The Co-Cr-W ternary system was critically assessed using the CALPHAD technique.The solution phases including the liquid,γ-Co,ε-Co and α-Cr were described by a substitutional solution model.The σ,μ and R phases we...The Co-Cr-W ternary system was critically assessed using the CALPHAD technique.The solution phases including the liquid,γ-Co,ε-Co and α-Cr were described by a substitutional solution model.The σ,μ and R phases were described by three-sublattice models of(Co,W)8(Cr,W)4(Co,Cr,W)18,(Co,Cr,W)7W2(Co,Cr,W)4 and(Co,W)27(Cr,W)14(Co,Cr,W)12,respectively,in order to reproduce their homogeneity ranges.A self-consistent set of thermodynamic parameters for each phase was derived.The calculated isothermal sections at 1 000,1 200 and 1 350 ℃ are in good agreement with the experimental data.A eutectoid reaction of R μ+γ-Co+σ in this ternary system was predicted to occur at 1 022 ℃.展开更多
The nucleation,variant selection,and orientation dependence of the strain-induced martensitic transformation(SIMT)process in biomedical Co-Cr-W-Ni alloys were investigated.The experimental results show that theε-hexa...The nucleation,variant selection,and orientation dependence of the strain-induced martensitic transformation(SIMT)process in biomedical Co-Cr-W-Ni alloys were investigated.The experimental results show that theε-hexagonal-close-packed phase was preferentially formed at theΣ3 twin boundaries and high-angle grain boundaries during the tensile process.The theoretical analysis shows that the variant selection of SIMT is governed by Schmid’s law.However,the SIMTedε-phase did not form equally on the two sides of the annealing twins,even though they had the same Schmid factor.This phenomenon is related to the mechanical work developed by the formation of theε-phase.Only the side which has both high Schmid factor and high mechanical work can initiate the SIMT process.A strong<111>fiber texture was formed,and theε-variants tended to appear in grains with orientations close to the<111>and<100>directions during the tensile process.These results can provide theoretical guidance for controlling the SIMT process of Co-Cr-W-Ni alloys to fabricate more reliable stents.展开更多
基金Project(50771027)supported by the National Basic Research Program of ChinaProject(50771027)supported by the National Natural Science Foundation of China
文摘The Co-Cr-W ternary system was critically assessed using the CALPHAD technique.The solution phases including the liquid,γ-Co,ε-Co and α-Cr were described by a substitutional solution model.The σ,μ and R phases were described by three-sublattice models of(Co,W)8(Cr,W)4(Co,Cr,W)18,(Co,Cr,W)7W2(Co,Cr,W)4 and(Co,W)27(Cr,W)14(Co,Cr,W)12,respectively,in order to reproduce their homogeneity ranges.A self-consistent set of thermodynamic parameters for each phase was derived.The calculated isothermal sections at 1 000,1 200 and 1 350 ℃ are in good agreement with the experimental data.A eutectoid reaction of R μ+γ-Co+σ in this ternary system was predicted to occur at 1 022 ℃.
基金financially supported by the National Key R&D Program of China(No.2017 YFA 0403804).
文摘The nucleation,variant selection,and orientation dependence of the strain-induced martensitic transformation(SIMT)process in biomedical Co-Cr-W-Ni alloys were investigated.The experimental results show that theε-hexagonal-close-packed phase was preferentially formed at theΣ3 twin boundaries and high-angle grain boundaries during the tensile process.The theoretical analysis shows that the variant selection of SIMT is governed by Schmid’s law.However,the SIMTedε-phase did not form equally on the two sides of the annealing twins,even though they had the same Schmid factor.This phenomenon is related to the mechanical work developed by the formation of theε-phase.Only the side which has both high Schmid factor and high mechanical work can initiate the SIMT process.A strong<111>fiber texture was formed,and theε-variants tended to appear in grains with orientations close to the<111>and<100>directions during the tensile process.These results can provide theoretical guidance for controlling the SIMT process of Co-Cr-W-Ni alloys to fabricate more reliable stents.