期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
A rapid and accurate direct measurement method of underground coal seam gas content based on dynamic diffusion theory 被引量:6
1
作者 Yanwei Liu Yang Du +4 位作者 Zhiqiang Li Fajun Zhao Weiqin Zuo Jianping Wei Hani Mitri 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2020年第6期799-810,共12页
Coal seam gas content is frequently measured in quantity during underground coal mining operation and coalbed methane(CBM)exploration as a significant basic parameter.Due to the calculation error of lost gas and resid... Coal seam gas content is frequently measured in quantity during underground coal mining operation and coalbed methane(CBM)exploration as a significant basic parameter.Due to the calculation error of lost gas and residual gas in the direct method,the efficiency and accuracy of the current methods are not inadequate to the large area multi-point measurement of coal seam gas content.This paper firstly deduces a simplified theoretical dynamic model for calculating lost gas based on gas dynamic diffusion theory.Secondly,the effects of various factors on gas dynamic diffusion from coal particle are experimentally studied.And sampling procedure of representative coal particle is improved.Thirdly,a new estimation method of residual gas content based on excess adsorption and competitive adsorption theory is proposed.The results showed that the maximum error of calculating the losing gas content by using the new simplified model is only 4%.Considering the influence of particle size on gas diffusion law,the particle size of the collected coal sample is below 0.25 mm,which improves the measurement speed and reflects the safety representativeness of the sample.The determination time of gas content reduced from 36 to 3 h/piece.Moreover,the absolute error is 0.15–0.50 m^3/t,and the relative error is within 5%.A new engineering method for determining the coal seam gas content is developed according to the above research. 展开更多
关键词 coal seam gas content Dynamic diffusion model Determination method Lost gas content Desorption characteristics
下载PDF
Energy return on investment, energy payback time, and greenhouse gas emissions of coal seam gas(CSG) production in China: a case of the Fanzhuang CSG project
2
作者 Zhao-Yang Kong Xiu-Cheng Dong +1 位作者 Xi Lu Xin Wan 《Petroleum Science》 SCIE CAS CSCD 2018年第1期185-199,共15页
The studies and development of coal seam gas(CSG) have been conducted for more than 30 years in China, but few of China's CSG projects have achieved large-scale commercial success; faced with the boom of shale gas,... The studies and development of coal seam gas(CSG) have been conducted for more than 30 years in China, but few of China's CSG projects have achieved large-scale commercial success; faced with the boom of shale gas, some investors are beginning to lose patience and confidence in CSG. China currently faces the following question: Should the government continue to vigorously support the development of the CSG industry? To provide a reference for policy makers and investors, this paper calculates the EROI_(stnd)[a standardized energy return on investment(EROI) method], EROI_(ide)(the maximum theoretical EROI), EROI_(3,i)(EROI considering the energy investment in transport), and EROI_(3,1+e)(EROI with environmental inputs) of a single vertical CSG well in the Fanzhuang CSG project in the Qinshui Basin. The energy payback time(EPT) and the greenhouse gas(GHG) emissions of the CSG systems are also calculated. The results show that over a 15-year lifetime, EROI_(stnd), EROI_(ide), EROI_(3,1), and EROI_(3,1+e)are expected to deliver EROIs of approximately11:1, 20:1, 7:1, and 6:1, respectively. The EPT within different boundaries is no more than 2 years, and the life-cycle GHG emissions are approximately 18.8 million kg CO_2 equivalent. The relatively high EROI and short EPT indicate that the government should take more positive measures to promote the development of the CSG industry. 展开更多
关键词 coal seam gas EROI Energy payback time Greenhouse gas emissions Global warming potential China
下载PDF
Girth welding procedure and weldability evaluation of coal seam gas transmission UOE pipeline
3
作者 LIU Shuo QIAN Weifang +1 位作者 WANG Huailong CAO Neng 《Baosteel Technical Research》 CAS 2013年第3期36-41,共6页
According to the requirements of Queensland Gas Company Ltd. (QGC), the operator of the Queensland Curtis LNG (QCLNG) pipeline project in Australia, girth welding experiments and weldability evaluations have been ... According to the requirements of Queensland Gas Company Ltd. (QGC), the operator of the Queensland Curtis LNG (QCLNG) pipeline project in Australia, girth welding experiments and weldability evaluations have been carded out for three X70 UOE pipes from Baosteel based on API 1104 standards. Shielded metal arc welding (SMAW) and gas- shielded flux-cored wire arc welding (FCAW-G) have been applied, and the girth weld joint quality and mechanical performance were evaluated. It was found that the field girth weldability of Baosteel' s XT0 UOE pipes was excellent under the conditions used here and satisfied the requirements of the QCLNG project for field girth welding construction. Furthermore,Baosteel has offered a solution to the QCLNG project for pipeline girth welding in which the girth welding joint design, selection of welding processes and consumables, welding procedures, techniques and joint inspections are included. Such research provides important guidance for the difficult tie-in welding applications for the construction of the QCLNG pipelines in the field. 展开更多
关键词 coal seam gas UOE pipe girth weld WELDABILITY welding procedure tie-in welding
下载PDF
Installed capacity of coal seam gas power generation exceeds 480 MW under SGCC's coverage
4
《Electricity》 2009年第4期51-,共1页
The journalist learned from the "National Gas Security Working Conference" held recently that the coal seam gas power generation has been rapidly developed in recent years.As of July 2009,within the SGCC'... The journalist learned from the "National Gas Security Working Conference" held recently that the coal seam gas power generation has been rapidly developed in recent years.As of July 2009,within the SGCC's business area,the power generation 展开更多
关键词 Installed capacity of coal seam gas power generation exceeds 480 MW under SGCC’s coverage
下载PDF
Horizontal borehole azimuth optimization for enhanced stability and coal seam gas production
5
作者 Erfan Saber Qingdong Qu +2 位作者 Saiied MAminossadati Yiran Zhu Zhongwei Chen 《Rock Mechanics Bulletin》 2024年第1期115-126,共12页
Horizontal boreholes have been widely used to extract natural gas from coal seams.However,these boreholes can encounter severe instability issues leading to production interruption.Optimizing drilling azimuth is a pot... Horizontal boreholes have been widely used to extract natural gas from coal seams.However,these boreholes can encounter severe instability issues leading to production interruption.Optimizing drilling azimuth is a potential solution for enhancing borehole stability while considering gas production.In this work,we improved and implemented a dual-porosity,fully coupled geomechanical-hydraulic numerical model into COMSOL Multiphysics to investigate into this factor.The sophisticated numerical model incorporates various critical factors,including desorption-induced matrix shrinkage,stress-dependent anisotropic fracture permeability,and the interactions of gas flow and reservoir deformation in matrices and fractures.A suite of simulation scenarios(e.g.,varying coal strength)was carried out to quantify the impact of drilling azimuth on coal permeability evolution,cumulative gas production,and the borehole break-out width for Goonyella Middle Seam of Bowen Basin,Australia.The model was calibrated against both theoretical permeability values and field gas production data.Due to the lack of directly measured matrix permeability data,the actual gas production was used to back calculate the best-matched matrix permeability,which is 0.65μD for this particular work.Moreover,based on the breakout shape and induced volumetric strains around the borehole,drilling along the maximum horizontal stress does not necessarily lead to the best stability of the borehole,as generally believed.A drilling azimuth between 0and 60results in similar breakout width,whereas a drilling azimuth between 60and 90achieves the most efficient gas production.By considering both gas production efficiency and borehole stability,for this particular reservoir condition,the optimum drilling azimuth is determined to be between 45and 60.This study presents a practical approach for determining the optimum drilling azimuth in coal seam gas extraction through in seam boreholes. 展开更多
关键词 coal seam gas Borehole stability gas desorption Directional fracture permeability Borehole break-out
原文传递
A review on transport of coal seam gas and its impact on coalbed methane recovery 被引量:3
6
作者 Geoff G.X.WANG Xiaodong ZHANG +3 位作者 Xiaorong WEI Xuehai FU Bo JIANG Yong QIN 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2011年第2期139-161,共23页
This paper presents a summary review on mass transport of coal seam gas(CSG)in coal associated with the coalbed methane(CBM)and CO_(2) geo-sequestration enhanced CBM(CO_(2)-ECBM)recovery and current research advances ... This paper presents a summary review on mass transport of coal seam gas(CSG)in coal associated with the coalbed methane(CBM)and CO_(2) geo-sequestration enhanced CBM(CO_(2)-ECBM)recovery and current research advances in order to provide general knowledge and fundamental understanding of the CBM/ECBM processes for improved CBM recovery.It will discuss the major aspects of theory and technology for evaluation and development of CBM resources,including the gas storage andflow mechanism in CBM reservoirs in terms of their differences with conventional natural gas reservoirs,and their impact on CBM production behavior.The paper summarizes the evaluation procedure and methodologies used for CBM exploration and exploitation with some recommendations. 展开更多
关键词 mass transport coal seam gas(CSG) coalbed methane(CBM) coal CBM recovery carbon dioxide storage
原文传递
Theory of gas extraction from coal seams and its use 被引量:5
7
作者 FAN Xi-sheng 《Journal of Coal Science & Engineering(China)》 2012年第3期276-279,共4页
Gas extraction is one of the main measures of control and use of gas of coal mines. At present, the design method is under the experimental period and do not satisfy the need of practice. In this paper, the theory of ... Gas extraction is one of the main measures of control and use of gas of coal mines. At present, the design method is under the experimental period and do not satisfy the need of practice. In this paper, the theory of gas extraction of coal seams based upon Darcy law was studied. Mathematical model of gas extraction of coal seams was established and two kinds of solv- ing approaches based on computer software and linear approximation were given. The rightness and the validities of the model were examined with a practical example. Results obtained can be used to determine and optimize the parameters related etc. 展开更多
关键词 coal seam gas gas extraction linear approximation
下载PDF
In-situ gas contents of a multi-section coal seam in Sydney basin for coal and gas outburst management 被引量:1
8
作者 Zhongbei Li Ting Ren +4 位作者 Dennis Black Ming Qiao Itmam Abedin Jessica Juric Mike Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期34-46,共13页
The gas content is crucial for evaluating coal and gas outburst potential in underground coal mining. This study focuses on investigating the in-situ coal seam gas content and gas sorption capacity in a representative... The gas content is crucial for evaluating coal and gas outburst potential in underground coal mining. This study focuses on investigating the in-situ coal seam gas content and gas sorption capacity in a representative coal seam with multiple sections (A1, A2, and A3) in the Sydney basin, where the CO_(2) composition exceeds 90%. The fast direct desorption method and associated devices were described in detail and employed to measure the in-situ gas components (Q_(1), Q_(2), and Q_(3)) of the coal seam. The results show that in-situ total gas content (Q_(T)) ranges from 9.48 m^(3)/t for the A2 section to 14.80 m^(3)/t for the A3 section, surpassing the Level 2 outburst threshold limit value, thereby necessitating gas drainage measures. Among the gas components, Q_(2) demonstrates the highest contribution to Q_(T), ranging between 55% and 70%. Furthermore, high-pressure isothermal gas sorption experiments were conducted on coal samples from each seam section to explore their gas sorption capacity. The Langmuir model accurately characterizes CO_(2) sorption behavior, with ft coefcients (R^(2)) greater than 0.99. Strong positive correlations are observed between in-situ gas content and Langmuir volume, as well as between residual gas content (Q_(3)) and sorption hysteresis. Notably, the A3 seam section is proved to have a higher outburst propensity due to its higher Q_(1) and Q_(2) gas contents, lower sorption hysteresis, and reduced coal toughness f value. The insights derived from the study can contribute to the development of efective gas management strategies and enhance the safety and efciency of coal mining operations. 展开更多
关键词 In-situ coal seam gas content Direct desorption method gas component Sorption capacity coal and gas outburst
下载PDF
Prediction and control of rock burst of coal seam contacting gas in deep mining 被引量:5
9
作者 WANG En-yuan LIU Xiao-fei ZHAO Ein-lai LIU Zhen-tang 《Journal of Coal Science & Engineering(China)》 2009年第2期152-156,共5页
By analyzing the characteristics and the production mechanism of rock burstthat goes with abnormal gas emission in deep coal seams,the essential method of eliminatingabnormal gas emission by eliminating the occurrence... By analyzing the characteristics and the production mechanism of rock burstthat goes with abnormal gas emission in deep coal seams,the essential method of eliminatingabnormal gas emission by eliminating the occurrence of rock burst or depressingthe magnitude of rock burst was considered.The No.237 working face was selected asthe typical working face contacting gas in deep mining;aimed at this working face,a systemof rock burst prediction and control for coal seam contacting gas in deep mining wasestablished.This system includes three parts:① regional prediction of rock burst hazardbefore mining,② local prediction of rock burst hazard during mining,and ③ rock burstcontrol. 展开更多
关键词 deep mining coal seam contacting gas rock burst gas abnormal emission rock burst prediction and control system
下载PDF
Effect of protective coal seam mining and gas extraction on gas transport in a coal seam 被引量:12
10
作者 Yao Banghua Ma Qingqing +2 位作者 Wei Jianping Ma Jianhong Cai Donglin 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期637-643,共7页
A gas–solid coupling model involving coal seam deformation,gas diffusion and seepage,gas adsorption and desorption was built to study the gas transport rule under the effect of protective coal seam mining.The researc... A gas–solid coupling model involving coal seam deformation,gas diffusion and seepage,gas adsorption and desorption was built to study the gas transport rule under the effect of protective coal seam mining.The research results indicate:(1) The depressurization effect changes the stress state of an overlying coal seam and causes its permeability to increase,thus gas in the protected coal seam will be desorbed and transported under the effect of a gas pressure gradient,which will cause a decrease in gas pressure.(2) Gas pressure can be further decreased by setting out gas extraction boreholes in the overlying coal seam,which can effectively reduce the coal and gas outburst risk.The research is of important engineering significance for studying the gas transport rule in protected coal seam and providing important reference for controlling coal and gas outbursts in deep mining in China. 展开更多
关键词 Protective coal seam mining Seepage characteristic coal and gas outburst Numerical simulation
下载PDF
Gas seepage equation of deep mined coal seams and its application 被引量:30
11
作者 HU Guo-zhong WANG Hong-tu TAN Hai-xiang FAN Xiao-gang YUAN Zhi-gang 《Journal of China University of Mining and Technology》 EI 2008年第4期483-487,共5页
In order to obtain a gas seepage law of deep mined coal seams, according to the properties of coalbed methane seepage in in-situ stress and geothermal temperature fields, the gas seepage equation of deep mined coal se... In order to obtain a gas seepage law of deep mined coal seams, according to the properties of coalbed methane seepage in in-situ stress and geothermal temperature fields, the gas seepage equation of deep mined coal seams with the Klinkenberg effect was obtained by confirming the coatbed methane permeability in in-situ stress and geothermal temperature fields. Aimed at the condition in which the coal seams have or do not have an outcrop and outlet on the ground, the application of the gas seepage equation of deep mined coal seams in in-situ stress and geothermal temperature fields on the gas pressure calculation of deep mined coal seams was investigated. The comparison between calculated and measured results indicates that the calculation method of gas pressure, based on the gas seepage equation of deep mined coal seams in in-situ stress and geothermal temperature fields can accu- rately be identical with the measured values and theoretically perfect the calculation method of gas pressure of deep mined coal seams. 展开更多
关键词 deep mining in-situ stress field geothermal temperature field gas seepage equation of coal seam gas pressure
下载PDF
Calculation of gas content in coal seam influenced by in-situ stress grads and ground temperature 被引量:1
12
作者 王宏图 李时雨 +3 位作者 吴再生 杨晓峰 秦大亮 杜云贵 《Journal of Coal Science & Engineering(China)》 2002年第2期60-64,共5页
On the basis of the analysis of coal bed gas pressure in deep mine, and the coal bed permeability ( k ) and the characteristic of adsorption parameter ( b ) changing with temperature, the author puts forward a new cal... On the basis of the analysis of coal bed gas pressure in deep mine, and the coal bed permeability ( k ) and the characteristic of adsorption parameter ( b ) changing with temperature, the author puts forward a new calculating method of gas content in coal seam influenced by in situ stress grads and ground temperature. At the same time, the contrast of the measuring results of coal bed gas pressure with the computing results of coal bed gas pressure and gas content in coal seam in theory indicate that the computing method can well reflect the authenticity of gas content in coal seam,and will further perfect the computing method of gas content in coal seam in theory,and have important value in theory on analyzing gas content in coal seam and forecasting distribution law of gas content in coal seam in deep mine. 展开更多
关键词 gas content in coal seam coal bed gas in situ stress grads ground temperature
下载PDF
Definition, theory, methods, and applications of the safe and efficient simultaneous extraction of coal and gas 被引量:36
13
作者 Yuanping Cheng Liang Wang +3 位作者 Hongyong Liu Shengli Kong Jintuo Zhu Qingyi Tu 《International Journal of Coal Science & Technology》 EI 2015年第1期52-65,共14页
Simultaneous extraction of the coal and gas is an effective method of eliminating coal mine gas disasters while safely exploiting the coal and achieving efficient gas drainage in China, which is widely accepted by the... Simultaneous extraction of the coal and gas is an effective method of eliminating coal mine gas disasters while safely exploiting the coal and achieving efficient gas drainage in China, which is widely accepted by the main coal-producing countries around the world. However, the concrete definition of simultaneous extraction is vague and there is little accurate theoretical support for the simultaneous extraction of coal and gas, which makes it difficult to determine an efficient gas drainage method appropriate to the features of coal seams. Based on theoretical analysis, laboratory tests and field observations, a specific definition of simultaneous extraction of coal and gas is proposed after analyzing the characteristics of coal seam occurrences in China, and we developed the mechanism of mining-enhanced permeability and established the corresponding theoretical model. This comprises a process of fracture network formation, in which the original fractures are opened and new fractures are produced by unloading damage. According to the theoretical model, the engineering approaches and their quantitative parameters of 'unloading by borehole drilling' for single coal seams and 'unloading by protective seam mining' for groups of coal seams are proposed, and the construction principles for coal exploitation and gas-drainage systems for different conditions are given. These methods were applied successfully in the Tunlan Coal Mine in Shanxi Province and the Panyi Coal Mine in Anhui Province and could assure safe and efficient simultaneous extraction of coal and gas in these outburst coal mines. 展开更多
关键词 coal seam gas Outburst coal seam Mining-enhanced permeability Simultaneous extraction of coal and gas
下载PDF
Step change approaches in coal technology and fugitive emissions research
14
作者 Aminossadati S.M. Amanzadeh M. +2 位作者 Prochon E. Kok J. Adam S. 《International Journal of Mining Science and Technology》 SCIE EI 2014年第3期363-367,共5页
Multi-factor productivity(MFP) in underground coal mining has been on the decline for the last decade.The mining industry requires a viable and sustainable approach to overcome the current downtrend. This is only poss... Multi-factor productivity(MFP) in underground coal mining has been on the decline for the last decade.The mining industry requires a viable and sustainable approach to overcome the current downtrend. This is only possible by concurrently focussing on productivity improvement and operating costs reduction,delivered through both incremental and step change technology development. Four technologies are presented in this paper: fibre optic borehole sensing has been demonstrated to reveal detailed information about gas flow influx, water level and borehole blockage events occurring along the length of a surfaceto-inseam lateral. Fibre optic gas sensing has also been investigated, and this technology promises a remote, intrinsically safe, distributed solution. Recent developments in continuous water jet drilling technology have demonstrated a step change increase in drilling rates and flexibility for coal seam degassing,applicable in both surface-to-inseam and underground in-seam applications. The application of water jet technology to the cable bolt drilling problem offers potential to address a serious health and safety and productivity issue in the roadway development process. 展开更多
关键词 coal seam gas Fibre optic sensing gas sensing in borehole Radial drilling Roof bolting
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部