The relationship between the extensional viscosity and material parameters was studied through the analytical formulas of stress and extensional viscosity. The differential equations were solved to obtain the relation...The relationship between the extensional viscosity and material parameters was studied through the analytical formulas of stress and extensional viscosity. The differential equations were solved to obtain the relationship between extensional viscosity and strain rates. The results obtained qualitatively agree with the experimental results. The study makes it practicable to simulate the rheologic behaviors of spinning flow of liquid crystalline polymer using co-rotational Oldroyd fluid B model.展开更多
In this paper, the generalized Oldroyd-B with fractional calculus approach is used. An exact solution in terms of Fox-H function for flow past an accelerated horizontal plate in a rotating fluid is obtained by using d...In this paper, the generalized Oldroyd-B with fractional calculus approach is used. An exact solution in terms of Fox-H function for flow past an accelerated horizontal plate in a rotating fluid is obtained by using discrete Laplace transform method. A comparison among the influence of various parameters in the Oldroyd-B model and the angular velocity of the fluid on the velocity profiles is made through numerical method in graphic form.展开更多
A Fourier-Chebyshev Petrov-Galerkin spectral method is described for high accuracy computation of linearized dynamics for flow in a circular pipe. The code used here is based on solenoidal velocity variables and is wr...A Fourier-Chebyshev Petrov-Galerkin spectral method is described for high accuracy computation of linearized dynamics for flow in a circular pipe. The code used here is based on solenoidal velocity variables and is written in FORTRAN. Systematic studies are presented of the dependence of eigenval-ues and other quantities on the axial and azimuthal wave numbers;the Reyn-olds’ number of up to 107 and the Weissenberg’s number that is considered lower here. The flow will be considered stable if all the real parts of the ei-genvalues obtained are negative and unstable if only one of these values is positive.展开更多
This paper presents ordered rate nonlinear constitutive theories for thermoviscoelastic fluids based on Classical Continuum Mechanics (CCM). We refer to these fluids as classical thermoviscoelastic polymeric fluids. T...This paper presents ordered rate nonlinear constitutive theories for thermoviscoelastic fluids based on Classical Continuum Mechanics (CCM). We refer to these fluids as classical thermoviscoelastic polymeric fluids. The conservation and balance laws of CCM constitute the core of the mathematical model. Constitutive theories for the Cauchy stress tensor are derived using the conjugate pair in the entropy inequality, additional desired physics, and the representation theorem. The constitutive theories for the Cauchy stress tensor consider convected time derivatives of Green’s strain tensor or the Almansi strain tensor up to order n and the convected time derivatives of the Cauchy stress tensor up to order m. The resulting constitutive theories of order (m, n) are based on integrity and are valid for dilute as well as dense polymeric, compressible, and incompressible fluids with variable material coefficients. It is shown that Maxwell, Oldroyd-B, and Giesekus constitutive models can be described by a single constitutive theory. It is well established that the currently used Maxwell and Oldroyd-B models predict zero normal stress perpendicular to the flow direction. It is shown that this deficiency is a consequence of not retaining certain generators and invariants from the integrity (complete basis) in the constitutive theory and can be corrected by including additional generators and invariants in the constitutive theory. Similar improvements are also suggested for the Giesekus constitutive model. Model problem studies are presented for BVPs consisting of fully developed flow between parallel plates and lid-driven cavities utilizing the new constitutive theories for Maxwell, Oldroyd-B, and Giesekus fluids. Results are compared with those obtained from using currently used constitutive theories for the three polymeric fluids.展开更多
文摘The relationship between the extensional viscosity and material parameters was studied through the analytical formulas of stress and extensional viscosity. The differential equations were solved to obtain the relationship between extensional viscosity and strain rates. The results obtained qualitatively agree with the experimental results. The study makes it practicable to simulate the rheologic behaviors of spinning flow of liquid crystalline polymer using co-rotational Oldroyd fluid B model.
基金supported by The project supported by the Natural Science Foundation of Shandong Province of China (Y2007A06)
文摘In this paper, the generalized Oldroyd-B with fractional calculus approach is used. An exact solution in terms of Fox-H function for flow past an accelerated horizontal plate in a rotating fluid is obtained by using discrete Laplace transform method. A comparison among the influence of various parameters in the Oldroyd-B model and the angular velocity of the fluid on the velocity profiles is made through numerical method in graphic form.
文摘A Fourier-Chebyshev Petrov-Galerkin spectral method is described for high accuracy computation of linearized dynamics for flow in a circular pipe. The code used here is based on solenoidal velocity variables and is written in FORTRAN. Systematic studies are presented of the dependence of eigenval-ues and other quantities on the axial and azimuthal wave numbers;the Reyn-olds’ number of up to 107 and the Weissenberg’s number that is considered lower here. The flow will be considered stable if all the real parts of the ei-genvalues obtained are negative and unstable if only one of these values is positive.
文摘This paper presents ordered rate nonlinear constitutive theories for thermoviscoelastic fluids based on Classical Continuum Mechanics (CCM). We refer to these fluids as classical thermoviscoelastic polymeric fluids. The conservation and balance laws of CCM constitute the core of the mathematical model. Constitutive theories for the Cauchy stress tensor are derived using the conjugate pair in the entropy inequality, additional desired physics, and the representation theorem. The constitutive theories for the Cauchy stress tensor consider convected time derivatives of Green’s strain tensor or the Almansi strain tensor up to order n and the convected time derivatives of the Cauchy stress tensor up to order m. The resulting constitutive theories of order (m, n) are based on integrity and are valid for dilute as well as dense polymeric, compressible, and incompressible fluids with variable material coefficients. It is shown that Maxwell, Oldroyd-B, and Giesekus constitutive models can be described by a single constitutive theory. It is well established that the currently used Maxwell and Oldroyd-B models predict zero normal stress perpendicular to the flow direction. It is shown that this deficiency is a consequence of not retaining certain generators and invariants from the integrity (complete basis) in the constitutive theory and can be corrected by including additional generators and invariants in the constitutive theory. Similar improvements are also suggested for the Giesekus constitutive model. Model problem studies are presented for BVPs consisting of fully developed flow between parallel plates and lid-driven cavities utilizing the new constitutive theories for Maxwell, Oldroyd-B, and Giesekus fluids. Results are compared with those obtained from using currently used constitutive theories for the three polymeric fluids.