a new binder phase for TiO based cermets imitated gold materials was developed, and the related mechanisms were studied. The results indicated that there was small wet-ability of the 1Cr18Ni11Nb alloy on TiO, and the interface binding strength of 1Cr18Ni11Nb/TiO was low. 1.5%Si in 1Cr18Ni11Nb could not only make the alloy wet TiO, but also lead to mutual dissolving near the interface, forming high interface binding strength and matching with the thermal expansion coefficient of TiO.
基金Project(96JJY2009) supported by the Natural Science Foundation of Hunan Province
文摘FeAl/TiC composites were fabricated by reactive hot pressing blended elemental powders. The effects of TiC content, composition of the binder phase and Ni alloying on the densification process and mechanical properties of the composites were studied. The results show that the densities of the composites decrease with the increase of TiC content. Closely related with their porosities and flaw densities, the hardness and bend strength of the composites show peak values with the increase of TiC content. Higher content of Al in the binder phase was beneficial to densification, however it deteriorates the mechanical properties of the composites. The addition of Ni significantly improves the densities of the composites by enhancing matter transfer in the binder phase. By alloying with Ni, the mechanical properties of the composites are greatly improved due to the increase of the density, together with solid solution-strengthening the binder phase and promoting ductile fracture of FeAl.