期刊文献+
共找到11,773篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of Heat-treatment Temperature on Eu^(3+) and Li^+ Co-doped ZnO Photoluminescence by Sol-gel Process 被引量:1
1
作者 卢忠远 HE +5 位作者 Fangfang 许丕池 TENG Yuancheng WANG Bing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第1期20-23,共4页
The photoluminescence (PL) characteristics of Eu^3+ and Li^+ co-doped ZnO PL materials against heat-treatment temperature were discussed. The PL xerogel and powder samples were prepared by solgel process. The emis... The photoluminescence (PL) characteristics of Eu^3+ and Li^+ co-doped ZnO PL materials against heat-treatment temperature were discussed. The PL xerogel and powder samples were prepared by solgel process. The emission spectra of all samples showed two broad bands peaking at 590 nm and 620 nm under UV-Vis excitation. But the relative intensity of red PL (620 nm) was much greater than that of green PL (590 nm) of the same sample, that s to say, the red color was the main luminescence. With heat-treatment temperature increase, the two kinds of colors PL intensity decreased, and both the red and green PL intensity of the xerogel samples was much greater than those of powder samples respectively. The XRD patterns revealed that Eu^3+ ions were successfully incorporated in ZnO crystals in xerogel samples. When heat-treatment temperature reached 350 ℃, the Eu^3+ began to separate out of the ZnO crystals and Eu2O3 crystals came into being. When the powder sample was subjected to UV-Vis excitation, the energy transfered from the host ZnO emission to Eu^3+ became weaker than the xerogel sample. 展开更多
关键词 PHOTOLUMINESCENCE Eu^3+ and Li^+ co-doped zno UV-Vis excitation xerogel powder
下载PDF
Infrared emissivities of Mn,Co co-doped ZnO powders 被引量:1
2
作者 姚银华 曹全喜 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期263-268,共6页
Infrared emissivities of Zn0.99-xMn0.01CoxO (x = 0.00, 0.01, 0.03, 0.05) powders synthesized at different calcination temperatures by solid-state reaction are investigated. Their phases, morphologies, UV absorption ... Infrared emissivities of Zn0.99-xMn0.01CoxO (x = 0.00, 0.01, 0.03, 0.05) powders synthesized at different calcination temperatures by solid-state reaction are investigated. Their phases, morphologies, UV absorption spectra, and infrared emissivities are studied by XRD, SEM, UV spectrophotometer, and an IR-2 dual-band infrared emissometer in a range of 8 μm-14 μm. Doped ZnO still has a wurtzite structure, and no peaks of other phases originating from impurities are detected. The optical band-gap decreases as the Co content and calcination temperature ascend, and of which the smallest optical band gap is 2.19 eV. The lowest infrared emissivity, 0.754, is observed in Zn0.98Mn0.01Co0.01O with the increase in Co concentration. The infrared emissivity experiences fluctuations as the calcination temperature increases, and its minimum value is 0.762 at 1100 ℃. 展开更多
关键词 co-doped zno optical band gap infrared emissivity solid-state reaction
下载PDF
Effect of oxygen vacancy defect on the magnetic properties of Co-doped ZnO 被引量:1
3
作者 翁臻臻 张健敏 +1 位作者 黄志高 林文雄 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第2期422-427,共6页
The influence of oxygen vacancy on the magnetism of Co-doped ZnO has been investigated by the first-principles calculations. It is suggested that oxygen vacancy and its location play crucial roles on the magnetic prop... The influence of oxygen vacancy on the magnetism of Co-doped ZnO has been investigated by the first-principles calculations. It is suggested that oxygen vacancy and its location play crucial roles on the magnetic properties of Co-doped ZnO. The exchange coupling mechanism should account for the magnetism in Co-doped ZnO with oxygen vacancy and the oxygen vacancy is likely to be close to the Co atom. The oxygen vacancy (doping electrons) might be available for carrier mediation but is localized with a certain length and can strengthen the ferromagnetic exchange interaction between Co atoms. 展开更多
关键词 co-doped zno oxygen vacancy FERROMAGNETISM
下载PDF
Structural and Optical Properties of Cu2+ + Ce3+ Co-Doped ZnO by Solution Combustion Method 被引量:3
4
作者 S. López-Romero M. J. Quiroz Jiménez M. García-Hipólito 《World Journal of Condensed Matter Physics》 CAS 2016年第4期300-309,共10页
In this work, ZnO, Ce<sup>3+</sup> doped ZnO (ZnO/Ce<sup>3+</sup>) and Cu<sup>2+</sup> + Ce<sup>3+</sup> co-doped ZnO (ZnO/Cu<sup>2+</sup> + Ce<sup>3+&... In this work, ZnO, Ce<sup>3+</sup> doped ZnO (ZnO/Ce<sup>3+</sup>) and Cu<sup>2+</sup> + Ce<sup>3+</sup> co-doped ZnO (ZnO/Cu<sup>2+</sup> + Ce<sup>3+</sup> ) solid solutions powders were synthesized by a solution combustion method maintaining the Ce<sup>3+</sup> ion concentration constant in 3%Wt while the Cu<sup>2+</sup> ion concentration was varied in 1, 2, 3, 10 and 20%Wt. After its synthesis, all the samples were annealed at 900?C by 24 h. The ZnO, ZnO/Ce<sup>3+</sup> and ZnO/Cu<sup>2+</sup> + Ce<sup>3+</sup> powders were structurally characterized using X-ray diffraction (XRD) technique, and the XRD patterns showed that for pure ZnO, Cu<sup>2+</sup> undoped ZnO/Ce<sup>3</sup><sup>+</sup> and ZnO/Ce<sup>3+</sup> doped with the Cu<sup>2+</sup> ion, the three samples exhibited the hexagonal wurtzite ZnO crystalline structure. However, the morphology and particle size of both samples were observed by means of a scanning electron microscopy (SEM);from SEM image, it is observed that the crystallites of both samples are agglomerated forming bigger amorphous particles with an approximate average size of 1 μm. In addition, the photoluminescence of the ZnO, Ce<sup>3+</sup> doped ZnO and Cu<sup>2+</sup> + Ce<sup>3+</sup> doped ZnO samples was measurement under an illumination of 209 nm wavelength (UV region): for the ZnO/Ce<sup>3+</sup> sample, your emission spectrum is in the visible region from blue color until red color;the UV band of the ZnO is suppressed. The multicolor emission visible is attributed to the Ce<sup>3+</sup> ion photoluminescence, while for the ZnO/Cu<sup>2+</sup> + Ce<sup>3+</sup>, its emission PL spectrum is quenching by the Cu<sup>2+</sup> ion, present in the ZnO crystalline. 展开更多
关键词 Structural and Optical Properties of Cu2+ + Ce3+ co-doped zno by Solution Combustion Method
下载PDF
Influence of reducing anneal on the ferromagnetism in single crystalline Co-doped ZnO thin films
5
作者 路忠林 邹文琴 +1 位作者 徐明祥 张凤鸣 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第5期406-411,共6页
This paper reports that the high-quality Co-doped ZnO single crystalline films have been grown on a-plane sapphire substrates by using molecular-beam epitaxy. The as-grown films show high resistivity and non-ferromagn... This paper reports that the high-quality Co-doped ZnO single crystalline films have been grown on a-plane sapphire substrates by using molecular-beam epitaxy. The as-grown films show high resistivity and non-ferromagnetism at room temperature, while they become more conductive and ferromagnetic after annealing in the reducing atmosphere either in the presence or absence of Zn vapour. The x-ray absorption studies indicate that all Co ions in these samples actually substituted into the ZnO lattice without formatting any detectable secondary phase. Compared with weak ferromagnetism (0.16 μB/Co2+) in the Zno.95 Co0.05 O single crystalline film with reducing annealing in the absence of Zn vapour, the films annealed in the reducing atmosphere with Zn vapour are found to have much stronger ferromagnetism (0.65 μB/Co2+) at room temperature. This experimental studies clearly indicate that Zn interstitials are more effective than oxygen vacancies to activate the high-temperature ferromagnetism in Co-doped ZnO films, and the corresponding ferromagnetic mechanism is discussed. 展开更多
关键词 co-doped zno diluted magnetic semiconductors x-ray absorption fine structure single crystalline thin films
下载PDF
Room Temperature Ferromagnetismin Co-doped ZnO Bulks
6
作者 Long Peng Huai-Wu Zhang +1 位作者 Qi-Ye Wen John Q- Xiao 《Journal of Electronic Science and Technology of China》 2007年第4期293-295,共3页
Pure single phase of Zn0.95Co0.05O bulks were successfully prepared by solid-state reaction method. The effects of annealing atmosphere and temperature on the room temperature ferromagnetic behavior were investigated.... Pure single phase of Zn0.95Co0.05O bulks were successfully prepared by solid-state reaction method. The effects of annealing atmosphere and temperature on the room temperature ferromagnetic behavior were investigated. The results show that the air-annealed samples has similar weak ferromagnetic behavior with the as-sintered samples, but the obvious ferromagnetic behavior is observed for the samples annealed in vacuum or Ar/H2 gas, indicating that the strong ferromagnetism is associated with high oxygen vacancies density. High saturation magnetization Ms=0.73 μB/Co and coercivity Hc=233.8Oe are obtained for the Ar/H2 annealed samples with pure single phase structure when annealing temperature is 600℃. 展开更多
关键词 co-doped zno diluted magnetic semiconductors FERROMAGNETISM spin electronics.
下载PDF
Synthesis and photoluminescence of Y and Cd co-doped ZnO nanopowder 被引量:1
7
作者 宋季岭 郑佳红 +2 位作者 赵真 周柏玉 连建设 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2336-2340,共5页
Y and Cd co-doped ZnO nanopowders were prepared via chemical precipitation method in order to modify the band gap and increase the luminescent intensity. The structures and optical properties of the as-synthesized sam... Y and Cd co-doped ZnO nanopowders were prepared via chemical precipitation method in order to modify the band gap and increase the luminescent intensity. The structures and optical properties of the as-synthesized samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL). The effects of Y and Cd ions on the optical properties of the samples were studied. Doping of Y into ZnO evidently increases the intensity of UV emission, or co-doping of Y and Cd enhances the UV emission, narrows the band gap of ZnO and hence red shifts the UV emission at the same time. Therefore, Y and Cd co-doped ZnO nanopowders exhibit an intense violet emission in the room temperature PL spectrum, which could be a potential candidate material for optoelectronic applications. 展开更多
关键词 zno nanopowders chemical precipitation optical properties
下载PDF
Influenza of the Cu Ion on the Structural and Optical Properties in Cu + Ce Co-Doped ZnO Compounds
8
作者 S. López-Romero M. J. Quiroz Jiménez +1 位作者 M. García-Hipólito J. Chávez-Ramírez 《World Journal of Condensed Matter Physics》 2017年第2期47-55,共9页
This article showed and explained the effects of the Cu2+ ions on the structural and photoluminescent properties of Ce3+ doped ZnO compounds (ZnO: Ce3+) in Cu2+ + Ce3+ co-doped ZnO (ZnO: Cu2+ + Ce3+) solid solutions p... This article showed and explained the effects of the Cu2+ ions on the structural and photoluminescent properties of Ce3+ doped ZnO compounds (ZnO: Ce3+) in Cu2+ + Ce3+ co-doped ZnO (ZnO: Cu2+ + Ce3+) solid solutions powders. The samples were synthesized by a solution combustion method maintaining the Ce3+ ion concentration constant in 3%wt and varying the Cu2+ ion concentration in 0%wt, 1%wt, 2%wt, 3%wt, 10%wt and 20%wt. However, pristine ZnO and Ce3+ doped ZnO were synthesized by the same method for comparison. After the synthesis process all the samples were annealed at 900°C by 24 h. The pure ZnO, ZnO: Ce3+ and ZnO/Cu2+ + Ce3 powders were structurally characterized using X-ray diffraction (XRD) technique, the XRD patterns showed that for either undoped and doped with the Cu2+ ion both exhibited the hexagonal wurtzite ZnO crystalline structure, also the diffraction peaks of both samples types showed a little change toward lesser angles. The morphology and particle size of the samples were observed by means of a scanner electron microscopy (SEM);from SEM imagen is observed that the crystallites of the samples are agglomerated forming cage-like hollow structures caused by the combustion process. The cage-like structures have approximate size of 800 nm. In addition, the photoluminescence of pure ZnO, ZnO: Ce3+and ZnO: Cu2+ + Ce3+ compounds was measurement as a function of Cu2+ ion concentration under a excitation wavelength of 378 nm in the UV region. As an important result, it is observed that by Auger phenomena of non-radiative recombination, the UV emission of the ZnO is quenching. 展开更多
关键词 ZINC OXIDE Copper-Cerium co-doped Solution-Combustion
下载PDF
Synergistic enhancement of photocatalytic and antimicrobial efficacy of nitrogen and erbium co-doped ZnO nanoparticles 被引量:1
9
作者 Sudipta Mondal Moniruzzaman Jamal +2 位作者 Sikder Ashikuzzaman Ayon Md Jannatul Ferdous Anik Md Muktadir Billah 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第5期859-868,I0002,共11页
Using the chemical co-precipitation approach,a series of nitrogen(N) and erbium(Er) co-doped ZnO nanoparticles(NPs) was effectively synthesized to enhance the photocatalytic and antibacterial activities.Several charac... Using the chemical co-precipitation approach,a series of nitrogen(N) and erbium(Er) co-doped ZnO nanoparticles(NPs) was effectively synthesized to enhance the photocatalytic and antibacterial activities.Several characterization techniques,including X-ray diffraction(XRD),X-ray photoelectron spectro scopy(XPS),scanning electron microscopy(SEM),UV-vis,and photoluminescence(PL) spectroscopy,were carried out to validate the evaluated photocatalytic and antibacterial activities.XRD analysis confirms the pure wurtzite ZnO phase without the presence of any secondary phase.XPS analysis confirms the succe ssful incorporation of nitrogen and erbium into the ZnO matrix.The optical bandgap of ZnO calculated from UV-vis spectroscopy shows a redshift after Er-N co-doping,with the lowest bandgap of 3.215 eV calculated for Zn_(0.97)Er_(0.03)N_(0.01)O_(0.99) NPs.SEM images demonstrate the formation of nanorods after N-Er co-doping,followed by gradually increase d rod diameter and length after N-Er co-doping.Moreover,the photocatalytic activities of ZnO samples we re measured by their ability to facilitate the photodegradation of Rhodamine B under UV irradiation.ZnO with 1 mol% N doping exhibits 88% photodegradation of RhB under UV light within 360 min,and the photodegradation and antibacterial activity are greatly improved with Er co-doping.In fact,3 mol% Er-1 mol% N doped ZnO NPs demonstrate the highest photocatalytic activity,with approximately 96% degradation after 360 min,as well as superior antibacterial activity against Staphylococcus aureus(Gram-positive bacteria) and Pseudomonas aeruginosa(Gram-negative bacteria) with the highest zone of inhibition(ZOI) of 16 nm,due to nanorod formation,increased reactive oxygen species(ROS),and decreased electron-hole recombination,as validated by SEM,XPS,and PL spectroscopy. 展开更多
关键词 Chemical co-precipitation co-dopING Bandgap PHOTOCATALYSIS Rare earths ANTIMICROBIAL
原文传递
Fabrication of La,Ce co-doped ZnO nanorods for improving photodegradation of methylene blue
10
作者 Erfan Hakim Azmal Zaid Jin-Chung Sin +1 位作者 Sze-Mun Lam Abdul Rahman Mohamed 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第1期76-83,I0003,共9页
La,Ce co-doped ZnO nanorods(ZnLC)were synthesized through a one-step solvothermal route.The photocatalysts were characterized by X-ray diffraction,Raman spectroscopy,field-emission scanning electron microscopy,energy ... La,Ce co-doped ZnO nanorods(ZnLC)were synthesized through a one-step solvothermal route.The photocatalysts were characterized by X-ray diffraction,Raman spectroscopy,field-emission scanning electron microscopy,energy dispersive X-ray,transmission electron microscopy,UV-vis diffuse reflectance spectroscopy and photo luminescence spectroscopy.The La and Ce doping enhanced the visible light absorption ability of ZnLC and a red shift was detected for ZnLC.Under simulated solar light irradiation,the ZnO doped with 3 at%La and 1 at%Ce(ZnLC1)degrades methylene blue(MB)more effectively than those of pure ZnO,La-doped ZnO(ZnL)and commercially available ZnO.The improved photocatalytic performance of ZnLC1 can be attributed to the high charge separation efficiency as demonstrated by the photoluminescence spectra.Additionally,the photocatalytic experiments reveal that several parameters have their own impact on the MB degradation.Using a variety of radical scavengers,it is discovered that superoxide anion radical plays a crucial role in the degradation of MB.The ZnLC1 is also reused several times without noticeable decrease of photoactivity,indicating that it has a substantial potential for environmental remediation applications. 展开更多
关键词 zno LANTHANUM CERIUM co-dopING PHOTODEGRADATION Rare earths
原文传递
Rare earth(Gd,La) co-doped ZnO nanoflowers for direct sunlight driven photocatalytic activity 被引量:8
11
作者 Baskaran Palanivel Romulo R.Macadangdang Jr +4 位作者 Md Shahadat Hossain Fahad A.Alharthi Mohanraj Kumar Jih-Hsing Chang Sreedevi Gedi 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第1期77-84,共8页
In this work Gd/La@ZnO nanoflower photocatalyst was successfully synthesized by a co-precipitation method and applied for rhodamine B(Rh B) and tetracycline(TCN) degradation under direct sunlight irradiation.The dopin... In this work Gd/La@ZnO nanoflower photocatalyst was successfully synthesized by a co-precipitation method and applied for rhodamine B(Rh B) and tetracycline(TCN) degradation under direct sunlight irradiation.The doping of rare earth elements extends the optical absorption wavelength of ZnO from UV region(390 nm) to visible-light region(401 nm).In addition,the co-doped ZnO nanoflower exhibits a lower charge recombination efficiency which was confirmed by photoluminescence emission analysis.Moreover,the co-doped ZnO nanoflower exhibits the maximum degradation efficiency of 91% for Rh B and 74% for TCN under sunlight irradiation.The calculated synergistic index of co-doped ZnO is higher than that of the pure ZnO.Reactive radicals’ production was confirmed by terephthalic acid(TA) and nitro-blue tetrazolium(NBT) tests.The holes and hydroxyl(·OH) radicals play the major role in degradation reaction and it was confirmed by scavenger’s test.Moreover,the recycling test confirms the stability of the photocatalyst. 展开更多
关键词 GD LA zno Nanoflower PHOTOCATALYST SUNLIGHT
原文传递
Vacancy defect MoSeTe embedded in N and F co-doped carbon skeleton for high performance sodium ion batteries and hybrid capacitors
12
作者 Dehui Yang Wentao Guo +6 位作者 Fei Guo Jiaming Zhu Gang Wang Hui Wang Guanghui Yuan Shenghua Ma Beibei Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期652-664,I0014,共14页
Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.Howev... Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.However,developing high-performance anode materials to improve sodium storage performa nce still remains a major challenge.Here,a facile one-pot method has been developed to fabricate a hybrid of MoSeTe nanosheets implanted within the N,F co-doped honeycomb carbon skeleton(MoSeTe/N,F@C).Experimental results demonstrate that the incorporation of large-sized Te atoms into MoSeTe nanosheets enlarges the layer spacing and creates abundant anion vacancies,which effectively facilitate the insertion/extraction of Na^(+) and provide numerous ion adsorption sites for rapid surface capacitive behavior.Additionally,the heteroatoms N,F co-doped honeycomb carbon skeleton with a highly conductive network can restrain the volume expansion and boost reaction kinetics within the electrode.As anticipated,the MoSeTe/N,F@C anode exhibits high reversible capacities along with exceptional cycle stability.When coupled with Na_(3)V_(2)(PO_(4))_(3)@C(NVPF@C) to form SIB full cells,the anode delivers a reversible specific capacity of 126 mA h g^(-1) after 100 cycles at 0.1 A g^(-1).Furthermore,when combined with AC to form SIHC full cells,the anode demonstrates excellent cycling stability with a reversible specific capacity of50 mA h g^(-1) keeping over 3700 cycles at 1.0 A g^(-1).In situ XRD,ex situ TEM characterization,and theoretical calculations(DFT) further confirm the reversibility of sodium storage in MoSeTe/N,F@C anode materials during electrochemical reactions,highlighting their potential for widespread practical application.This work provides new insights into the promising utilization of advanced transition metal dichalcogenides as anode materials for Na^(+)-based energy storage devices. 展开更多
关键词 MoSeTe N F co-doped honeycomb carbon skeleton Sodium-ion batteries Sodium-ion hybrid capacitor
下载PDF
MoS_(2)/ZnO异质结纳米材料降解亚甲基蓝的光催化性能研究 被引量:1
13
作者 王进美 蒋守杰 +2 位作者 王春霞 王丽丽 高大伟 《西安工程大学学报》 CAS 2024年第1期24-30,共7页
为了提高ZnO的光转换效率,选用带隙较低的MoS_(2)形成异质结提高ZnO的光催化性能。通过水热法制备ZnO纳米棒,并进一步制备MoS_(2)/ZnO异质结构的纳米复合材料。通过扫描电镜(SEM)、X射线粉末衍射仪(XRD)、固体紫外可见漫反射测试仪(UV-V... 为了提高ZnO的光转换效率,选用带隙较低的MoS_(2)形成异质结提高ZnO的光催化性能。通过水热法制备ZnO纳米棒,并进一步制备MoS_(2)/ZnO异质结构的纳米复合材料。通过扫描电镜(SEM)、X射线粉末衍射仪(XRD)、固体紫外可见漫反射测试仪(UV-Vis)和紫外可见分光光度计(UV-245)等分析方法对样品的形貌、结构及光学性能等进行表征。结果表明,MoS_(2)/ZnO异质结复合材料呈棒状结构,并由于内建电场存在可有效增强光生载流子的分离效率,进而提高了可见光区的吸收,提高了光催化性能。在模拟太阳光(包含紫外波段)下,60 min时MoS_(2)-15/ZnO纳米复合材料对亚甲基蓝的降解率可达99%,比纯ZnO的降解率提高了10%。 展开更多
关键词 MoS_(2)/zno 光催化 异质结 亚甲基蓝 纳米复合材料
下载PDF
Low-temperature deposition of transparent conducting Mn-W co-doped ZnO thin films 被引量:1
14
作者 张化福 刘汉法 +2 位作者 类成新 周爱萍 袁长坤 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2010年第8期42-44,共3页
Mn-W co-doped ZnO(ZMWO) thin films with low resistivity and high transparency were successfully prepared on glass substrate by direct current(DC) magnetron sputtering at low temperature.The sputtering power was va... Mn-W co-doped ZnO(ZMWO) thin films with low resistivity and high transparency were successfully prepared on glass substrate by direct current(DC) magnetron sputtering at low temperature.The sputtering power was varied from 65 to 150 W.The crystallinity and resistivity of ZMWO films greatly depend on sputtering power while the optical transmittance and optical band gap are not sensitive to sputtering power.All the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate.Considering the crystallinity and the electrical and optical properties,we suggest that the optimal sputtering power in this experiment is 90 W and,at this power,the ZMWO film has the lowest resistivity of 9.8×10^(-4)Ω.cm with a high transmittance of approximately 89%in the visible range. 展开更多
关键词 Mn-W co-doped zno films transparent conducting films magnetron sputtering sputtering power
原文传递
基于共溅射ZnO/SnO_(2)异质结薄膜的气体传感器研究 被引量:1
15
作者 孙士斌 张叶裕 +1 位作者 高晨阳 常雪婷 《传感器与微系统》 CSCD 北大核心 2024年第2期61-64,共4页
采用射频磁控共溅射法在叉指电极上制备了ZnO/SnO_(2)n-n异质结复合薄膜,系统测试了其气敏特性,并分析了其气敏机理。结果表明,与ZnO薄膜和SnO_(2)薄膜气体传感器相比,ZnO/SnO_(2)异质结薄膜气体传感器具有更低的工作温度、更高的灵敏... 采用射频磁控共溅射法在叉指电极上制备了ZnO/SnO_(2)n-n异质结复合薄膜,系统测试了其气敏特性,并分析了其气敏机理。结果表明,与ZnO薄膜和SnO_(2)薄膜气体传感器相比,ZnO/SnO_(2)异质结薄膜气体传感器具有更低的工作温度、更高的灵敏度以及更快的响应和恢复速度。ZnO/SnO_(2)异质结薄膜气体传感器对乙醇具有较好的选择性,最低检测体积分数为1×10^(-6),最佳工作温度为250℃;对1×10^(-4)乙醇气体的灵敏度可达18.4,响应时间和恢复时间分别为10 s和19 s。 展开更多
关键词 磁控共溅射 zno/SnO_(2)异质结 复合薄膜 气体传感器
下载PDF
可控ZnO阵列改性碳织物复合材料的制备及摩擦学性能研究
16
作者 朱文婷 王小荣 +1 位作者 王晓芳 惠瑞敏 《化工新型材料》 CAS CSCD 北大核心 2024年第8期175-179,共5页
碳纤维表面光滑且具有惰性,削弱了其与树脂的界面黏结,进而限制了碳织物/树脂复合材料的应用前景。基于界面工程技术,采用预埋晶种层的方式诱导ZnO微纳米阵列在碳纤维表面均匀生长,并通过改变晶种层溶度优化ZnO阵列的形貌和分布,以强化... 碳纤维表面光滑且具有惰性,削弱了其与树脂的界面黏结,进而限制了碳织物/树脂复合材料的应用前景。基于界面工程技术,采用预埋晶种层的方式诱导ZnO微纳米阵列在碳纤维表面均匀生长,并通过改变晶种层溶度优化ZnO阵列的形貌和分布,以强化纤维/基体的界面,从而提升复合材料的力学强度和摩擦学性能。结果表明:通过对纤维表面形貌分析,晶种层浓度对ZnO微纳米阵列形貌和分布有较大的影响;当浓度为15mmol/L时,均匀且细化的ZnO阵列生长在碳纤维表面,使纤维的表面能大幅度提高,促进了树脂充分浸润,提高了力学强度;与原始复合材料相比,改性复合材料的磨损率降低了约35%,表明ZnO阵列的引入能够明显提高复合材料的耐磨性。 展开更多
关键词 碳织物/树脂复合材料 zno阵列 界面改性 摩擦学性能
下载PDF
细菌纤维素基CNFs/ZnO吸波材料的制备及性能
17
作者 刘平安 林宝舜 +2 位作者 丁会玲 肖亮 张志杰 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第8期138-145,共8页
随着电子信息技术的不断发展,电磁污染问题日益严重,高效吸波材料的研究受到越来越多的关注。该文以生物多孔材料细菌纤维素为碳源,采用碳化改性和水热法两步制备了细菌纤维素基CNFs/ZnO复合材料,研究了二水合醋酸锌的浓度对CNFs/ZnO复... 随着电子信息技术的不断发展,电磁污染问题日益严重,高效吸波材料的研究受到越来越多的关注。该文以生物多孔材料细菌纤维素为碳源,采用碳化改性和水热法两步制备了细菌纤维素基CNFs/ZnO复合材料,研究了二水合醋酸锌的浓度对CNFs/ZnO复合材料吸波性能的影响。通过X射线衍射仪(XRD)、冷场发射扫描电子显微镜(FESEM)、矢量网络分析仪(VNA)对复合材料的结构、形貌和吸波性能进行表征。结果表明:CNFs/ZnO复合材料被成功制备,其中碳纳米纤维(CNFs)没有明显的衍射峰,呈无定形状态;碳化和改性CNFs均保持了细菌纤维素三维网络多孔架构的精细纳米纤维微观形貌,但是CNFs变得卷曲且直径明显减小;CNFs/ZnO复合材料中,ZnO被紧密吸引在CNFs表面或随机插入CNFs的空隙中。通过改变二水合醋酸锌的浓度可以控制ZnO在复合材料中的含量,进而调控复合材料的电磁参数,获得良好的阻抗匹配。当二水合醋酸锌的浓度为0.25 mol/L时,ZnO在CNFs上分散得最为均匀,此时CNFs和ZnO的电阻损耗、介电损耗和界面极化等协同作用于三维多孔网络结构上,增加了复合材料对电磁波的多次反射、散射和长程耗散作用。该条件下制备的CNFs/ZnO复合材料,在涂层厚度为2.8 mm、频率为15.1 GHz附近时,其最佳反射损耗为−57.5 dB,有效吸收带宽为7.1 GHz,是一种可靠的复合吸波材料。 展开更多
关键词 细菌纤维素 碳纳米纤维 zno 复合材料 吸波性能
下载PDF
ZnO/TiO_(2)核-壳纳米结构的低温制备及其光电性能研究
18
作者 李丽华 王贺 +1 位作者 王航 黄金亮 《功能材料》 CAS CSCD 北大核心 2024年第1期1217-1222,共6页
ZnO因其自身的高电荷复合、化学性质活泼,导致其应用受到限制,通过表面修饰进行复合可实现电子-空穴的分离并提高其化学稳定性。以二水合醋酸锌、六水合硝酸锌、六氟钛酸铵为原料,采用溶胶-凝胶、水热和液相沉积相结合的方法,在低温条... ZnO因其自身的高电荷复合、化学性质活泼,导致其应用受到限制,通过表面修饰进行复合可实现电子-空穴的分离并提高其化学稳定性。以二水合醋酸锌、六水合硝酸锌、六氟钛酸铵为原料,采用溶胶-凝胶、水热和液相沉积相结合的方法,在低温条件下制备出ZnO/TiO_(2)单异质结。采用XRD、SEM、EDS、TEM、PL等对样品进行表征并对其光电性能进行测试。结果表明,在沉积时间为20 min时,ZnO/TiO_(2)核-壳结构形貌最规整,其中ZnO直径约115 nm,TiO_(2)薄膜厚度约7.6 nm;TiO_(2)的负载,降低了电极中光生电荷的复合,提高了ZnO对光子的收集能力,光电流密度提升大约10倍,达到0.21μA/cm^(2),表现出优异的光电化学性能。 展开更多
关键词 zno/TiO_(2) 核-壳结构 异质结 光电极材料 液相沉积
下载PDF
基于层状锌铝复合氢氧化物前驱体优化制备Cu/ZnO/Al_(2)O_(3)气相醛加氢催化剂
19
作者 白鹏 刘函澎 +6 位作者 陈雪娇 张永辉 赵振祥 吴萍萍 黄德鑫 吴先锋 张志华 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第4期224-232,共9页
以偏铝酸钠作为铝源通过一步法、两步法和混合法引入Cu制备基于ZnAl-LDH前驱体的3种不同的Cu/ZnO/Al_(2)O_(3)催化剂,对催化剂及其前驱体结构性质进行表征,结合辛烯醛(2-乙基-2-己烯醛,EPA)加氢反应评价结果,探究不同制备方法、不同铝... 以偏铝酸钠作为铝源通过一步法、两步法和混合法引入Cu制备基于ZnAl-LDH前驱体的3种不同的Cu/ZnO/Al_(2)O_(3)催化剂,对催化剂及其前驱体结构性质进行表征,结合辛烯醛(2-乙基-2-己烯醛,EPA)加氢反应评价结果,探究不同制备方法、不同铝的引入方式对ZnAl_(2)O_(4)尖晶石形成的影响,考察不同条件下所得催化剂的结构与反应性能之间的构效关系。结果表明:与工业催化剂相比,在辛烯醛气相加氢反应中混合法制得的催化剂与工业催化剂活性相当,产物选择性在空速1.5 h^(-1)时高于工业剂1.9%,在空速4.0 h^(-1)时高于工业剂2.5%;以偏铝酸钠作为铝源制备的ZnAl-LDH前驱物大大提高锌铝结合效率,减少非结合Al_(2)O_(3)的产生,提高产物选择性,同时实现380℃低温焙烧条件下ZnAl-LDH向ZnAl_(2)O_(4)尖晶石的转变,避免传统的高温焙烧过程中CuO的烧结。 展开更多
关键词 Cu/zno/Al_(2)O_(3)催化剂 ZnAl_(2)O_(4)尖晶石 ZnAl-LDH 气相醛加氢
下载PDF
Fabrication and Visible Light Photocatalytic Activity of Co-doped ZnO Nanorods
20
作者 LI Xue LI Jin-hua +5 位作者 LI Shi-jun FANG Xuan FANG Fang CHU Xue-ying WANG Xiao-hua HUJia-xin 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2013年第6期1032-1035,共4页
Co-doped ZnO nanorods were prepared by electrochemical deposition method in aqueous solution. lb study the as-grown samples, several characterizations were carried out. The scanning electron microscopy(SEM) images s... Co-doped ZnO nanorods were prepared by electrochemical deposition method in aqueous solution. lb study the as-grown samples, several characterizations were carried out. The scanning electron microscopy(SEM) images show that the samples present a rod-like shape with hexagonal cross sections and roughened surthce. There is a slight shift for (002) diffraction peak of Co-doped ZnO nanorods in XRD because Co2~ ions entered into the ZnO lattice. Energy-dispersive X-ray spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) results also show the exist of Co in the sample. Photoluminescence(PL) spectra of the samples were observed at room tempera- ture, the UV emission of Co-doped ZnO shows a slight red shift compared with that of undoped ZnO. Thus, we can reach the conclusion that Zn2+ ions have been substituted by Co2. ions in the ZnO samples. In addition, photocatalysis property of Co-doped ZnO nanorods was investigated under the irradiation of visible light. It was found that the degradation rate of methyl orange is increased greatly nanorods. by Co-doped ZnO nanorods in comparison to undoped ZnO 展开更多
关键词 co-doped zno Nanorod Electrochcmical deposition Visible light PHOTOCATALYSIS
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部