Based on the latest results of near-source exploration in the Middle and Lower Jurassic of the Tuha Basin,a new understanding of the source rocks,reservoir conditions,and source-reservoir-cap rock combinations of the ...Based on the latest results of near-source exploration in the Middle and Lower Jurassic of the Tuha Basin,a new understanding of the source rocks,reservoir conditions,and source-reservoir-cap rock combinations of the Jurassic Shuixigou Group in the Taibei Sag is established using the concept of the whole petroleum system,and the coal-measure whole petroleum system is analyzed thoroughly.The results are obtained in three aspects.First,the coal-measure source rocks of the Badaowan Formation and Xishanyao Formation and the argillaceous source rocks of the Sangonghe Formation in the Shuixigou Group exhibit the characteristics of long-term hydrocarbon generation,multiple hydrocarbon generation peaks,and simultaneous oil and gas generation,providing sufficient oil and gas sources for the whole petroleum system in the Jurassic coal-bearing basin.Second,multi-phase shallow braided river delta–shallow lacustrine deposits contribute multiple types of reservoirs,e.g.sandstone,tight sandstone,shale and coal rock,in slope and depression areas,providing effective storage space for the petroleum reservoir formation in coal-measure strata.Third,three phases of hydrocarbon charging and structural evolution,as well as effective configuration of multiple types of reservoirs,result in the sequential accumulation of conventional-unconventional hydrocarbons.From high structural positions to depression,there are conventional structural and structural-lithological reservoirs far from the source,low-saturation structural-lithological reservoirs near the source,and tight sandstone gas,coal rock gas and shale oil accumulations within the source.Typically,the tight sandstone gas and coal rock gas are the key options for further exploration,and the shale oil and gas in the depression area is worth of more attention.The new understanding of the whole petroleum system in the coal measures could further enrich and improve the geological theory of the whole petroleum system,and provide new ideas for the overall exploration of oil and gas resources in the Tuha Basin.展开更多
Upper Paleozoic coal measures in the Ordos Basin consist of dark mudstone and coal beds and are important source rocks for gas generation. Gas accumulations include coal-bed methane (CBM), tight gas and conventional...Upper Paleozoic coal measures in the Ordos Basin consist of dark mudstone and coal beds and are important source rocks for gas generation. Gas accumulations include coal-bed methane (CBM), tight gas and conventional gas in different structural areas. CBM accumulations are mainly distributed in the marginal area of the Ordos Basin, and are estimated at 3.5 × 1012 m3. Tight gas accumulations exist in the middle part of the Yishan Slope area, previously regarded as the basin-centered gas system and now considered as stratigraphic lithologic gas reservoirs. This paper reviews the characteristics of tight gas accumulations: poor physical properties (porosity 〈 8%, permeability 〈 0.85 × 10 3 μm2), abnormal pressure and the absence of well-defined gas water contacts. CBM is a self-generation and self- reservoir, while gas derived from coal measures migrates only for a short distance to accumulate in a tight reservoir and is termed near-generation and near-reservoir. Both CBM and tight gas systems require source rocks with a strong gas generation ability that extends together over wide area. However, the producing area of the two systems may be significantly different.展开更多
Coal-formed gas generated from the Permo-Carboniferous coal measures has become one of the most important targets for deep hydrocarbon exploration in the Bohai Bay Basin,offshore eastern China.However,the proven gas r...Coal-formed gas generated from the Permo-Carboniferous coal measures has become one of the most important targets for deep hydrocarbon exploration in the Bohai Bay Basin,offshore eastern China.However,the proven gas reserves from this source rock remain low to date,and the distribution characteristics and accumulation model for the coal-formed gas are not clear.Here we review the coal-formed gas deposits formed from the Permo-Carboniferous coal measures in the Bohai Bay Basin.The accumulations are scattered,and dominated by middle-small sized gas fields,of which the proven reserves ranging from 0.002 to 149.4×108 m3 with an average of 44.30×108 m3 and a mid-point of 8.16×108 m3.The commercially valuable gas fields are mainly found in the central and southern parts of the basin.Vertically,the coal-formed gas is accumulated at multiple stratigraphic levels from Paleogene to Archaeozoic,among which the Paleogene and PermoCarboniferous are the main reservoir strata.According to the transporting pathway,filling mechanism and the relationship between source rocks and reservoir,the coal-formed gas accumulation model can be defined into three types:"Upward migrated,fault transported gas"accumulation model,"Laterally migrated,sandbody transported gas"accumulation model,and"Downward migrated,sub-source,fracture transported gas"accumulation model.Source rock distribution,thermal evolution and hydrocarbon generation capacity are the fundamental controlling factors for the macro distribution and enrichment of the coal-formed gas.The fault activity and the configuration of fault and caprock control the vertical enrichment pattern.展开更多
The paper discusses the concept of mineral resources associated with coal measures. A rational and scientific classification of such mineral resources becomes more necessary with the development of science and technol...The paper discusses the concept of mineral resources associated with coal measures. A rational and scientific classification of such mineral resources becomes more necessary with the development of science and technology. A classification scheme is proposed based on compositions and physical properties and the utilization of these associated minerals.展开更多
The proved reserve of kaolinite rocks in China coal measures is about 1.673 billion tons. The types of kaolinite rocks contain tonstein, flintclay and soft kaolin. Their origin modes include alteration of volcanic ash...The proved reserve of kaolinite rocks in China coal measures is about 1.673 billion tons. The types of kaolinite rocks contain tonstein, flintclay and soft kaolin. Their origin modes include alteration of volcanic ash, terrigenous clay deposit and weathering of coal and adjacent rocks. The organic matter and organic acid play an important role in the formation of kaolinite rocks of coal measures. The difference in properties between kaolinite rock and traditional kaolin requires different processing technologies.展开更多
Analyses of Rare Earth Elements (REEs) in 13 coal samples collected from Late Permian coal measures of Bijie City in western Guizhou Province were conducted using Inductively Coupled Plasma-Mass-Spectrometry (ICP-M...Analyses of Rare Earth Elements (REEs) in 13 coal samples collected from Late Permian coal measures of Bijie City in western Guizhou Province were conducted using Inductively Coupled Plasma-Mass-Spectrometry (ICP-MS). The results indicated that REEs patterns were not controlled by materials from the sea, whereas the contribution of land plants was about 1%. The major sources of REEs were from terrigenous material as indicated by negative Eu anomaly. There were similar distribution curves of REEs between Bijie's coal and Emeishan basalt. M12 coal seam, which had the highest ∑REE, appeared near the boundary between Longtan Formation and Changxing Formation, which was closely correlated to the eruption of Emeishan basalt. The Emeishan basalt contributed to REEs enrichment of M12. So the sources of REEs were controlled by terrigenous material, and the Emeishan basalt was the predominant source of terrigenous material, which dominated the enrichment and pattern of REEs in Late Permian coal measure from Bijie.展开更多
The mechanical property of mudstone/shale in coal measures is a key factor of engineering mechanics that influences the development of shale gas. A rock mechanics test was performed in order to analyze the complete st...The mechanical property of mudstone/shale in coal measures is a key factor of engineering mechanics that influences the development of shale gas. A rock mechanics test was performed in order to analyze the complete stress-strain mechanic characteristics and influence factors of mudstone/shale in paralic coal measures, from the Carboniferous-Permian periods in a coal field of Northern China. The relationship between the mechanical properties of mudstone/shale in coal measures, and its chemical component, water content are established, and their models are constructed. Research results show that mud- stone/shale has low mechanical strength, low elastic modulus and a high Poisson's ratio. The complete stress-strain curve has apparent elastoplastic deformation characteristics, and after reaching peak strength, it exhibits obvious strain softening characteristics. The uniaxial compressive strength of mudstone/shale and its elastic modulus increases exponentially with the increase of SiO2 content, and as the ignition loss increases, the uniaxial compressive strength and elastic modulus of mudstone/shale will decrease according to the law of power function. The compressive strength of mudstone/shale and its elastic modulus will decrease with the increase of water content in mudstone/shale.展开更多
The Ordos Basin is an important intracontinental sedimentary basin in China,containing a significant amount of coal,oil,and natural gas.This study analyzed the sedimentary environment,sedimentary facies,parent materia...The Ordos Basin is an important intracontinental sedimentary basin in China,containing a significant amount of coal,oil,and natural gas.This study analyzed the sedimentary environment,sedimentary facies,parent material type,maturity,and carbon isotopic composition of the coal-bearing organic matter using gas chromatography–mass spectrometry(GC–MS)and stable isotope ratio mass spectrometry.The source of oil occurring in the No.2 coal seam of the Jurassic Yan’an Formation(An-1 oil)and its accumulation model were also investigated.The results show that the relative abundances of C_(27),C_(28),and C_(29) steranes in the An-1 oil are 43.8%,33.0%,and 23.2%,respectively.The tricyclic terpanes,C_(29)20S/(20S+20R),and C_(29)ββ/(ββ+αα)contents of the An-1 oil are 31.4%−34.8%,0.85 and 0.81,respectively.Pr/n-C17,Ph/n-C18,and Pr/Ph values are 0.34,0.42,and 0.87,respectively.Biomarker parameters indicate that the An-1 oil mainly comes from the plankton source rock deposited in the freshwater lake facies and a reducing environment,which has evolved to maturity.The correlation of oil-oil indicates that the An-1 oil is homologous to the Chang-7 oil(Chang-7 member of the Triassic Yanchang Formation).The correlation of oil-source rock presents that the An-1 oil is generated from the Yanchang Formation(Chang-6 and Chang-7 source rocks)and occurred in the coal seam during the stage of stratum uplift since the Early of Late Cretaceous.The distribution characteristics of δ13C group components in the An-1 oil and Chang-7 oil also reveal the fractionation phenomenon during the migration of crude oil.展开更多
To study the microscopic structure,thermal and mechanical properties of sandstones under the influence of temperature,coal measure sandstones from Southwest China are adopted as the research object to carry out high-t...To study the microscopic structure,thermal and mechanical properties of sandstones under the influence of temperature,coal measure sandstones from Southwest China are adopted as the research object to carry out high-temperature tests at 25℃-1000℃.The microscopic images of sandstone after thermal treatment are obtained by means of polarizing microscopy and scanning electron microscopy(SEM).Based on thermogravimetric(TG)analysis and differential scanning calorimetric(DSC)analysis,the model function of coal measure sandstone is explored through thermal analysis kinetics(TAK)theory,and the kinetic parameters of thermal decomposition and the thermal decomposition reaction rate of rock are studied.Through the uniaxial compression experiments,the stress‒strain curves and strength characteristics of sandstone under the influence of temperature are obtained.The results show that the temperature has a significant effect on the microstructure,mineral composition and mechanical properties of sandstone.In particular,when the temperature exceeds 400℃,the thermal fracture phenomenon of rock is obvious,the activity of activated molecules is significantly enhanced,and the kinetic phenomenon of the thermal decomposition reaction of rock appears rapidly.The mechanical properties of rock are weakened under the influence of rock thermal fracture and mineral thermal decomposition.These research results can provide a reference for the analysis of surrounding rock stability and the control of disasters caused by thermal damage in areas such as underground coal gasification(UCG)channels and rock masses subjected to mine fires.展开更多
A reporter for China’s Foreign Tradehas learned from the Ministry of theCoal Industry that China will takethe following steps to develop its coal industryduring the ninth five-Year plan period. 1. To regulate the pol...A reporter for China’s Foreign Tradehas learned from the Ministry of theCoal Industry that China will takethe following steps to develop its coal industryduring the ninth five-Year plan period. 1. To regulate the policy for buildupthe coal industry and to make a good job ofthe comprehensive development of buildinga number of key coal production bases.展开更多
Based on element geochemical studies of the main Permian exploitable coal measure strata in Western Guizhou, the element geochemical distribution characteristics of the main exploitable coal measures were revealed in ...Based on element geochemical studies of the main Permian exploitable coal measure strata in Western Guizhou, the element geochemical distribution characteristics of the main exploitable coal measures were revealed in the regions of Dafang, Qianxi, Weining, Hezhang, Zhijin, etc., of Guizhou Province, and the results show that their element contents are mainly affected by terrestrial material supply. Coal measures formed in the delta plain environment where sufficient terrestrial materials are supplied contain relatively abundant trace elements and rare-earth elements, whereas those formed in the tidal-fiat environment influenced greatly by seawater have relatively low contents of trace elements and rare-earth elements, mainly con- trolled by the geological fact that basalts the parent rocks from source regions contain high trace elements and rare-earth elements. In addition, coal measures affected by later hydrothermal activities and fault tectonics contain a large amount of harmful elements. According to the rules of distribution of elements in coal measures, a new idea was put forward to classify coal-forming environments by using the geochemical composition characteristics, which is of great significance in dissolving the problem of whether coal measures were fbrmed either in delta environments or in tidal-flat environments in Western Gui- zhou. At the same time, the rules of distribution of elements in the main exploitable coal measures in Western Guizhou were fully understood, which is of direct significance in utilizing coal resources on the basis of classification of coals, as well as in developing the coal chemical industry.展开更多
The distribution of the Jurassic coal measures in the northern Qaidam Basin is obviously controlled by the regional structures. Based on the existing data of coalfield exploration and combined with the analysis of coa...The distribution of the Jurassic coal measures in the northern Qaidam Basin is obviously controlled by the regional structures. Based on the existing data of coalfield exploration and combined with the analysis of coalfield basement structures, features of the main faults, and the distribution of coal measures, this paper brings forward a scheme of coalfield tectonic divisional units and the definition of the coal-controlling structural styles in the northern Qaidam Basin. The structure control of the distribution of coal measures is further discussed. Several stages of regional tectonic activities since the Indosinian has led to the distribution of coal measures into the characteristics of zonation from the north to south and block from east to west. The results indicate that the structural deformations are the most intense in the front of the three uplifted belts, which are characterized by the combination of thrusts. The coal measures are uplifted to the shallow formations, and are easy to be exploited, but the scale of mines is small because of serious damages by the coal distribution. On the contrary, the stress and strain are weak in the three depressions, with the coal-controlling structural styles being mainly the thrust-fold and thrust-monocline combinations. The distribution of coals in the depressions is relatively stable. The shallower part of the depression will become the key areas for exploration and development of coal resources in the northern Qaidam Basin.展开更多
Coal measure gas(also known as coal-bearing unconventional gas)is the key field and development direction of unconventional natural gas in recent years.The exploration and evaluation of coal measure gas(coalbed methan...Coal measure gas(also known as coal-bearing unconventional gas)is the key field and development direction of unconventional natural gas in recent years.The exploration and evaluation of coal measure gas(coalbed methane,coal shale gas and coal measure tight sandstone gas)from single coalbed methane has greatly expanded the field and space of resource evaluation,which is of positive significance for realizing the comprehensive utilization of coal resources,maximizing the benefits and promoting the innovation of oil and gas geological theory and technological advances in exploration and development.For the first time,in Yangmeishu Syncline of Western Guizhou Province,the public welfare coalbed methane geological survey project of China Geological Survey has been carried out a systematic geological survey of coal measure gas for the Upper Permian Longtan Formation,identified the geological conditions of coal measure gas and found high quality resources.The total geological resource quantity of coalbed methane and coal shale gas is 51.423×109 m3 and the geological resource abundance is up to 566×106 m3/km2.In this area,the coal measures are characterized by many layers of minable coal seams,large total thickness,thin to the medium thickness of the single layer,good gas-bearing property of coal seams and coal measure mudstone and sandstone,good reservoir physical property and high-pressure coefficient.According to the principle of combination of high quality and similarity of key parameters of the coal reservoir,the most favorable intervals are No.5-2,No.7 and No.13-2 coal seam in Well YMC1.And the pilot tests are carried out on coal seams and roof silty mudstone,such as staged perforation,increasing hydraulic fracturing scale and"three gas"production.The high and stable industrial gas flow with a daily gas output of more than 4000 m3 has been obtained,which has realized the breakthrough in the geological survey of coal measure gas in Southwest China.Based on the above investigation results,the geological characteristics of coal measure gas in the multi-thin-coal-seam-developed area and the coexploration and co-production methods,such as the optimization method of favorable intervals,the highefficiency fracturing and reservoir reconstruction method of coal measures,and the"three gas"drainage and production system,are systematically summarized in this paper.It will provide a reference for efficient exploration and development of coal measure gas in similar geological conditions in China.展开更多
Optimization of fracturing perforation is of great importance to the commingling gas production in coal measure strata.In this paper,a 3 D lattice algorithm hydraulic fracturing simulator was employed to study the eff...Optimization of fracturing perforation is of great importance to the commingling gas production in coal measure strata.In this paper,a 3 D lattice algorithm hydraulic fracturing simulator was employed to study the effects of perforation position and length on hydraulic fracture propagation in coal measures of the Lin-Xing block,China.Based on field data,three lithologic combinations are simulated:1)a thick section of coal seam sandwiched by sandstones;2)a thin coal seam layer overlay by gas-bearing tight sandstone;3)two coal seams separated by a thin layer of sandstone.Our simulation shows that perforation position and length in multi-layer reservoirs play a major role in hydraulic fracture propagation.Achieving maximum stimulated volume requires consideration of lithologic sequence,coal seam thickness,stress states,and rock properties.To improve the combined gas production in coal measure strata,it is possible to simultaneously stimulate multiple coal seams or adjacent gas-bearing sandstones.In these cases,perforation location and length also significantly impact fracture propagation,and therefore should be carefully designed.Our simulation results using 3 D lattice algorithm are qualitatively consistent with laboratory physical simulation.3 D lattice models can be used to effectively simulate the fracture propagation through layers in coal measure strata.The numerical results provide guidance for perforation optimization in the hydraulic fracturing of coal measure strata.展开更多
This paper seeks to enhance the understanding that the horizontal stresses build up and release during coal pillar loading and unloading(post-failure) drawing upon three decades of observations, geomechanical monitori...This paper seeks to enhance the understanding that the horizontal stresses build up and release during coal pillar loading and unloading(post-failure) drawing upon three decades of observations, geomechanical monitoring and numerical modeling in bump-prone U.S. mines. The focus is on induced horizontal stress in mine pillars and surrounding strata as highly stressed pillars punch into the roof and floor, causing shear failure and buckling of strata; under stiff stratigraphic units of some western US mines, these events could be accompanied by violent failure of pillar cores. Pillar punching eventually results in tensile stresses at the base of the pillar, facilitating transition into the post-failure regime; this transition will be nonviolent if certain conditions are met, notably the presence of interbedded mudstones with low shear strength properties and proper mine designs for controlling seismicity and dynamic loads. The study clearly shows high confining stress build-up in coal pillars resulting in up to twice higher peak vertical stress and high strain energy accumulations in some western US mines in comparison with peak stresses predicted using common empirical pillar design methods. It is the unstable release of this strain energy that can cause significant damage resulting from pillar dilation and ground movements. These forces are much greater than the capacity of most common internal support systems, resulting in horizontal stressinduced roof falls locally, in mines under unremarkable far-field horizontal stress. Attention should be placed on pillar designs as increasing support density may prove to be ineffective. This mechanism is analyzed using field measurements and generic finite-difference stress analyses. The study confirms the higher load carrying capacity of confinement-controlled coal seams in comparison with structurally controlled coal seams. Such significant differences in confining stresses are not taken into account when estimating peak pillar strength using most common empirical techniques such as those proposed by Bieniawski and Salamon. While using lower pillar strength estimates may be considered conservative,it underestimates the actual capacity of pillars in accumulating much higher stress and strain energies,misleading the designer and inadvertently diminishing mine safety. The role of induced horizontal stress in mine pillars and surrounding strata is emphasized in coal pillar mechanics of violent failure. The triggering mechanism for the violent events is sudden loss of pillar confinement due to dynamic loading resulting from failure of overlying stiff and strong strata. Evidence of such mechanism is noted in the field by observed red-dust at the coal-rock interfaces at the location of coal bumps and irregular, periodic caving in room-and-pillar mines quantified through direct pressure measurements in the gob.展开更多
Laser triangulation theory was used to develop a novel contact-free method for measuring the coal level in a silo under harsh environmental conditions found in coal mines, such as the presence of dense dust, high humi...Laser triangulation theory was used to develop a novel contact-free method for measuring the coal level in a silo under harsh environmental conditions found in coal mines, such as the presence of dense dust, high humidity, and low illumination. A laser source and a camera were mounted at the top of the silo. The laser spot projected into the silo was imaged by the camera. The pinhole imaging principle allows the level to be found from the lateral shift of the spot image on the sensor. A pre-calibrated look-up table of the coal depth versus spot position was used to obtain the depth. The measurement accuracy depends on the step size used during pre-calibration. The actual application of a device designed according to these principles shows that it is easy to implement. The detection of the coal level in a silo at the low illumination level found in coal mines is demonstrated.展开更多
The influence of an upper,mined coal seam on the stability of rock surrounding a roadway in a lower coal seam is examined.The technical problems of roadway control are discussed based on the geological conditions exis...The influence of an upper,mined coal seam on the stability of rock surrounding a roadway in a lower coal seam is examined.The technical problems of roadway control are discussed based on the geological conditions existing in the Liyazhuang Mine No.2 coal seam.The stress distribution and floor failure in the lower works after mining the upper coal is studied through numerical simulations.The failure mechanism of the roof and walls of a roadway located in the lower coal seam is described.The predicted deformation and failure of the roadway for different distances between the two coal seams are used to design two ways of supporting the lower structure.One is a combined support consisting of anchors with a joist steel tent and a combined anchor truss.A field test of the design was performed to good effect.The results have significance for the design of supports for roadways located in similar conditions.展开更多
The Xihu Depression in the East China Sea Shelf Basin is a large petroliferous sedimentary depression,in which oil and gas reservoirs were mainly discovered in the Pinghu Slope and the central inversion zone.The oil-g...The Xihu Depression in the East China Sea Shelf Basin is a large petroliferous sedimentary depression,in which oil and gas reservoirs were mainly discovered in the Pinghu Slope and the central inversion zone.The oil-gas source correlation in the Xihu Depression was analyzed by hydrocarbon generating thermal simulation data via gold-tube pyrolysis experiments.The results indicated that the oil and gas in the Xihu Depression were mainly derived from coal measure source rocks of the Eocene Pinghu Formation.Therefore,the identification of coal seams is extremely crucial for evaluating coal measure source rocks in the Pinghu Formation in the Xihu Depression.Geochemical and petrological characterization pointed to input of terrigenous organic matter and redox conditions of the depositional environment as factors that govern the ability of the coal measure source rocks in hydrocarbon generation in the Xihu Depression.In this regard,the sedimentary organic facies in the Pinghu Formation were classified into four predominantly terrigenous and one mixed-source subfacies,which all varied in carbon and hydrogen content.The coal measure source rocks in the carbon-and hydrogen-rich tidal flat-lagoon exhibited the highest hydrocarbon generation potential,whereas the mudstone in the neritic facies was the poorest in its hydrocarbon yield.These results suggested that the coal measure source rocks in the Pinghu Formation likely developed in the Hangzhou Slope and the Tiantai Slope,both representing promising sources for oil and gas exploration.展开更多
The influence of water on gas generation from humic type organic matter at highly to over mature stage was investigated with thermal simulation experiments at high temperature and pressure.The result of the experiment...The influence of water on gas generation from humic type organic matter at highly to over mature stage was investigated with thermal simulation experiments at high temperature and pressure.The result of the experiments indicates that the effect of water on gas generation was controlled by the thermal maturity of organic matter.Water could enhance gas generation and increase hydrocarbon gas yields significantly at over mature stage of humic type organic matter.Hydrogen isotopic compositions of coal-derived gases generated at highly to over mature stage were mainly controlled by thermal maturity of source rocks,but also affected by formation water.Highly and over mature coal measure source rocks are widely distributed in China.The hydrocarbon gas generation capacity of coal measure source rocks and resource potential of coal-derived gases in deep formations would be significantly enhanced assuming that formation water could be involved in the thermal cracking of highly to over mature organic matter in real geological settings.展开更多
The tight sandstone gas in Upper Paleozoic Formation of the northern Ordos Basin is a typical giant unconventional tight gas province. Evidences from geochemistry, reservoir geology and paleotectonic setting all verif...The tight sandstone gas in Upper Paleozoic Formation of the northern Ordos Basin is a typical giant unconventional tight gas province. Evidences from geochemistry, reservoir geology and paleotectonic setting all verify that the present-day tight sandstone gas accumulation in the Ordos Basin is the result of near-source accumulation. The evidences are listed as following: tight sandstone gas is mainly distributed in the area with high gas-generating strength; gas composition was not subjected tofractionation; gas saturation significantly decreases with the distance away from the source rocks; gas isotopes suggest their origin is the same and maturity is consistent with in-place source rocks; reservoirs have experienced three types of densification digenesis, including intense compaction, siliceous cementation and calcareous cementation, which took place before the formation of a large amount of tight sandstone gas, forming tight reservoirs with low porosity and permeability, fine pore throat and great capillary resistance; the paleo-structural gradient ratio is small from the main hydrocarbon generation period to present. It is indicated the present distribution of tight sandstone gas in the northern Ordos Basin is the result of near-source and short-distance migration and accumulation.展开更多
基金Supported by the“Tianshan Talent”Project of Xinjiang(2022TSYCLJ0070)CNPC Technology Project(2023ZZ18)。
文摘Based on the latest results of near-source exploration in the Middle and Lower Jurassic of the Tuha Basin,a new understanding of the source rocks,reservoir conditions,and source-reservoir-cap rock combinations of the Jurassic Shuixigou Group in the Taibei Sag is established using the concept of the whole petroleum system,and the coal-measure whole petroleum system is analyzed thoroughly.The results are obtained in three aspects.First,the coal-measure source rocks of the Badaowan Formation and Xishanyao Formation and the argillaceous source rocks of the Sangonghe Formation in the Shuixigou Group exhibit the characteristics of long-term hydrocarbon generation,multiple hydrocarbon generation peaks,and simultaneous oil and gas generation,providing sufficient oil and gas sources for the whole petroleum system in the Jurassic coal-bearing basin.Second,multi-phase shallow braided river delta–shallow lacustrine deposits contribute multiple types of reservoirs,e.g.sandstone,tight sandstone,shale and coal rock,in slope and depression areas,providing effective storage space for the petroleum reservoir formation in coal-measure strata.Third,three phases of hydrocarbon charging and structural evolution,as well as effective configuration of multiple types of reservoirs,result in the sequential accumulation of conventional-unconventional hydrocarbons.From high structural positions to depression,there are conventional structural and structural-lithological reservoirs far from the source,low-saturation structural-lithological reservoirs near the source,and tight sandstone gas,coal rock gas and shale oil accumulations within the source.Typically,the tight sandstone gas and coal rock gas are the key options for further exploration,and the shale oil and gas in the depression area is worth of more attention.The new understanding of the whole petroleum system in the coal measures could further enrich and improve the geological theory of the whole petroleum system,and provide new ideas for the overall exploration of oil and gas resources in the Tuha Basin.
基金supported by the National Natural Science Foundation of China(Grant No.41102088)the Fundamental Research Funds for the Central Universities(Grant No.2010ZY03)the open research program of the Geological Processes and Mineral Resources(GPMR),China University of Geosciences,Beijing (Grant No.GPMR201030)
文摘Upper Paleozoic coal measures in the Ordos Basin consist of dark mudstone and coal beds and are important source rocks for gas generation. Gas accumulations include coal-bed methane (CBM), tight gas and conventional gas in different structural areas. CBM accumulations are mainly distributed in the marginal area of the Ordos Basin, and are estimated at 3.5 × 1012 m3. Tight gas accumulations exist in the middle part of the Yishan Slope area, previously regarded as the basin-centered gas system and now considered as stratigraphic lithologic gas reservoirs. This paper reviews the characteristics of tight gas accumulations: poor physical properties (porosity 〈 8%, permeability 〈 0.85 × 10 3 μm2), abnormal pressure and the absence of well-defined gas water contacts. CBM is a self-generation and self- reservoir, while gas derived from coal measures migrates only for a short distance to accumulate in a tight reservoir and is termed near-generation and near-reservoir. Both CBM and tight gas systems require source rocks with a strong gas generation ability that extends together over wide area. However, the producing area of the two systems may be significantly different.
基金financial support from the National major projects (Item No.2016ZX05006-003)
文摘Coal-formed gas generated from the Permo-Carboniferous coal measures has become one of the most important targets for deep hydrocarbon exploration in the Bohai Bay Basin,offshore eastern China.However,the proven gas reserves from this source rock remain low to date,and the distribution characteristics and accumulation model for the coal-formed gas are not clear.Here we review the coal-formed gas deposits formed from the Permo-Carboniferous coal measures in the Bohai Bay Basin.The accumulations are scattered,and dominated by middle-small sized gas fields,of which the proven reserves ranging from 0.002 to 149.4×108 m3 with an average of 44.30×108 m3 and a mid-point of 8.16×108 m3.The commercially valuable gas fields are mainly found in the central and southern parts of the basin.Vertically,the coal-formed gas is accumulated at multiple stratigraphic levels from Paleogene to Archaeozoic,among which the Paleogene and PermoCarboniferous are the main reservoir strata.According to the transporting pathway,filling mechanism and the relationship between source rocks and reservoir,the coal-formed gas accumulation model can be defined into three types:"Upward migrated,fault transported gas"accumulation model,"Laterally migrated,sandbody transported gas"accumulation model,and"Downward migrated,sub-source,fracture transported gas"accumulation model.Source rock distribution,thermal evolution and hydrocarbon generation capacity are the fundamental controlling factors for the macro distribution and enrichment of the coal-formed gas.The fault activity and the configuration of fault and caprock control the vertical enrichment pattern.
文摘The paper discusses the concept of mineral resources associated with coal measures. A rational and scientific classification of such mineral resources becomes more necessary with the development of science and technology. A classification scheme is proposed based on compositions and physical properties and the utilization of these associated minerals.
基金This paper is supported by National Natural Science Foundation of China!(No.4980 2 0 1 0 )
文摘The proved reserve of kaolinite rocks in China coal measures is about 1.673 billion tons. The types of kaolinite rocks contain tonstein, flintclay and soft kaolin. Their origin modes include alteration of volcanic ash, terrigenous clay deposit and weathering of coal and adjacent rocks. The organic matter and organic acid play an important role in the formation of kaolinite rocks of coal measures. The difference in properties between kaolinite rock and traditional kaolin requires different processing technologies.
基金Project supported by Doctor Foundation and Guizhou Provincial Science and Technology Department Fund (200503)
文摘Analyses of Rare Earth Elements (REEs) in 13 coal samples collected from Late Permian coal measures of Bijie City in western Guizhou Province were conducted using Inductively Coupled Plasma-Mass-Spectrometry (ICP-MS). The results indicated that REEs patterns were not controlled by materials from the sea, whereas the contribution of land plants was about 1%. The major sources of REEs were from terrigenous material as indicated by negative Eu anomaly. There were similar distribution curves of REEs between Bijie's coal and Emeishan basalt. M12 coal seam, which had the highest ∑REE, appeared near the boundary between Longtan Formation and Changxing Formation, which was closely correlated to the eruption of Emeishan basalt. The Emeishan basalt contributed to REEs enrichment of M12. So the sources of REEs were controlled by terrigenous material, and the Emeishan basalt was the predominant source of terrigenous material, which dominated the enrichment and pattern of REEs in Late Permian coal measure from Bijie.
基金Supported by the National Basic Research Program of China (973 Program) (2012CB214705) the National Natural Science Foundation of China 41172145, 41030422) the Shanxi Provincial Basic Research Program-Coal Bed Methane Joint Research Foundation (2012012014)
文摘The mechanical property of mudstone/shale in coal measures is a key factor of engineering mechanics that influences the development of shale gas. A rock mechanics test was performed in order to analyze the complete stress-strain mechanic characteristics and influence factors of mudstone/shale in paralic coal measures, from the Carboniferous-Permian periods in a coal field of Northern China. The relationship between the mechanical properties of mudstone/shale in coal measures, and its chemical component, water content are established, and their models are constructed. Research results show that mud- stone/shale has low mechanical strength, low elastic modulus and a high Poisson's ratio. The complete stress-strain curve has apparent elastoplastic deformation characteristics, and after reaching peak strength, it exhibits obvious strain softening characteristics. The uniaxial compressive strength of mudstone/shale and its elastic modulus increases exponentially with the increase of SiO2 content, and as the ignition loss increases, the uniaxial compressive strength and elastic modulus of mudstone/shale will decrease according to the law of power function. The compressive strength of mudstone/shale and its elastic modulus will decrease with the increase of water content in mudstone/shale.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.42172200 and 41972183)the“Chunhui Plan”Cooperative Research for Ministry of Education.
文摘The Ordos Basin is an important intracontinental sedimentary basin in China,containing a significant amount of coal,oil,and natural gas.This study analyzed the sedimentary environment,sedimentary facies,parent material type,maturity,and carbon isotopic composition of the coal-bearing organic matter using gas chromatography–mass spectrometry(GC–MS)and stable isotope ratio mass spectrometry.The source of oil occurring in the No.2 coal seam of the Jurassic Yan’an Formation(An-1 oil)and its accumulation model were also investigated.The results show that the relative abundances of C_(27),C_(28),and C_(29) steranes in the An-1 oil are 43.8%,33.0%,and 23.2%,respectively.The tricyclic terpanes,C_(29)20S/(20S+20R),and C_(29)ββ/(ββ+αα)contents of the An-1 oil are 31.4%−34.8%,0.85 and 0.81,respectively.Pr/n-C17,Ph/n-C18,and Pr/Ph values are 0.34,0.42,and 0.87,respectively.Biomarker parameters indicate that the An-1 oil mainly comes from the plankton source rock deposited in the freshwater lake facies and a reducing environment,which has evolved to maturity.The correlation of oil-oil indicates that the An-1 oil is homologous to the Chang-7 oil(Chang-7 member of the Triassic Yanchang Formation).The correlation of oil-source rock presents that the An-1 oil is generated from the Yanchang Formation(Chang-6 and Chang-7 source rocks)and occurred in the coal seam during the stage of stratum uplift since the Early of Late Cretaceous.The distribution characteristics of δ13C group components in the An-1 oil and Chang-7 oil also reveal the fractionation phenomenon during the migration of crude oil.
基金supported by the Scientific Research Foundation of State Key Laboratory of Coal Mine Disaster Dynamics and Control(Grant No.2011DA105287-zd201804)Jiangxi Provincial Natural Science Foundation of China(Grant No.20232BAB214036).
文摘To study the microscopic structure,thermal and mechanical properties of sandstones under the influence of temperature,coal measure sandstones from Southwest China are adopted as the research object to carry out high-temperature tests at 25℃-1000℃.The microscopic images of sandstone after thermal treatment are obtained by means of polarizing microscopy and scanning electron microscopy(SEM).Based on thermogravimetric(TG)analysis and differential scanning calorimetric(DSC)analysis,the model function of coal measure sandstone is explored through thermal analysis kinetics(TAK)theory,and the kinetic parameters of thermal decomposition and the thermal decomposition reaction rate of rock are studied.Through the uniaxial compression experiments,the stress‒strain curves and strength characteristics of sandstone under the influence of temperature are obtained.The results show that the temperature has a significant effect on the microstructure,mineral composition and mechanical properties of sandstone.In particular,when the temperature exceeds 400℃,the thermal fracture phenomenon of rock is obvious,the activity of activated molecules is significantly enhanced,and the kinetic phenomenon of the thermal decomposition reaction of rock appears rapidly.The mechanical properties of rock are weakened under the influence of rock thermal fracture and mineral thermal decomposition.These research results can provide a reference for the analysis of surrounding rock stability and the control of disasters caused by thermal damage in areas such as underground coal gasification(UCG)channels and rock masses subjected to mine fires.
文摘A reporter for China’s Foreign Tradehas learned from the Ministry of theCoal Industry that China will takethe following steps to develop its coal industryduring the ninth five-Year plan period. 1. To regulate the policy for buildupthe coal industry and to make a good job ofthe comprehensive development of buildinga number of key coal production bases.
文摘Based on element geochemical studies of the main Permian exploitable coal measure strata in Western Guizhou, the element geochemical distribution characteristics of the main exploitable coal measures were revealed in the regions of Dafang, Qianxi, Weining, Hezhang, Zhijin, etc., of Guizhou Province, and the results show that their element contents are mainly affected by terrestrial material supply. Coal measures formed in the delta plain environment where sufficient terrestrial materials are supplied contain relatively abundant trace elements and rare-earth elements, whereas those formed in the tidal-fiat environment influenced greatly by seawater have relatively low contents of trace elements and rare-earth elements, mainly con- trolled by the geological fact that basalts the parent rocks from source regions contain high trace elements and rare-earth elements. In addition, coal measures affected by later hydrothermal activities and fault tectonics contain a large amount of harmful elements. According to the rules of distribution of elements in coal measures, a new idea was put forward to classify coal-forming environments by using the geochemical composition characteristics, which is of great significance in dissolving the problem of whether coal measures were fbrmed either in delta environments or in tidal-flat environments in Western Gui- zhou. At the same time, the rules of distribution of elements in the main exploitable coal measures in Western Guizhou were fully understood, which is of direct significance in utilizing coal resources on the basis of classification of coals, as well as in developing the coal chemical industry.
文摘The distribution of the Jurassic coal measures in the northern Qaidam Basin is obviously controlled by the regional structures. Based on the existing data of coalfield exploration and combined with the analysis of coalfield basement structures, features of the main faults, and the distribution of coal measures, this paper brings forward a scheme of coalfield tectonic divisional units and the definition of the coal-controlling structural styles in the northern Qaidam Basin. The structure control of the distribution of coal measures is further discussed. Several stages of regional tectonic activities since the Indosinian has led to the distribution of coal measures into the characteristics of zonation from the north to south and block from east to west. The results indicate that the structural deformations are the most intense in the front of the three uplifted belts, which are characterized by the combination of thrusts. The coal measures are uplifted to the shallow formations, and are easy to be exploited, but the scale of mines is small because of serious damages by the coal distribution. On the contrary, the stress and strain are weak in the three depressions, with the coal-controlling structural styles being mainly the thrust-fold and thrust-monocline combinations. The distribution of coals in the depressions is relatively stable. The shallower part of the depression will become the key areas for exploration and development of coal resources in the northern Qaidam Basin.
基金This study was supported by the China Geological Survey Projects(DD20160186,12120115008201)
文摘Coal measure gas(also known as coal-bearing unconventional gas)is the key field and development direction of unconventional natural gas in recent years.The exploration and evaluation of coal measure gas(coalbed methane,coal shale gas and coal measure tight sandstone gas)from single coalbed methane has greatly expanded the field and space of resource evaluation,which is of positive significance for realizing the comprehensive utilization of coal resources,maximizing the benefits and promoting the innovation of oil and gas geological theory and technological advances in exploration and development.For the first time,in Yangmeishu Syncline of Western Guizhou Province,the public welfare coalbed methane geological survey project of China Geological Survey has been carried out a systematic geological survey of coal measure gas for the Upper Permian Longtan Formation,identified the geological conditions of coal measure gas and found high quality resources.The total geological resource quantity of coalbed methane and coal shale gas is 51.423×109 m3 and the geological resource abundance is up to 566×106 m3/km2.In this area,the coal measures are characterized by many layers of minable coal seams,large total thickness,thin to the medium thickness of the single layer,good gas-bearing property of coal seams and coal measure mudstone and sandstone,good reservoir physical property and high-pressure coefficient.According to the principle of combination of high quality and similarity of key parameters of the coal reservoir,the most favorable intervals are No.5-2,No.7 and No.13-2 coal seam in Well YMC1.And the pilot tests are carried out on coal seams and roof silty mudstone,such as staged perforation,increasing hydraulic fracturing scale and"three gas"production.The high and stable industrial gas flow with a daily gas output of more than 4000 m3 has been obtained,which has realized the breakthrough in the geological survey of coal measure gas in Southwest China.Based on the above investigation results,the geological characteristics of coal measure gas in the multi-thin-coal-seam-developed area and the coexploration and co-production methods,such as the optimization method of favorable intervals,the highefficiency fracturing and reservoir reconstruction method of coal measures,and the"three gas"drainage and production system,are systematically summarized in this paper.It will provide a reference for efficient exploration and development of coal measure gas in similar geological conditions in China.
基金the financial support by the National Key Research and Development Program of China(Grant No.2020YFC1808102)the Natural Science Foundation of China(No.51874328 and No.52074311)。
文摘Optimization of fracturing perforation is of great importance to the commingling gas production in coal measure strata.In this paper,a 3 D lattice algorithm hydraulic fracturing simulator was employed to study the effects of perforation position and length on hydraulic fracture propagation in coal measures of the Lin-Xing block,China.Based on field data,three lithologic combinations are simulated:1)a thick section of coal seam sandwiched by sandstones;2)a thin coal seam layer overlay by gas-bearing tight sandstone;3)two coal seams separated by a thin layer of sandstone.Our simulation shows that perforation position and length in multi-layer reservoirs play a major role in hydraulic fracture propagation.Achieving maximum stimulated volume requires consideration of lithologic sequence,coal seam thickness,stress states,and rock properties.To improve the combined gas production in coal measure strata,it is possible to simultaneously stimulate multiple coal seams or adjacent gas-bearing sandstones.In these cases,perforation location and length also significantly impact fracture propagation,and therefore should be carefully designed.Our simulation results using 3 D lattice algorithm are qualitatively consistent with laboratory physical simulation.3 D lattice models can be used to effectively simulate the fracture propagation through layers in coal measure strata.The numerical results provide guidance for perforation optimization in the hydraulic fracturing of coal measure strata.
文摘This paper seeks to enhance the understanding that the horizontal stresses build up and release during coal pillar loading and unloading(post-failure) drawing upon three decades of observations, geomechanical monitoring and numerical modeling in bump-prone U.S. mines. The focus is on induced horizontal stress in mine pillars and surrounding strata as highly stressed pillars punch into the roof and floor, causing shear failure and buckling of strata; under stiff stratigraphic units of some western US mines, these events could be accompanied by violent failure of pillar cores. Pillar punching eventually results in tensile stresses at the base of the pillar, facilitating transition into the post-failure regime; this transition will be nonviolent if certain conditions are met, notably the presence of interbedded mudstones with low shear strength properties and proper mine designs for controlling seismicity and dynamic loads. The study clearly shows high confining stress build-up in coal pillars resulting in up to twice higher peak vertical stress and high strain energy accumulations in some western US mines in comparison with peak stresses predicted using common empirical pillar design methods. It is the unstable release of this strain energy that can cause significant damage resulting from pillar dilation and ground movements. These forces are much greater than the capacity of most common internal support systems, resulting in horizontal stressinduced roof falls locally, in mines under unremarkable far-field horizontal stress. Attention should be placed on pillar designs as increasing support density may prove to be ineffective. This mechanism is analyzed using field measurements and generic finite-difference stress analyses. The study confirms the higher load carrying capacity of confinement-controlled coal seams in comparison with structurally controlled coal seams. Such significant differences in confining stresses are not taken into account when estimating peak pillar strength using most common empirical techniques such as those proposed by Bieniawski and Salamon. While using lower pillar strength estimates may be considered conservative,it underestimates the actual capacity of pillars in accumulating much higher stress and strain energies,misleading the designer and inadvertently diminishing mine safety. The role of induced horizontal stress in mine pillars and surrounding strata is emphasized in coal pillar mechanics of violent failure. The triggering mechanism for the violent events is sudden loss of pillar confinement due to dynamic loading resulting from failure of overlying stiff and strong strata. Evidence of such mechanism is noted in the field by observed red-dust at the coal-rock interfaces at the location of coal bumps and irregular, periodic caving in room-and-pillar mines quantified through direct pressure measurements in the gob.
基金supported by the National Natural Science Foun-dation of China (No. 51074169)
文摘Laser triangulation theory was used to develop a novel contact-free method for measuring the coal level in a silo under harsh environmental conditions found in coal mines, such as the presence of dense dust, high humidity, and low illumination. A laser source and a camera were mounted at the top of the silo. The laser spot projected into the silo was imaged by the camera. The pinhole imaging principle allows the level to be found from the lateral shift of the spot image on the sensor. A pre-calibrated look-up table of the coal depth versus spot position was used to obtain the depth. The measurement accuracy depends on the step size used during pre-calibration. The actual application of a device designed according to these principles shows that it is easy to implement. The detection of the coal level in a silo at the low illumination level found in coal mines is demonstrated.
基金supported by the National Natural Science Foundation of China (No.50874103)the National Basic Research Program of China (No.2010CB226805)+1 种基金the Natural Science Foundation of Jiangsu Province (No.BK2008135)by the Open Foundation of State Key Laboratory of Geomechanics and Deep Underground Engineering (No.SKLGDUEK0905)
文摘The influence of an upper,mined coal seam on the stability of rock surrounding a roadway in a lower coal seam is examined.The technical problems of roadway control are discussed based on the geological conditions existing in the Liyazhuang Mine No.2 coal seam.The stress distribution and floor failure in the lower works after mining the upper coal is studied through numerical simulations.The failure mechanism of the roof and walls of a roadway located in the lower coal seam is described.The predicted deformation and failure of the roadway for different distances between the two coal seams are used to design two ways of supporting the lower structure.One is a combined support consisting of anchors with a joist steel tent and a combined anchor truss.A field test of the design was performed to good effect.The results have significance for the design of supports for roadways located in similar conditions.
基金The National Science and Technology Major Project under contract No.2016ZX05024-002the Exploration Project of China National Offshore Oil Corporation under contract Nos 2018OT-KT-SC-9 and 2019KT-SC-10。
文摘The Xihu Depression in the East China Sea Shelf Basin is a large petroliferous sedimentary depression,in which oil and gas reservoirs were mainly discovered in the Pinghu Slope and the central inversion zone.The oil-gas source correlation in the Xihu Depression was analyzed by hydrocarbon generating thermal simulation data via gold-tube pyrolysis experiments.The results indicated that the oil and gas in the Xihu Depression were mainly derived from coal measure source rocks of the Eocene Pinghu Formation.Therefore,the identification of coal seams is extremely crucial for evaluating coal measure source rocks in the Pinghu Formation in the Xihu Depression.Geochemical and petrological characterization pointed to input of terrigenous organic matter and redox conditions of the depositional environment as factors that govern the ability of the coal measure source rocks in hydrocarbon generation in the Xihu Depression.In this regard,the sedimentary organic facies in the Pinghu Formation were classified into four predominantly terrigenous and one mixed-source subfacies,which all varied in carbon and hydrogen content.The coal measure source rocks in the carbon-and hydrogen-rich tidal flat-lagoon exhibited the highest hydrocarbon generation potential,whereas the mudstone in the neritic facies was the poorest in its hydrocarbon yield.These results suggested that the coal measure source rocks in the Pinghu Formation likely developed in the Hangzhou Slope and the Tiantai Slope,both representing promising sources for oil and gas exploration.
基金Supported by the National Natural Science Foundation of China(41472120)
文摘The influence of water on gas generation from humic type organic matter at highly to over mature stage was investigated with thermal simulation experiments at high temperature and pressure.The result of the experiments indicates that the effect of water on gas generation was controlled by the thermal maturity of organic matter.Water could enhance gas generation and increase hydrocarbon gas yields significantly at over mature stage of humic type organic matter.Hydrogen isotopic compositions of coal-derived gases generated at highly to over mature stage were mainly controlled by thermal maturity of source rocks,but also affected by formation water.Highly and over mature coal measure source rocks are widely distributed in China.The hydrocarbon gas generation capacity of coal measure source rocks and resource potential of coal-derived gases in deep formations would be significantly enhanced assuming that formation water could be involved in the thermal cracking of highly to over mature organic matter in real geological settings.
基金supported by the National Key Basic Research and Development Program(973 Program),China(grant No.2014CB239000)China National Science and Technology Major Project(grant No.2016ZX05046)
文摘The tight sandstone gas in Upper Paleozoic Formation of the northern Ordos Basin is a typical giant unconventional tight gas province. Evidences from geochemistry, reservoir geology and paleotectonic setting all verify that the present-day tight sandstone gas accumulation in the Ordos Basin is the result of near-source accumulation. The evidences are listed as following: tight sandstone gas is mainly distributed in the area with high gas-generating strength; gas composition was not subjected tofractionation; gas saturation significantly decreases with the distance away from the source rocks; gas isotopes suggest their origin is the same and maturity is consistent with in-place source rocks; reservoirs have experienced three types of densification digenesis, including intense compaction, siliceous cementation and calcareous cementation, which took place before the formation of a large amount of tight sandstone gas, forming tight reservoirs with low porosity and permeability, fine pore throat and great capillary resistance; the paleo-structural gradient ratio is small from the main hydrocarbon generation period to present. It is indicated the present distribution of tight sandstone gas in the northern Ordos Basin is the result of near-source and short-distance migration and accumulation.