Two sets of super-synchronization speed control assemblies for two 80 MVA motor-generator units have been developed successfully in order to satisfy the demand of the toroidal field system in the HL-2A tokamak. Based ...Two sets of super-synchronization speed control assemblies for two 80 MVA motor-generator units have been developed successfully in order to satisfy the demand of the toroidal field system in the HL-2A tokamak. Based on the three-phase logical no-circumfluence a.c./a.c. cycloconverter, the speeds of two 2500 kW double fed drive motors have been regulated by means of the vector control technology. The maximum operating speed of each motor- generator unit has been raised from 1488 rpm (revolutions per minute) to 1650 rpm and the released energy of each unit during a pulsed discharge can reach 500 MJ. As a result, the toroidal field system has the capacity to provide 2.8 tesla (T) in HL-2A experiments.展开更多
With the increasingly deep studies in physics and technology, the dynamics of fractional order nonlinear systems and the synchronization of fractional order chaotic systems have become the focus in scientific research...With the increasingly deep studies in physics and technology, the dynamics of fractional order nonlinear systems and the synchronization of fractional order chaotic systems have become the focus in scientific research. In this paper, the dynamic behavior including the chaotic properties of fractional order Duffing systems is extensively inves- tigated. With the stability criterion of linear fractional systems, the synchronization of a fractional non-autonomous system is obtained. Specifically, an effective singly active control is proposed and used to synchronize a fractional order Duffing system. The nu- merical results demonstrate the effectiveness of the proposed methods.展开更多
基金the Tenth-Five-Year Nuclear Energy Development of the Commission of Science and TechnologyNational Defense Industry of the China National Nuclear Corporation
文摘Two sets of super-synchronization speed control assemblies for two 80 MVA motor-generator units have been developed successfully in order to satisfy the demand of the toroidal field system in the HL-2A tokamak. Based on the three-phase logical no-circumfluence a.c./a.c. cycloconverter, the speeds of two 2500 kW double fed drive motors have been regulated by means of the vector control technology. The maximum operating speed of each motor- generator unit has been raised from 1488 rpm (revolutions per minute) to 1650 rpm and the released energy of each unit during a pulsed discharge can reach 500 MJ. As a result, the toroidal field system has the capacity to provide 2.8 tesla (T) in HL-2A experiments.
基金Project supported by the National Natural Science Foundation of China (No. 11171238)the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Educationof China (No. IRTO0742)
文摘With the increasingly deep studies in physics and technology, the dynamics of fractional order nonlinear systems and the synchronization of fractional order chaotic systems have become the focus in scientific research. In this paper, the dynamic behavior including the chaotic properties of fractional order Duffing systems is extensively inves- tigated. With the stability criterion of linear fractional systems, the synchronization of a fractional non-autonomous system is obtained. Specifically, an effective singly active control is proposed and used to synchronize a fractional order Duffing system. The nu- merical results demonstrate the effectiveness of the proposed methods.