期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
Desulfurization kinetics of ZnO sorbent loaded on semi-coke support for hot coal gas 被引量:7
1
作者 Zhiwei Ma Xianrong Zheng +2 位作者 Liping Chang Ruiyuan He Weiren Bao 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第5期556-562,共7页
Zn-based sorbent (Z20SC) prepared through semi-coke support in 20 wt% zinc nitrate solution by high-pressure impregnation presents an excellent desulfurization capacity in hot coal gas,in which H2 S can not be nearl... Zn-based sorbent (Z20SC) prepared through semi-coke support in 20 wt% zinc nitrate solution by high-pressure impregnation presents an excellent desulfurization capacity in hot coal gas,in which H2 S can not be nearly detected in the outlet gas before 20 h breakthrough time.The effects of the main operational conditions and the particle size of Z20SC sorbent on its desulfurization performances sorbent were investigated in a fixed-bed reactor and the desulfurization kinetics of Z20SC sorbent removing H2 S from hot coal gas was calculated based on experimental data.Results showed that the conversion of Z20SC sorbent desulfurization reaction increased with the decrease of the particle size of the sorbent and the increases of gas volumetric flow rate,reaction temperature and H 2 S content in inlet gas.Z20SC sorbent obtained from hydrothermal synthesis by high-pressure impregnation possessed much larger surface area and pore volume than semi-coke support,and they were significantly reduced after the desulfurization reaction.The equivalent grain model was reasonably used to analyze experimental data,in which k s=4.382×10-3 exp(-8.270×103/RgT) and Dep=1.262×10-4exp(1.522×104/RgT).It suggests that the desulfurization reaction of the Z20SC sorbent is mainly controlled by the chemical reaction in the initial stage and later by the diffusion through the reacted sorbent layer. 展开更多
关键词 desulfurization kinetics Zn-based sorbent hot coal gas medium-temperature desulfurization
下载PDF
Geological characteristics and exploration breakthroughs of coal rock gas in Carboniferous Benxi Formation,Ordos Basin,NW China
2
作者 ZHAO Zhe XU Wanglin +8 位作者 ZHAO Zhenyu YI Shiwei YANG Wei ZHANG Yueqiao SUN Yuanshi ZHAO Weibo SHI Yunhe ZHANG Chunlin GAO Jianrong 《Petroleum Exploration and Development》 SCIE 2024年第2期262-278,共17页
To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal ro... To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China. 展开更多
关键词 coal rock gas coalbed methane medium-to-high rank coal CLEAT Ordos Basin Carboniferous Benxi Formation risk exploration
下载PDF
Three dimensional discrete element modelling of the conventional compression behavior of gas hydrate bearing coal
3
作者 Xia Gao Nannan Wang +4 位作者 Baoyong Zhang Qiqi Lin Qiang Wu Wei Meng Xia Liu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期61-77,共17页
To analyze the relationship between macro and meso parameters of the gas hydrate bearing coal(GHBC)and to calibrate the meso-parameters,the numerical tests were conducted to simulate the laboratory triaxial compressio... To analyze the relationship between macro and meso parameters of the gas hydrate bearing coal(GHBC)and to calibrate the meso-parameters,the numerical tests were conducted to simulate the laboratory triaxial compression tests by PFC3D,with the parallel bond model employed as the particle contact constitutive model.First,twenty simulation tests were conducted to quantify the relationship between the macro–meso parameters.Then,nine orthogonal simulation tests were performed using four meso-mechanical parameters in a three-level to evaluate the sensitivity of the meso-mechanical parameters.Furthermore,the calibration method of the meso-parameters were then proposed.Finally,the contact force chain,the contact force and the contact number were examined to investigate the saturation effect on the meso-mechanical behavior of GHBC.The results show that:(1)The elastic modulus linearly increases with the bonding stiffness ratio and the friction coefficient while exponentially increasing with the normal bonding strength and the bonding radius coefficient.The failure strength increases exponentially with the increase of the friction coefficient,the normal bonding strength and the bonding radius coefficient,and remains constant with the increase of bond stiffness ratio;(2)The friction coefficient and the bond radius coefficient are most sensitive to the elastic modulus and the failure strength;(3)The number of the force chains,the contact force,and the bond strength between particles will increase with the increase of the hydrate saturation,which leads to the larger failure strength. 展开更多
关键词 gas hydrate bearing coal Discrete element method Triaxial compression test Macro-meso mechanical propertie
下载PDF
Response characteristics of gas pressure under simultaneous static and dynamic load:Implication for coal and gas outburst mechanism 被引量:2
4
作者 Longyong Shu Liang Yuan +3 位作者 Qixian Li Wentao Xue Nannan Zhu Zhengshuai Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第2期155-171,共17页
Coal and gas outbursts are dynamic disasters in which a large mass of gas and coal suddenly emerges in a mining space within a split second.The interaction between the gas pressure and stress environment is one of the... Coal and gas outbursts are dynamic disasters in which a large mass of gas and coal suddenly emerges in a mining space within a split second.The interaction between the gas pressure and stress environment is one of the key factors that induce coal and gas outbursts.In this study,first,the coupling relationship between the gas pressure in the coal body ahead of the working face and the dynamic load was investigated using experimental observations,numerical simulations,and mine-site investigations.It was observed that the impact rate of the dynamic load on the gas-bearing coal can significantly change the gas pressure.The faster the impact rate,the speedier the increase in gas pressure.Moreover,the gas pressure rise was faster closer to the impact interface.Subsequently,based on engineering background,we proposed three models of stress and gas pressure distribution in the coal body ahead of the working face:static load,stress disturbance,and dynamic load conditions.Finally,the gas pressure distribution and outburst mechanism were investigated.The high concentration of gas pressure appearing at the coal body ahead of the working face was caused by the dynamic load.The gas pressure first increased gradually to a peak value and then decreased with increasing distance from the working face.The increase in gas pressure plays a major role in outburst initiation by resulting in the ability to more easily reach the critical points needed for outburst initiation.Moreover,the stronger the dynamic load,the greater the outburst initiation risk.The results of this study provide practical guidance for the early warning and prevention of coal and gas outbursts. 展开更多
关键词 coal and gas outburst gas pressure Dynamic load Outburst mechanism
下载PDF
In-situ gas contents of a multi-section coal seam in Sydney basin for coal and gas outburst management
5
作者 Zhongbei Li Ting Ren +4 位作者 Dennis Black Ming Qiao Itmam Abedin Jessica Juric Mike Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期34-46,共13页
The gas content is crucial for evaluating coal and gas outburst potential in underground coal mining. This study focuses on investigating the in-situ coal seam gas content and gas sorption capacity in a representative... The gas content is crucial for evaluating coal and gas outburst potential in underground coal mining. This study focuses on investigating the in-situ coal seam gas content and gas sorption capacity in a representative coal seam with multiple sections (A1, A2, and A3) in the Sydney basin, where the CO_(2) composition exceeds 90%. The fast direct desorption method and associated devices were described in detail and employed to measure the in-situ gas components (Q_(1), Q_(2), and Q_(3)) of the coal seam. The results show that in-situ total gas content (Q_(T)) ranges from 9.48 m^(3)/t for the A2 section to 14.80 m^(3)/t for the A3 section, surpassing the Level 2 outburst threshold limit value, thereby necessitating gas drainage measures. Among the gas components, Q_(2) demonstrates the highest contribution to Q_(T), ranging between 55% and 70%. Furthermore, high-pressure isothermal gas sorption experiments were conducted on coal samples from each seam section to explore their gas sorption capacity. The Langmuir model accurately characterizes CO_(2) sorption behavior, with ft coefcients (R^(2)) greater than 0.99. Strong positive correlations are observed between in-situ gas content and Langmuir volume, as well as between residual gas content (Q_(3)) and sorption hysteresis. Notably, the A3 seam section is proved to have a higher outburst propensity due to its higher Q_(1) and Q_(2) gas contents, lower sorption hysteresis, and reduced coal toughness f value. The insights derived from the study can contribute to the development of efective gas management strategies and enhance the safety and efciency of coal mining operations. 展开更多
关键词 In-situ coal seam gas content Direct desorption method gas component Sorption capacity coal and gas outburst
下载PDF
Mechanism of gas pressure action during the initial failure of coal containing gas and its application for an outburst inoculation
6
作者 Chaojie Wang Lutan Liu +2 位作者 Xiaowei Li Changhang Xu Kai Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第12期1511-1525,共15页
Faced with the continuous occurrence of coal and gas outburst(hereinafter referred to as“outburst”)disasters,as a main controlling factor in the evolution process of an outburst,for gas pressure,it is still unclear ... Faced with the continuous occurrence of coal and gas outburst(hereinafter referred to as“outburst”)disasters,as a main controlling factor in the evolution process of an outburst,for gas pressure,it is still unclear about the phased characteristics of the coupling process with in situ stress,which induce coal damage and instability.Therefore,in the work based on the mining stress paths induced by typical outburst accidents,the gradual and sudden change of three-dimensional stress is taken as the background for the mechanical reconstruction of the disaster process.Then the true triaxial physical experiments are conducted on the damage and instability of coal containing gas under multiple stress paths.Finally,the response characterization between coal damage and gas pressure has been clarified,revealing the mechanism of action of gas pressure during the initial failure of coals.And the main controlling mechanism during the outburst process is elucidated in the coupling process of in situ stress with gas pressure.The results show that during the process of stress loading and unloading,the original gas pressure enters the processes of strengthening and weakening the action ability successively.And the strengthening effect continues to the period of large-scale destruction of coals.The mechanical process of gas pressure during the initial failure of coals can be divided into three stages:the enhancement of strengthening action ability,the decrease of strengthening action ability,and the weakening action ability.The entire process is implemented by changing the dominant action of in situ stress into the dominant action of gas pressure.The failure strength of coals is not only affected by its original mechanical strength,but also by the stress loading and unloading paths,showing a particularly significant effect.Three stages can be divided during outburst inoculation process.That is,firstly,the coals suffer from initial damage through the dominant action of in situ stress with synergy of gas pressure;secondly,the coals with spallation of structural division are generated through the dominant action of gas pressure with synergy of in situ stress,accompanied by further fragmentation;and finally,the fractured coals suffer from fragmentation and pulverization with the gas pressure action.Accordingly,the final broken coals are ejected out with the gas action,initiating an outburst.The research results can provide a new perspective for deepening the understanding of coal and gas outburst mechanism,laying a theoretical foundation for the innovation of outburst prevention and control technologies. 展开更多
关键词 coal and gas outburst Outburst mechanism Main controlling mechanism coal damage Mining stress Dilatation phenomenon
下载PDF
Elimination mechanism of coal and gas outburst based on geo‑dynamic system with stress–damage–seepage interactions
7
作者 Lingjin Xu Chaojun Fan +4 位作者 Mingkun Luo Sheng Li Jun Han Xiang Fu Bin Xiao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期47-61,共15页
Coal and gas outburst is a complex dynamic disaster during coal underground mining.Revealing the disaster mechanism is of great signifcance for accurate prediction and prevention of coal and gas outburst.The geo-dynam... Coal and gas outburst is a complex dynamic disaster during coal underground mining.Revealing the disaster mechanism is of great signifcance for accurate prediction and prevention of coal and gas outburst.The geo-dynamic system of coal and gas outburst is proposed.The framework of geo-dynamic system is composed of gassy coal mass,geological dynamic environment and mining disturbance.Equations of stress–damage–seepage interaction for gassy coal mass is constructed to resolve the outburst elimination process by gas extraction with boreholes through layer in foor roadway.The results show the occurrence of outburst is divided into the evolution process of gestation,formation,development and termination of geo-dynamic system.The scale range of outburst occurrence is determined,which provides a spatial basis for the prevention and control of outburst.The formation criterion and instability criterion of coal and gas outburst are established.The formation criterion F1 is defned as the scale of the geo-dynamic system,and the instability criterion F2 is defned as the scale of the outburst geo-body.According to the geo-dynamic system,the elimination mechanism of coal and gas outburst—‘unloading+depressurization’is established,and the gas extraction by boreholes through layer in foor roadway for outburst elimination is given.For the research case,when the gas extraction is 120 days,the gas pressure of the coal seam is reduced to below 0.4 MPa,and the outburst danger is eliminated efectively. 展开更多
关键词 coal and gas outburst Geo-dynamic system Stress–damage–seepage coupling Elimination mechanism Instability criterion gas extraction
下载PDF
Desulfurization performance of iron-manganese-based sorbent for hot coal gas 被引量:1
8
作者 Xiurong REN Weiren BAO +2 位作者 Fan LI Liping CHANG Kechang XIE 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2010年第4期429-434,共6页
A series of iron-manganese-based sorbents were prepared by co-precipitation and physical mixing method,and used for H_(2)S removal from hot coal gas.The sulfidation tests were carried out in a fixed-bed reactor with s... A series of iron-manganese-based sorbents were prepared by co-precipitation and physical mixing method,and used for H_(2)S removal from hot coal gas.The sulfidation tests were carried out in a fixed-bed reactor with space velocity of 2000 h^(-1)(STP).The results show that the suitable addition of manganese oxide in iron-based sorbent can decrease H_(2)S and COS concentration in exit before breakthrough due to its simultaneous reaction capability with H_(2)S and COS.Fe3O4 and MnO are the initial active components in iron-manganese-based sorbent,and FeO and Fe are active components formed by reduction during sulfidation.The crystal phases of iron affect obviously their desulfurization capacity.The reducibility of sorbent changes with the content of MnO in sorbent.S7F3M and S3F7M have bigger sulfur capacities(32.68 and 32.30 gS/100 g total active component),while S5F5M has smaller sulfur capacity(21.92 gS/100 g total active component).S7F3M sorbent has stable sulfidation performance in three sulfidation-regeneration cycles and no apparent structure degradation.The sulfidation performance of ironmanganese-based sorbent is also related with its specific surface area and pore volume. 展开更多
关键词 iron-manganese-based sorbent sulfidation performance regeneration hot coal gas
原文传递
A review on research and development of iron-based sorbents for removal of hydrogen sulfide from hot coal gases
9
作者 Jianglong YU Liping CHANG +1 位作者 Fan LI Kechang XIE 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2010年第4期529-535,共7页
In poly-generation and integrated gasificationcombined cycle(IGCC)systems for clean energy conversion,it is essential to remove impurities such as sulfur species from hot coal gases prior to entering the subsequent un... In poly-generation and integrated gasificationcombined cycle(IGCC)systems for clean energy conversion,it is essential to remove impurities such as sulfur species from hot coal gases prior to entering the subsequent units.This paper provides a comprehensive review on previous studies on high temperature removal of hydrogen sulfide from high temperature coal gases using iron-based sorbents.A two-step desulphurization process for hot coal gas cleanup is highlighted,which is integrated with direct production of elemental sulfur during regeneration of ironbased sorbents in the primary desulphurization step.Different kinetic modeling approaches for sulfidation and regeneration were compared.Limited research on activated carbon supported sorbents was also briefly summarized. 展开更多
关键词 hot coal gas cleanup iron-based sorbents SULFIDATION REGENERATION sulphur recovery
原文传递
Cold Model of Coal Gas Component Concentration Distribution in Blast Furnace Raceway
10
作者 ZHANG Sheng-fu WEN Liang-ying BAI Chen-guang QIU Gui-bao HU Mei-long LU Xue-wei 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2009年第6期1-6,共6页
Primary distribution of coal gas in blast furnace raceway has an important effect on blast furnace ironmaking process. The coal gas component concentration distribution was studied experimentally using a three-dimensi... Primary distribution of coal gas in blast furnace raceway has an important effect on blast furnace ironmaking process. The coal gas component concentration distribution was studied experimentally using a three-dimensional cold model. The results showed that CH4 concentration diminishes along with the height increasing on vertical section of raceway, and the concentration is the highest in the bottom of raceway. CH4 concentration increases gradually along.the raceway depth with the lowest concentration value in front of the tuyere. The distribution of CH4 concentration has different characteristics in different raceway zones. 展开更多
关键词 blast furnace RACEWAY coal gas component concentration distribution
原文传递
Removal of sulfur in coke oven gas by mixing ZnO-based additive into coal
11
作者 郭占成 唐惠庆 叶树锋 《中国有色金属学会会刊:英文版》 CSCD 2001年第6期931-936,共6页
A new technology for recycling EAF dust and removal of sulfur from coking oven gas was investigated. The new technology does not need to set up special equipment to treat COG (coke oven gas), and it is only acquired b... A new technology for recycling EAF dust and removal of sulfur from coking oven gas was investigated. The new technology does not need to set up special equipment to treat COG (coke oven gas), and it is only acquired by mixing the ZnO base additive into the coke coal. In the stage of pyrolysis of the coal volatile, ZnO of the additive combines with H 2S, CS 2, COS and C 2H 2SH of coal gas, forming ZnS in coal char. In the stage of coking of the coal char, Zn is gasified with S, then the gas Zn react with H 2S, CS 2, COS and C 2H 2SH, forming ZnS in coal gas and depositing as dust. After the collected ZnS dust was regenerated, it can be recycling as the additive again. The sulfur in coal gas can be completely removed if the mole ratio of the added Zn to the volatilized S is more than 1, and the sulfur in coke is also slightly decreased comparing with the coke without the additive. The EAF dust containing ZnO and Fe 2O 3 can be the base material of the desulfurizing additive. 展开更多
关键词 sulfur removal coal gas COKING sulfur sorbent EAF dust
下载PDF
Regeneration of Fe_(2)O_(3)-based high-temperature coal gas desulfurization sorbent in atmosphere with sulfur dioxide
12
作者 Ruizhuang ZHAO Ju SHANGGUAN +3 位作者 Yanru LOU Jin SONG Jie MI Huiling FAN 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2010年第4期423-428,共6页
Regeneration of a high-temperature coal gas desulfurization sorbent is a key technology in its industrial applications.A Fe_(2)O_(3)-based high-temperature coal gas desulfurizer was prepared using red mud from steel f... Regeneration of a high-temperature coal gas desulfurization sorbent is a key technology in its industrial applications.A Fe_(2)O_(3)-based high-temperature coal gas desulfurizer was prepared using red mud from steel factory.The influences of regeneration temperature,space velocity and regeneration gas concentration in SO_(2) atmosphere on regeneration performances of the desulfurization sorbent were tested in a fixed bed reactor.The changes of phase and the composition of the Fe_(2)O_(3)-based high-temperature coal gas desulfurization sorbent before and after regeneration were examined by X-ray diffraction(XRD)and X-ray Photoelectron spectroscopy(XPS),and the changes of pore structure were characterized by the mercury intrusion method.The results show that the major products are Fe3O4 and elemental sulfur;the influences of regeneration temperature,space velocity and SO_(2) concentration in inlet on regeneration performances and the changes of pore structure of the desulfurization sorbent before and after regeneration are visible.The desulfurization sorbent cannot be regenerated at 500℃ in SO_(2) atmosphere.Within the range of 600℃-800℃,the time of regeneration becomes shorter,and the regeneration conversion increases as the temperature rises.The time of regeneration also becomes shorter,and the elemental sulfur content of tail gas increases as the SO_(2) concentration in inlet is increased.The increase in space velocity enhances the reactive course;the best VSP is 6000 h^(-1) for regeneration conversion.At 800℃,20 vol-%SO_(2) and 6000 h^(-1),the regeneration conversion can reach nearly to 90%. 展开更多
关键词 high-temperature coal gas Fe_(2)O_(3)desulfurization sorbent SO_(2)atmosphere regeneration behaviors sulfur recovery
原文传递
Sensitivity analysis of a methanol and power polygeneration system fueled with coke oven gas and coal gas
13
作者 Guoqiang ZHANG Lin GAO +2 位作者 Hongguang JIN Rumou LIN Sheng LI 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2010年第4期491-497,共7页
The sensitivity analysis of a polygeneration energy system fueled with duo fuel of coke oven gas and coal gas is performed in the study,and the focus is put on the relations among syngas composition,conversation rate ... The sensitivity analysis of a polygeneration energy system fueled with duo fuel of coke oven gas and coal gas is performed in the study,and the focus is put on the relations among syngas composition,conversation rate and performance.The impacts of the system configuration together with the fuel composition on the performance are investigated and discussed from the point of cascading utilization of fuel chemical energy.First,the main parameters affecting the performance are derived along with the analysis of the system configuration and the syngas composition.After the performance is being simulated by means of the Aspen Plus process simulator of version 11.1,the variation of the performance due to the composition of syngas and the conversion rate of chemical subsystem is obtained and discussed.It is obtained from the result that the proper conversion rate of the chemical subsystem according to the specific syngas composition results in better performance.And the syngas composition affects the optimal conversion rate of the chemical subsystem,the optimal point of which is around the stoichiometric composition for methanol production(CO/H_(2)=0.5).In all,the polygeneration system fueled with coke oven gas and coal gas,which can realize the reasonable conversion of syngas to power and chemical product according to the syngas composition,is a promising method for coal energy conversion and utilization. 展开更多
关键词 duo fuel of coke oven gas and coal gas polygeneration of power and methanol sensitivity analysis the relation among energy utilization syngas composition and chemical conversion rate
原文传递
Mechanism investigation on coal and gas outburst: An overview 被引量:19
14
作者 Yan-kun Ma Bai-sheng Nie +3 位作者 Xue-qiu He Xiang-chun Li Jun-qing Meng Da-zhao Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第7期872-887,共16页
Coal and gas outburst is a frequent dynamic disaster during underground coal mining activities.After about 150 years of exploration,the mechanisms of outbursts remain unclear to date.Studies on outburst mechanisms wor... Coal and gas outburst is a frequent dynamic disaster during underground coal mining activities.After about 150 years of exploration,the mechanisms of outbursts remain unclear to date.Studies on outburst mechanisms worldwide focused on the physicochemical and mechanical properties of outburst-prone coal,laboratory-scale outburst experiments and numerical modeling,mine-site investigations,and doctrines of outburst mechanisms.Outburst mechanisms are divided into two categories:single-factor and multi-factor mechanisms.The multi-factor mechanism is widely accepted,but all statistical phenomena during a single outburst cannot be explained using present knowledge.Additional topics about outburst mechanisms are proposed by summarizing the phenomena that need precise explanation.The most appealing research is the microscopic process of the interaction between coal and gas.Modern physical-chemical methods can help characterize the natural properties of outburst-prone coal.Outburst experiments can compensate for the deficiency of first-hand observation at the scene.Restoring the original outburst scene by constructing a geomechanical model or numerical model and reproducing the entire outburst process based on mining environment conditions,including stratigraphic distribution,gas occurrence,and geological structure,are important.Future studies can explore outburst mechanisms at the microscale. 展开更多
关键词 coal and gas outburst outburst mechanism outburst model outburst simulation microscopic pore structure
下载PDF
Experimental study on evolution law for particle breakage during coal and gas outburst 被引量:6
15
作者 Xin Wu Yawen Peng +3 位作者 Jiang Xu Qiao Yan Wen Nie Tingting Zhang 《International Journal of Coal Science & Technology》 EI 2020年第1期97-106,共10页
Coal and gas outburst is a dynamic phenomenon in underground mining engineering that is often accompanied by the throwing and breakage of large amounts of coal.To study the crushing effect and its evolution during out... Coal and gas outburst is a dynamic phenomenon in underground mining engineering that is often accompanied by the throwing and breakage of large amounts of coal.To study the crushing effect and its evolution during outbursts,coal samples with different initial particle sizes were evaluated using a coal and gas outburst testing device.Three basic particle sizes,5–10 mesh,10–40 mesh,and 40–80 mesh,as well as some mixed particle size coal samples were used in tests.The coal particles were pre-compacted at a pressure of 4 MPa before the tests.The vertical ground stress(4 MPa)and the horizontal ground stress(2.4 MPa)were initially simulated by the hydraulic system and maintained throughout.During the tests,the samples were first placed in a vacuum for 3 h,and the coal was filled with gas(CH4)for an adsorption time of approximately 5 h.Finally,the gas valve was shut off and the coal and gas outburst was induced by quickly opening the outburst hole.The coal particles that were thrown out by the outburst test device were collected and screened based on the particle size.The results show the following.(1)Smaller particle sizes have a worse crushing effect than larger sizes.Furthermore,the well-graded coal particles are weakly broken during the outburst process.(2)As the number of repeated tests increases,the relative breakage index grows;however,the increment of growth decreases after each test,showing that further fragmentation becomes increasingly difficult. 展开更多
关键词 coal and gas outburst Particle size BREAKAGE GRADATION ADSORPTION
下载PDF
Catastrophic mechanism of coal and gas outbursts and their prevention and control 被引量:10
16
作者 LI, Shugang ZHANG, Tianjun 《Mining Science and Technology》 EI CAS 2010年第2期209-214,共6页
Based on the engineering observations of coal and gas outbursts during mining processes and the experimental results,we built a thin plate mechanical model for layered and spalled coal bodies.We studied the mechanical... Based on the engineering observations of coal and gas outbursts during mining processes and the experimental results,we built a thin plate mechanical model for layered and spalled coal bodies.We studied the mechanical mechanism of outbursts,due to instability,of thin plates of coal rocks under the action of in-plane load and normal load,by using the catastrophe theory.The total potential function is derived for the layered rock system,the cusp catastrophe model for the system is established,the bifurcation set that makes the system unstable is given,the process in which gradual change of action forces leads to catastrophic change of state is analyzed,and the effect of movement path of point(P,q) in the control space on the stability of rock plate is analyzed.The study results show that during the process of coal mining,the stability of the layered coal bodies depends not only on its physical properties and dimensions but also on the magnitudes and changing paths of the in-plane load and the normal load.When the gas in the coal bodies ahead of the mining face is pre-drained,the gas pressure can be reduced and the normal load q can be lowered.Consequently,disasters such as coal and gas outbursts can be effectively prevented. 展开更多
关键词 coal and gas outbursts catastrophe theory INSTABILITY
下载PDF
Mechanical criterion for coal and gas outburst:a perspective from multiphysics coupling 被引量:6
17
作者 Ting Liu Baiquan Lin +1 位作者 Xuehai Fu Ang Liu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第6期1423-1435,共13页
Although a series of hypotheses have been proposed,the mechanism underlying coal and gas outburst remains unclear.Given the low-index outbursts encountered in mining practice,we attempt to explore this mechanism using... Although a series of hypotheses have been proposed,the mechanism underlying coal and gas outburst remains unclear.Given the low-index outbursts encountered in mining practice,we attempt to explore this mechanism using a multiphysics coupling model considering the effects of coal strength and gas mass transfer on failure.Based on force analysis of coal ahead of the heading face,a risk identification index C_(m)and a critical criterion(C_(m)≥1)of coal instability are proposed.According to this criterion,the driving force of an outburst consists of stress and gas pressure gradients along the heading direction of the roadway,whereas resistance depends on the shear and tensile strengths of the coal.The results show that outburst risk decreases slightly,followed by a rapid increase,with increasing vertical stress,whereas it decreases with increasing coal strength and increases with gas pressure monotonically.Using the response surface method,a coupled multi-factor model for the risk identification index is developed.The results indicate strong interactions among the controlling factors.Moreover,the critical values of the factors corresponding to outburst change depending on the environment of the coal seams,rather than being constants.As the buried depth of a coal seam increases,the critical values of gas pressure and coal strength decrease slightly,followed by a rapid increase.According to its controlling factors,outburst can be divided into stress-dominated,coal-strength-dominated,gas-pressure-dominated,and multi-factor compound types.Based on this classification,a classified control method is proposed to enable more targeted outburst prevention. 展开更多
关键词 coal and gas outburst Critical criterion Multiphysics coupling Response surface method
下载PDF
A rapid and accurate direct measurement method of underground coal seam gas content based on dynamic diffusion theory 被引量:6
18
作者 Yanwei Liu Yang Du +4 位作者 Zhiqiang Li Fajun Zhao Weiqin Zuo Jianping Wei Hani Mitri 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2020年第6期799-810,共12页
Coal seam gas content is frequently measured in quantity during underground coal mining operation and coalbed methane(CBM)exploration as a significant basic parameter.Due to the calculation error of lost gas and resid... Coal seam gas content is frequently measured in quantity during underground coal mining operation and coalbed methane(CBM)exploration as a significant basic parameter.Due to the calculation error of lost gas and residual gas in the direct method,the efficiency and accuracy of the current methods are not inadequate to the large area multi-point measurement of coal seam gas content.This paper firstly deduces a simplified theoretical dynamic model for calculating lost gas based on gas dynamic diffusion theory.Secondly,the effects of various factors on gas dynamic diffusion from coal particle are experimentally studied.And sampling procedure of representative coal particle is improved.Thirdly,a new estimation method of residual gas content based on excess adsorption and competitive adsorption theory is proposed.The results showed that the maximum error of calculating the losing gas content by using the new simplified model is only 4%.Considering the influence of particle size on gas diffusion law,the particle size of the collected coal sample is below 0.25 mm,which improves the measurement speed and reflects the safety representativeness of the sample.The determination time of gas content reduced from 36 to 3 h/piece.Moreover,the absolute error is 0.15–0.50 m^3/t,and the relative error is within 5%.A new engineering method for determining the coal seam gas content is developed according to the above research. 展开更多
关键词 coal seam gas content Dynamic diffusion model Determination method Lost gas content Desorption characteristics
下载PDF
Energy-limiting factor for coal and gas outburst occurrence in intact coal seam 被引量:3
19
作者 Qingyi Tu Yuanping Cheng +2 位作者 Sheng Xue Ting Ren Xiang Cheng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第4期729-742,共14页
This research reviewed the mechanics and gas desorption properties of intact coal,and tested the crushing work ratios of different intact coals,and then,studied the stress conditions for the failure or crushing of int... This research reviewed the mechanics and gas desorption properties of intact coal,and tested the crushing work ratios of different intact coals,and then,studied the stress conditions for the failure or crushing of intact coal and the gas demand for the pulverization of intact coal particles.When a real-life outburst case is examined,the required minimum stress for intact coal outburst is estimated.The study concludes that the crushing work ratios of three intact coal samples vary from 294.3732 to 945.8048 J/m^(2).For the real-life case,more than 2300 MJ of transport work is needed,and 10062.09,7046.57 and 5895.47 m^(3) of gas is required when the gas pressure is 1,2 and 3 MPa,respectively.The crushing work exceeds the transport work and even reaches 13.96 times of the transport work.How to provide such an enormous crushing work is an energy-limiting factor for the outburst in intact coal.The strain energy is needed for the crushing work,and the required minimum stress is over 54.35 MPa,even reaching 300.44 MPa.These minimum stresses far exceed the in-situ vertical and horizontal stresses that can be provided at the 300–700 m mining depth range. 展开更多
关键词 coal and gas outburst Intact coal Crushing work ratio Geological factors Outburst energy
下载PDF
Fractal characteristics of surface crack evolution in the process of gas-containing coal extrusion 被引量:12
20
作者 Chen Peng Wang Enyuan +3 位作者 Ou Jianchun Li Zhonghui Wei Mingyao Li Xuelong 《International Journal of Mining Science and Technology》 SCIE EI 2013年第1期121-126,共6页
In this paper, simulated experiment device of coal and gas outburst was employed to perform the experiment on gas-containing coal extrusion. In the experiment, coal surface cracks were observed with a high-speed camer... In this paper, simulated experiment device of coal and gas outburst was employed to perform the experiment on gas-containing coal extrusion. In the experiment, coal surface cracks were observed with a high-speed camera and then the images were processed by sketch. Based on the above description, the paper studied the fractal dimension values from different positions of coal surface as well as their changing laws with time. The results show that there is a growing parabola trend of crack dimension value in the process of coal extrusion. Accordingly, we drew the conclusion that extruded coal crack evolution is a process of fractal dimension value increase. On the basis of fractal dimension values taken from different parts of coal masses, a fractal dimension of the contour map was drawn. Thus, it is clear that the contour map involves different crack fractal dimension values from different positions. To be specific, where there are complicated force and violent movement in coal mass, there are higher fractal dimension values, i.e., the further the middle of observation surface is from the exit of coal mass, and the lower the fractal dimension value is. In line with fractal geometry and energy theory of coal and gas outburst, this study presents the relation between fractal dimension and energy in the process of extruding. In conclusion, the evolution of crack fractal dimension value can signify that of energy, which has laid a solid foundation for the quantification research on the mechanism of gas-containing coal extrusion. 展开更多
关键词 coal and gas outburst Fracture Surface crack Fractal dimension value Energy
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部