Based on the data of outcrop,core,logging,gas testing,and experiments,the natural gas accumulation and aluminous rock mineralization integrated research was adopted to analyze the controlling factors of aluminous rock...Based on the data of outcrop,core,logging,gas testing,and experiments,the natural gas accumulation and aluminous rock mineralization integrated research was adopted to analyze the controlling factors of aluminous rock series effective reservoirs in the Ordos Basin,NW China,as well as the configuration of coal-measure source rocks and aluminous rock series reservoirs.A natural gas accumulation model was constructed to evaluate the gas exploration potential of aluminous rock series under coal seam in the basin.The effective reservoirs of aluminous rock series in the Ordos Basin are composed of honeycomb-shaped bauxites with porous residual pisolitic and detrital structures,with the diasporite content of greater than 80%and dissolved pores as the main storage space.The bauxite reservoirs are formed under a model that planation controls the material supply,karst paleogeomorphology controls diagenesis,and land surface leaching improves reservoir quality.The hot humid climate and sea level changes in the Late Carboniferous–Early Permian dominated the development of a typical coal-aluminum-iron three-stage stratigraphic structure.The natural gas generated by the extensive hydrocarbon generation of coal-measure source rocks was accumulated in aluminous rock series under the coal seam,indicating a model of hydrocarbon accumulation under the source.During the Upper Carboniferous–Lower Permian,the relatively low-lying area on the edge of an ancient land or island in the North China landmass was developed.The gas reservoirs of aluminous rock series,which are clustered at multiple points in lenticular shape,are important new natural gas exploration fields with great potential in the Upper Paleozoic of North China Craton.展开更多
The uranium deposits in the Tuanyushan area of northern Qaidam Basin commonly occur in coal-bearing series. To decipher the U-enrichment mechanism and controlling factors in this area, a database of 72 drill cores, in...The uranium deposits in the Tuanyushan area of northern Qaidam Basin commonly occur in coal-bearing series. To decipher the U-enrichment mechanism and controlling factors in this area, a database of 72 drill cores, including 56 well-logs and 3 sampling wells, was examined for sedimentology and geochemistry in relation to uranium concentrations. The results show that coal-bearing series can influence uranium mineralization from two aspects, i.e., spatial distribution and dynamic control. Five types of uranium-bearing rocks are recognized, mainly occurring in the braided river and braided delta sedimentary facies, among which sandstones near the coals are the most important. The lithological associations of sandstone-type uranium deposits can be classified into three subtypes, termed as U-coal type, coal-U-coal type, and coal-U type, respectively. The coal and fine siliciclastic rocks in the coal- bearing series confined the U-rich fluid flow and uranium accumulation in the sandstone near them. Thus, the coal-bearing series can provide good accommodations for uranium mineralization. Coals and organic matters in the coal-bearing series may have served as reducing agents and absorbing barriers. Methane is deemed to be the main acidolysis hydrocarbon in the U-bearing beds, which shows a positive correlation with U-content in the sandstones in the coal-bearing series. Additionally, the 613C in the carbonate cements of the U-bearing sandstones indicates that the organic matters, associated with the coal around the sandstones, were involved in the carbonation, one important component of alteration in the Tuanyushan area. Recognition of the dual control of coal-bearing series on the uranium mineralization is significant for the development of coal circular economy, environmental protection during coal utilization and the security of national rare metal resources.展开更多
The distribution of selected critical elements in the sedimentary rocks of the Carboniferous coal-bearing series within the Polish Coal Basins is presented.Critical elements such as Be,Mg,Si,P,Sc,V,Co,Y,Nb,In,Sb,La,Ce...The distribution of selected critical elements in the sedimentary rocks of the Carboniferous coal-bearing series within the Polish Coal Basins is presented.Critical elements such as Be,Mg,Si,P,Sc,V,Co,Y,Nb,In,Sb,La,Ce,Hf,Ta,W,Bi were analysed using inductively-coupled plasma mass spectrometry(ICP/MS).Concentrations of elements such as Sb,Bi,In and,to a slightly lesser extent,Nb,as well as Sc,show average concentrations higher than those from the upper continental crust.The average concentrations of elements like Hf,Mg,P,Y,La,and Ce are slightly lower than in the upper continental crust.Other elements,such as Be,Co,Si,Ta,W and V have average concentrations that are similar,but slightly enriched or slightly depleted,relative to the upper continental crust.The research showed enrichment of some critical elements in the analysed samples,but not high enough that extraction would be economically viable.Statistical methods,which include correlation coefficients between elements and cluster analysis,reveal a strong positive correlation between elements like Be,Bi,Nb,Sc,Ta,W and V.Very high,almost total,positive correlation is also noted between La and Ce.展开更多
In Northern China, sandstone-type uranium (U) deposits are mostly developed in Mesozoic-Cenozoic basins. These U deposits are usually hosted in unvarying horizons within the basins and exhibit typical U-forming sedi...In Northern China, sandstone-type uranium (U) deposits are mostly developed in Mesozoic-Cenozoic basins. These U deposits are usually hosted in unvarying horizons within the basins and exhibit typical U-forming sedimentary associations, which is referred to as U-bearing rock series. This study describes the structural features of U-bearing rock series within the main Mesozoic-Cenozoic U-producing continental basins in Kazakhstan, Uzbekistan, and Russia in the western segment of the Central Asian Metallogenic Belt (CAMB), and Northern China in the eastern segment of the CAMB. We analyze the basic structural conditions and sedimentary environments of U-bearing rock series in Northern China and classify their structural styles in typical basins into river valley, basin margin, and intrabasin uplift margin types. The intrabasin uplift margin structural style proposed in this study can be used to indicate directions for the exploration of sandstone-type U deposits hosted in the center of a basin. At the same time, the study of structural style provides a new idea for exploring sandstone-type U deposits in Mesozoic-Cenozoic basins and it is of great significance to prospecting of sandstone-type uranium deposits.展开更多
The molybdenum-nickel deposits in Shuidong District of Nayong County (Guizhou Province, Southwest China) are found mainly in black shale series of Lower Cambrian Niutitang Formation, which is another Mo-Ni-rich regi...The molybdenum-nickel deposits in Shuidong District of Nayong County (Guizhou Province, Southwest China) are found mainly in black shale series of Lower Cambrian Niutitang Formation, which is another Mo-Ni-rich region besides Zunyi District (Guizhou province). Our systematic study on the Mo-Ni deposits in Tangjiaba of Nayong reveals that layered coarse-grained limestones, spherical beaded limestones concretions are hosted at the lower seam of the Mo-Ni deposits. Its strong negative carbon isotope anomaly (the carbon isotope value of the coarse-grained limestones varies from -2.148‰ to 8.223‰) is similar to that in the modern submarine black smoker chimney. The carbon in the coarse-grained limestones from black rock series of Nayong County might be deep source inorganic carbon. The seams, coarse-grained limestones, ore-bearing coarse-grained limestones and the roof and floor of the deposits are characterized by co-variation on the trace element spider diagram, showing good homology. The extraordinary enrichment of Ag, As and Sb resembles hydrothermal sedimentation. Pro-Earth's core elements Se is strongly enriched in Ni-Mo ore-bearing coarse-grained limestones. The ore-bearing rock series has an extremely low Th/U value (0.012-0.19); in the logU-logTh Cartesian Coordinates, the samples of the roof and floor of the deposits and ore-bearing coarse-grained limestones are found in the East Pacific tise; and the samples of coarse-grained limestones are found between the paleo-hydrothermal dedimentary area and the East Pacific tise. The chondrite-normalized rare earth element patterns of the Ni-Mo deposits show LREE enrichment, Ce negative anomaly, and Eu negative anomaly (which is supposed to be influenced by the deep magmatic processes in an extensional environment) resembles the rare earth element distribution patterns of the fluid and its sediments in modern submarine hydrothermal system. It proves that coarse-grained limestones is characterized by typical hydrothermal limestones, being closely related with the genesis of Mo-Ni deposits in Nayong County, which provides new evidence for hydrothermal sedimentary genesis of Mo-Ni deposit and negative carbon anomaly in the basal Cambrian on a global scale.展开更多
Coal-bearing source rocks of the Pinghu Formation in the Xihu Depression comprise an important material basis of oil and gas resources in the East China Sea Basin.Based on drilling core observation results combined wi...Coal-bearing source rocks of the Pinghu Formation in the Xihu Depression comprise an important material basis of oil and gas resources in the East China Sea Basin.Based on drilling core observation results combined with the analysis and test results of macerals,trace/rare earth elements,and rock pyrolysis,the geochemical characteristics and sedimentary control of coal-bearing source rocks formation are discussed in a high-frequency sequence framework.The results indicate that the macerals composition of the coal-bearing source rocks of the Eocene Pinghu Formation in the Xihu Depression is dominated by vitrinite,with low-medium abundance of exinite and almost no inertinite.The coals and carbonaceous mudstones display higher amounts of total organic carbon(TOC)(14.90%-65.10%),S1+S2(39.24-136.52 mg/g),and IH(191-310 HC/g TOC)respectively,as compared to the mudstones.Organic matter is plotted in typeⅢkerogens and partially in typeⅡ;it is mainly in the low maturity stage.The trace elements results imply that the samples were deposited in a weakly reducing to weakly oxidizing environment and were occasionally affected by seawater.The coal-bearing source rocks were deposited in a relatively oxygen-containing environment.The coal-bearing source rocks development is jointly controlled by the coal accumulation environment,the water conditions affected by ocean currents in offshore basins in China,oxidation-reduction cycles of aqueous media and paleoclimate evolution in a high-frequency sequence framework.展开更多
A systematic geological and geochemical study was conducted for the granitoids of different periods in the western Kunlun orogenic belt. The study indicates that the granitoids belong to tholeiitic, calc-alkaline, hig...A systematic geological and geochemical study was conducted for the granitoids of different periods in the western Kunlun orogenic belt. The study indicates that the granitoids belong to tholeiitic, calc-alkaline, high-K calc-alkaline, alkaline and shoshonitic series, and that there are 5 genetic types, i.e., I-, S-, M-, A- and SH-type, of which SH-type is first put forward in this paper, which corresponds to shoshonitic granitoids.展开更多
Based on the measured displacements,the change laws of the effect of distance in phase space on the deformation of mine lane were analyzed and the chaotic time series model to predict the surrounding rocks deformation...Based on the measured displacements,the change laws of the effect of distance in phase space on the deformation of mine lane were analyzed and the chaotic time series model to predict the surrounding rocks deformation of deep mine lane in soft rock by nonlinear theory and methods was established.The chaotic attractor dimension(D) and the largest Lyapunov index(Emax) were put forward to determine whether the deformation process of mine lane is chaotic and the degree of chaos.The analysis of examples indicates that when D>2 and Emax>0,the surrounding rock's deformation of deep mine lane in soft rock is the chaotic process and the laws of the deformation can still be well demonstrated by the method of the reconstructive state space.Comparing with the prediction of linear time series and grey prediction,the chaotic time series prediction has higher accuracy and the prediction results can provide theoretical basis for reasonable support of mine lane in soft rock.The time of the second support in Maluping Mine of Guizhou,China,is determined to arrange at about 40 d after the initial support according to the prediction results.展开更多
Abstract: A great amount of black rock series has been found in the Upper Sinian Members 2 and 4 of the Jinjiadong Formation, middle-upper Liuchapo Formation and the Lower Cambrian Xiaoyanxi Formation in West Hunan, w...Abstract: A great amount of black rock series has been found in the Upper Sinian Members 2 and 4 of the Jinjiadong Formation, middle-upper Liuchapo Formation and the Lower Cambrian Xiaoyanxi Formation in West Hunan, which is associated with periodic sea-level changes. By the studies of relationships between the distribution and development of the biota and the abundance of Au, Ag, U, V, Ni, Mo and Cu in the Upper Sinian and Early Cambrian black rock series in Cili, Dayong, Yuanling, Xupu and Qianyang of West Hunan, central China, it has been revealed that the enrichment of Ag, V, and Mo is related with the development of multi-cell plants and vendotaenides, and that of Cu and Ni is related to flourishing of bacteria and shelly fossils. The black rock series in the study area contains abundant organic matter, among which the siliceous shale contains the highest TOC, amounting to 4.51–13.4%. All the values of the equivalent vitrinite reflectance (medium values) determinated with the IR-spectroscopic method in the area are over 2.65%, indicating that the organic evolution was at an overmature stage. Due to the effect of enhancement of organic maturation by hydrothermal fluids, the Upper Sinian and Lower Cambrian had a reverse organic maturity profile in most areas of West Hunan. The enrichment of Ag, V, Ni, Mo and U is a result of organic absorption, and that of Au might be attributed to the migration by hydrothermal fluids.展开更多
This paper discusses the late Yanshanian-Himalayan igneous rock series and minerogenetic series (Cheng et al., 1979, 1982) related to tin polymetallic deposits in the Tengchong area. The multi-stage differentiation an...This paper discusses the late Yanshanian-Himalayan igneous rock series and minerogenetic series (Cheng et al., 1979, 1982) related to tin polymetallic deposits in the Tengchong area. The multi-stage differentiation and evolution of the igneous rock series led to the concentration of metal and ore-forming elements in a cupola of a granite body formed in the late stage. The minerogenetic series shows a zoning of Nb-Ta-W-Sn, Sn-Fe and Sn around the cupola in space and a multi-stage regularity in time. Finally a minerogenetic model and three key factors of tin minerogenesis are put forward for tin polymetallic deposits in the area.展开更多
A silicalite bed was found in the hanging wall and foot wall of the sulfide-rich bed ofthe Lower Cambrian black rock series in South China. Its origin was not described before. Onthe oxide (SiO2-Al2O3, SiO-2-MgO, SiO...A silicalite bed was found in the hanging wall and foot wall of the sulfide-rich bed ofthe Lower Cambrian black rock series in South China. Its origin was not described before. Onthe oxide (SiO2-Al2O3, SiO-2-MgO, SiO2-K2O+ Na2O) diagrams for discriminating silicalitesof chemical, biological and volcanic origins (Liu Xiufeng, 1991), most of the data points of silicalites fall within the areas representing silicaIites of chemical and volcanic origins. On the AlFe-Mn diagram for discriminating silicalites of hydrothermal and biological origins (Yamamoto,1987), the data points fall within the areas representing silicalites of hydrothermal and hydrothermal-biological origins. On the SiO2-Al2O3 diagram for discriminating silicalites of hydrothermal and hydrogenous origins (Bonatti, 1975 ), the data points mostly fall within thehydrothermal area. The ratios of SiO2Al2O3, SiO2/(K2O+Na2O), SiO2/MgO, and K2O/Na2O in the silicalites stand between those of volcanic sediments and of sea floor hydrothermalsediments. The total amount of rareuearth elements in the silicalites is low; the North American Shale-normalized REE patterns decline leftward with obvious negative Ce anomaly. Thetrace elements Mo, Zn, As, Sb, Se, U, and Ba are higher than those in non-hydrothermalsediments and U/Th≥1. The present authors think that the silicalites are derived fromseafloor hot brines which had attracted elements from igneous rocks.展开更多
Some extraditional types—black rock series types of platinum group element (PGE), gold and silver mineralization occurrences were found in the Lower Cambrian in Guizhou and Hunan provinces of southwest China where PG...Some extraditional types—black rock series types of platinum group element (PGE), gold and silver mineralization occurrences were found in the Lower Cambrian in Guizhou and Hunan provinces of southwest China where PGE concentration reaches more than 800×10 -6. Sea floor hydrothermal fluid eruption was suggested to have been the main origin of the ore-forming materials. The whole process from the sedimentation to the redistribution of the ore-forming elements occurred on the conditions of intermediate to weak alkaline, weak reduction to weak oxidation. The temperature for the sedimentation and redistribution of the ore-forming elements was lower than 210 ℃. At such a low temperature, inert elements such as PGE, Au and Ag could quite easily be remobilized.展开更多
The Daiyunshan-Shiniushan volcanic depression in Fujian Province is situated in a volcanic belt of the southeast coastal area in China along the west Pacific Ocean. A new breakthrough has been made in the exploration ...The Daiyunshan-Shiniushan volcanic depression in Fujian Province is situated in a volcanic belt of the southeast coastal area in China along the west Pacific Ocean. A new breakthrough has been made in the exploration of gold and silver ore deposits in recent years. The minerogenic series of the Daiyunshan-Shiniushan volcanic depression is discussed in this paper based on the analysis of major metallogenic types and factors. According to the study of enormous ore deposits and occurrences in the study area, two minerogenic series have been recognized: 1. Late Jurassic Au-Ag-Pb-Zn minerogenic series related to intermediate-acid, acid volcanic formations; 2. nonmetallic minerogenic series (pyrophyllite, alunite pearlite, andalusite, zeolite, corundum and so on) related to intermediate and acid volcanic formations. The division and study of the minerogenic series have revealed metallogenic and time-space distribution characteristics of the ore deposits in the volcanic belt of the southeast coastal area in China, which are of economic importance for metallogenic prognosis.展开更多
In order to study the hydrocarbon generation(HCGE)characteristics of coal-bearing basins,the coal-measure source rocks of the Middle Jurassic-Lower Jurassic(MLJ)of the piedmont thrust belt in the southern margin of th...In order to study the hydrocarbon generation(HCGE)characteristics of coal-bearing basins,the coal-measure source rocks of the Middle Jurassic-Lower Jurassic(MLJ)of the piedmont thrust belt in the southern margin of the Junggar Basin in Northwest China are taken as research objects.More than 60 MLJ samples were collected from outcrops and wells.Total organic carbon(TOC),rock pyrolysis(Rock-Eval),organic petrological,vitrinite reflectance(%Ro),and hydrous pyrolysis were performed to analyze the relevant samples.The pyrolysis gases and liquid products were measured,and then the chemical composition,as well as carbon isotopes of the gases,were analyzed.The results indicate that the MLJ source rocks have the capacity for large-scale gas generation.In addition,for coal-measure source rocks,the heavier the carbon isotope of kerogen(δ^(13)C_(kerogen)),the lower the liquid hydrocarbon and hydrocarbon gas yield,and the easier it is to produce non-hydrocarbon gas.It is worth noting that when theδ^(13)C_(kerogen)in organic matter(OM)is relatively heavier,the fractionation of its products may become weaker in the evolutionary process.The vital contribution of the MLJ source rock to natural gas resources in the study area was further confirmed by comparing it with the Jurassic source gas.展开更多
Systematic microthermometric measurements of fluid inclusions in the PGE-polymetallic deposits hosted in the Lower Cambrian black rock series in southern China were performed, and the results suggest: (1) there exist ...Systematic microthermometric measurements of fluid inclusions in the PGE-polymetallic deposits hosted in the Lower Cambrian black rock series in southern China were performed, and the results suggest: (1) there exist two types of fluid inclusions. TypeⅠis of NaCl-H-2O system with low-medium salinity, and its homogenization temperatures (T-h) and salinities are {106.9}-{286.4℃} and ({0.8}-{21.8}) wt%NaCl eq. respectively; TypeⅡ is of CaCl-2-NaCl-H-2O system with medium-high salinities, and its homogenization temperatures and salinities range from {120.1℃} to {269.6℃} and ({11.4}-{31.4}) wt%NaCl eq., respectively. The typeⅡ fluid inclusions have been discovered for the first time in this kind of deposits; (2) two generations of ore-forming fluids were recognized. Characteristics of fluid inclusions in the PGE-polymetallic ores and carbonate-quartz stockworks in the underlying phosphorites are almost of no difference, they may represent ore-forming fluids at the main metallogenic stage. The peak value of homogenization temperature of those fluid inclusions is about 170℃, while their salinities possess a remarkable bimodal distribution pattern with two peak values of (27-31) wt%NaCl eq. and (4-6) wt%NaCl eq. On the contrary, fluid inclusions in the carbonate-quartz veins in the hanging wall may represent ore-forming fluids at the post-metallogenetic stage. The homogenization temperatures and the peak values of salinities are mostly 130-170℃ and (12-14) wt%NaCl eq., respectively; (3) nobel gas isotopic composition analyses in combination with the microthermometric measurements of fluid inclusions suggest that the ore-forming fluids at the main metallogenetic stage were probably derived from mixing of basinal hot brines with the CaCl-2-NaCl-H-2O system and seawater with the NaCl-H-2O system; (4) in the Early Cambrian, the basinal hot brines were trapped in the Caledonian basins, which were distributed along the southern margin of the Yangtze Craton, and where giant thick sediments were accumulated, and expelled and migrated laterally along the strata because of the pressure caused by overlying sediments. The basinal hot brines absorbed Ni, Mo, V, PGE from the surrounding rocks and were transformed into ore-bearing hydrothermal fluids with the CaCl-2-NaCl-H-2O system and medium-high salinities, then ascended along faults and mixed with seawater of the NaCl-H-2O system, and finally PGE-polymetallic deposits or occurrences were formed in the black rock series.展开更多
Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body...Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body–surrounding rock combination under high-stress conditions.Current monitoring data processing methods cannot fully consider the complexity of monitoring objects,the diversity of monitoring methods,and the dynamics of monitoring data.To solve this problem,this paper proposes a phase space reconstruction and stability prediction method to process heterogeneous information of backfill–surrounding rock combinations.The three-dimensional monitoring system of a large-area filling body–surrounding rock combination in Longshou Mine was constructed by using drilling stress,multipoint displacement meter,and inclinometer.Varied information,such as the stress and displacement of the filling body–surrounding rock combination,was continuously obtained.Combined with the average mutual information method and the false nearest neighbor point method,the phase space of the heterogeneous information of the filling body–surrounding rock combination was then constructed.In this paper,the distance between the phase point and its nearest point was used as the index evaluation distance to evaluate the stability of the filling body–surrounding rock combination.The evaluated distances(ED)revealed a high sensitivity to the stability of the filling body–surrounding rock combination.The new method was then applied to calculate the time series of historically ED for 12 measuring points located at Longshou Mine.The moments of mutation in these time series were at least 3 months ahead of the roadway return dates.In the ED prediction experiments,the autoregressive integrated moving average model showed a higher prediction accuracy than the deep learning models(long short-term memory and Transformer).Furthermore,the root-mean-square error distribution of the prediction results peaked at 0.26,thus outperforming the no-prediction method in 70%of the cases.展开更多
Compositional peculiarities of the siliceous high-Mg series(SHMS)rocks formed at the Archean-Paleoproterozoic boundary as a function of plume activity are discussed using example of Early Paleoproterozoic mafic volcan...Compositional peculiarities of the siliceous high-Mg series(SHMS)rocks formed at the Archean-Paleoproterozoic boundary as a function of plume activity are discussed using example of Early Paleoproterozoic mafic volcanic rocks of the Vodlozero Domain,Fennoscandian Shield.These rocks are characterized by wide variations in Mg#(33-67)and Cr contents(25-1123 ppm),LREE enrichment,and weakly negative_(εNd)(from-0.7 to-2.9).The high Gd/Yb ratio in the primitive high-Mg rocks of the Vodlozero Domain suggests their generation from a garnet-bearing source.At the same time,their negative _(εNd)in combination with LREE enrichment points to the crustal contamination.A new model was proposed to explain the remarkable global-scale similarity of SHMS.Such rocks can be generated by the contamination of a high-degree(30%)partial melt derived from a depleted mantle.The lower crustal sanukitoid-type rocks can be considered as a universal crustal contaminant.Modeling showed that such mixing can provide the observed narrow_(εNd)variations in Early Paleoproterozoic volcanics.The Neoarchean sanukitoid suites,which are widespread on all cratons,presumably composed the lower crust at the beginning of the Paleoproterozoic.Therefore,this mechanism can be considered universal for the genesis of the SHMS rocks.The high-to low-Cr rock series can be produced by the fractionation of the mafic melt coupled with an insignificant crustal assimilation of felsic end members of the sanukitoid suite of the Vodlozero Domain en route to the surface,as suggested by the positive correlation of_(εNd)with Cr and Mg#,negative correlation with Th,and slight decrease of_(εNd)in the more evolved varieties.展开更多
Owing to the fact that the coal-beds are with the characteristics of multi-beds, thin single-bed, rapid lateral changes and deep burial, coal-bearing source rocks are difficult to be identified and predicted, especial...Owing to the fact that the coal-beds are with the characteristics of multi-beds, thin single-bed, rapid lateral changes and deep burial, coal-bearing source rocks are difficult to be identified and predicted, especially in the lower exploration deepwater area. In this paper, a new integrative process utilizing geology and geophysics is proposed for better predicting the distribution of coal-bearing source rocks. Coal-beds were identified by the logging responses of“three higher, three lower, and one expand”and carbargilite were recognized by the characteristics of“four higher and one lower”. Based on the above logical decision, coal-beds and carbargilite can be distinguished automatically by cluster analysis of logging curves in verticality. Within the constraints of well-seismic calibration, the coal-beds group also can be detected in horizontality by the integrated representation of“negative phase, higher Q, lower impedance and lower frequency”within the seismic data. However, the distribution of coal-bearing source rocks utilizing geophysical methodology may do not conform to the geological rules of coal accumulation. And then the main geological controlling factors of coal accumulation are comprehensively analyzed as follows:(1) Paleotopography and tectonic subsidence determine the planar range of terrestrial-marine transitional facies markedly;(2) The relative sea level changes affect the accommodation space and shoreline migration, and limit the vertical range of coal-beds. More specifically, the relationship between the accommodation creation rate and the peat accumulation rate is a fundamental control on coal accumulation. The thickest and most widespread coals form where those two factors reached a state of balance;(3) The supply of autochthonous clasts and the distance between deposition places and paleovegetation accumulated area are the critical factor to form abundant coal, which means that if deposition area is close to paleouplift, there would be sufficient organic matters to form abundant source rocks. The results show that the integrated methods can significantly improve prediction accuracy of coal-bearing source rocks, which is suitable for early exploration of western deepwater area of South China Sea.展开更多
Located in Western Hubei Province,this deposit is a large-scale Ag-V ore deposit,listed among the fifth type of silver deposit in China.1 Geological Characteristics It lies in the NE sector of the Yangtze flat of the ...Located in Western Hubei Province,this deposit is a large-scale Ag-V ore deposit,listed among the fifth type of silver deposit in China.1 Geological Characteristics It lies in the NE sector of the Yangtze flat of the Yangtze paraplatform.There are sporadically magmatic rocks and fold basement made up of upper Archaeozoicmiddle and lower Proterozoic strata.The sedimentary cover consists of Sinian-lower Paleozoic marine sediments,Mesozoic-Cenozoic intercalated marine and nonmarine sediments or nonmarine sediments.展开更多
基金Supported by the PetroChina Science and Technology Major Project(2021DJ2101).
文摘Based on the data of outcrop,core,logging,gas testing,and experiments,the natural gas accumulation and aluminous rock mineralization integrated research was adopted to analyze the controlling factors of aluminous rock series effective reservoirs in the Ordos Basin,NW China,as well as the configuration of coal-measure source rocks and aluminous rock series reservoirs.A natural gas accumulation model was constructed to evaluate the gas exploration potential of aluminous rock series under coal seam in the basin.The effective reservoirs of aluminous rock series in the Ordos Basin are composed of honeycomb-shaped bauxites with porous residual pisolitic and detrital structures,with the diasporite content of greater than 80%and dissolved pores as the main storage space.The bauxite reservoirs are formed under a model that planation controls the material supply,karst paleogeomorphology controls diagenesis,and land surface leaching improves reservoir quality.The hot humid climate and sea level changes in the Late Carboniferous–Early Permian dominated the development of a typical coal-aluminum-iron three-stage stratigraphic structure.The natural gas generated by the extensive hydrocarbon generation of coal-measure source rocks was accumulated in aluminous rock series under the coal seam,indicating a model of hydrocarbon accumulation under the source.During the Upper Carboniferous–Lower Permian,the relatively low-lying area on the edge of an ancient land or island in the North China landmass was developed.The gas reservoirs of aluminous rock series,which are clustered at multiple points in lenticular shape,are important new natural gas exploration fields with great potential in the Upper Paleozoic of North China Craton.
基金supported by the Major National Science and Technology Program of China (grants No. 2016ZX05041004)the National Natural Science Foundation of China (grant No. 41572090)High-level Talent Recruitment Project of North China University of Water Resource and Electric (grant No. 40481)
文摘The uranium deposits in the Tuanyushan area of northern Qaidam Basin commonly occur in coal-bearing series. To decipher the U-enrichment mechanism and controlling factors in this area, a database of 72 drill cores, including 56 well-logs and 3 sampling wells, was examined for sedimentology and geochemistry in relation to uranium concentrations. The results show that coal-bearing series can influence uranium mineralization from two aspects, i.e., spatial distribution and dynamic control. Five types of uranium-bearing rocks are recognized, mainly occurring in the braided river and braided delta sedimentary facies, among which sandstones near the coals are the most important. The lithological associations of sandstone-type uranium deposits can be classified into three subtypes, termed as U-coal type, coal-U-coal type, and coal-U type, respectively. The coal and fine siliciclastic rocks in the coal- bearing series confined the U-rich fluid flow and uranium accumulation in the sandstone near them. Thus, the coal-bearing series can provide good accommodations for uranium mineralization. Coals and organic matters in the coal-bearing series may have served as reducing agents and absorbing barriers. Methane is deemed to be the main acidolysis hydrocarbon in the U-bearing beds, which shows a positive correlation with U-content in the sandstones in the coal-bearing series. Additionally, the 613C in the carbonate cements of the U-bearing sandstones indicates that the organic matters, associated with the coal around the sandstones, were involved in the carbonation, one important component of alteration in the Tuanyushan area. Recognition of the dual control of coal-bearing series on the uranium mineralization is significant for the development of coal circular economy, environmental protection during coal utilization and the security of national rare metal resources.
文摘The distribution of selected critical elements in the sedimentary rocks of the Carboniferous coal-bearing series within the Polish Coal Basins is presented.Critical elements such as Be,Mg,Si,P,Sc,V,Co,Y,Nb,In,Sb,La,Ce,Hf,Ta,W,Bi were analysed using inductively-coupled plasma mass spectrometry(ICP/MS).Concentrations of elements such as Sb,Bi,In and,to a slightly lesser extent,Nb,as well as Sc,show average concentrations higher than those from the upper continental crust.The average concentrations of elements like Hf,Mg,P,Y,La,and Ce are slightly lower than in the upper continental crust.Other elements,such as Be,Co,Si,Ta,W and V have average concentrations that are similar,but slightly enriched or slightly depleted,relative to the upper continental crust.The research showed enrichment of some critical elements in the analysed samples,but not high enough that extraction would be economically viable.Statistical methods,which include correlation coefficients between elements and cluster analysis,reveal a strong positive correlation between elements like Be,Bi,Nb,Sc,Ta,W and V.Very high,almost total,positive correlation is also noted between La and Ce.
基金supported by the undertaken units of subprojects of the Program of Survey on Sandstone-Type Uranium Deposits in Northern Chinathe Ministry of Science and Technology of China(Grant 2015CB453000)the Geological Survey project of China(Grant No.DD20160128)
文摘In Northern China, sandstone-type uranium (U) deposits are mostly developed in Mesozoic-Cenozoic basins. These U deposits are usually hosted in unvarying horizons within the basins and exhibit typical U-forming sedimentary associations, which is referred to as U-bearing rock series. This study describes the structural features of U-bearing rock series within the main Mesozoic-Cenozoic U-producing continental basins in Kazakhstan, Uzbekistan, and Russia in the western segment of the Central Asian Metallogenic Belt (CAMB), and Northern China in the eastern segment of the CAMB. We analyze the basic structural conditions and sedimentary environments of U-bearing rock series in Northern China and classify their structural styles in typical basins into river valley, basin margin, and intrabasin uplift margin types. The intrabasin uplift margin structural style proposed in this study can be used to indicate directions for the exploration of sandstone-type U deposits hosted in the center of a basin. At the same time, the study of structural style provides a new idea for exploring sandstone-type U deposits in Mesozoic-Cenozoic basins and it is of great significance to prospecting of sandstone-type uranium deposits.
基金sponsored by the Doctoral Fund of Ministry of Education of China (Grant no.20105201110002)Research Fund of Guizhou Province and Doctoral Programme Fund of Guizhou University
文摘The molybdenum-nickel deposits in Shuidong District of Nayong County (Guizhou Province, Southwest China) are found mainly in black shale series of Lower Cambrian Niutitang Formation, which is another Mo-Ni-rich region besides Zunyi District (Guizhou province). Our systematic study on the Mo-Ni deposits in Tangjiaba of Nayong reveals that layered coarse-grained limestones, spherical beaded limestones concretions are hosted at the lower seam of the Mo-Ni deposits. Its strong negative carbon isotope anomaly (the carbon isotope value of the coarse-grained limestones varies from -2.148‰ to 8.223‰) is similar to that in the modern submarine black smoker chimney. The carbon in the coarse-grained limestones from black rock series of Nayong County might be deep source inorganic carbon. The seams, coarse-grained limestones, ore-bearing coarse-grained limestones and the roof and floor of the deposits are characterized by co-variation on the trace element spider diagram, showing good homology. The extraordinary enrichment of Ag, As and Sb resembles hydrothermal sedimentation. Pro-Earth's core elements Se is strongly enriched in Ni-Mo ore-bearing coarse-grained limestones. The ore-bearing rock series has an extremely low Th/U value (0.012-0.19); in the logU-logTh Cartesian Coordinates, the samples of the roof and floor of the deposits and ore-bearing coarse-grained limestones are found in the East Pacific tise; and the samples of coarse-grained limestones are found between the paleo-hydrothermal dedimentary area and the East Pacific tise. The chondrite-normalized rare earth element patterns of the Ni-Mo deposits show LREE enrichment, Ce negative anomaly, and Eu negative anomaly (which is supposed to be influenced by the deep magmatic processes in an extensional environment) resembles the rare earth element distribution patterns of the fluid and its sediments in modern submarine hydrothermal system. It proves that coarse-grained limestones is characterized by typical hydrothermal limestones, being closely related with the genesis of Mo-Ni deposits in Nayong County, which provides new evidence for hydrothermal sedimentary genesis of Mo-Ni deposit and negative carbon anomaly in the basal Cambrian on a global scale.
基金Financial support for this work was provided by the National Key Research Program for Science and Technology of China(No.2011ZX05023-001-008)the Priority Academic Program Development of the Jiangsu Higher Education Institutions(PAPD)。
文摘Coal-bearing source rocks of the Pinghu Formation in the Xihu Depression comprise an important material basis of oil and gas resources in the East China Sea Basin.Based on drilling core observation results combined with the analysis and test results of macerals,trace/rare earth elements,and rock pyrolysis,the geochemical characteristics and sedimentary control of coal-bearing source rocks formation are discussed in a high-frequency sequence framework.The results indicate that the macerals composition of the coal-bearing source rocks of the Eocene Pinghu Formation in the Xihu Depression is dominated by vitrinite,with low-medium abundance of exinite and almost no inertinite.The coals and carbonaceous mudstones display higher amounts of total organic carbon(TOC)(14.90%-65.10%),S1+S2(39.24-136.52 mg/g),and IH(191-310 HC/g TOC)respectively,as compared to the mudstones.Organic matter is plotted in typeⅢkerogens and partially in typeⅡ;it is mainly in the low maturity stage.The trace elements results imply that the samples were deposited in a weakly reducing to weakly oxidizing environment and were occasionally affected by seawater.The coal-bearing source rocks were deposited in a relatively oxygen-containing environment.The coal-bearing source rocks development is jointly controlled by the coal accumulation environment,the water conditions affected by ocean currents in offshore basins in China,oxidation-reduction cycles of aqueous media and paleoclimate evolution in a high-frequency sequence framework.
基金supported by the Key Project(No.9502010)of the former Chinese Ministry of Geology and Mineral Resources.
文摘A systematic geological and geochemical study was conducted for the granitoids of different periods in the western Kunlun orogenic belt. The study indicates that the granitoids belong to tholeiitic, calc-alkaline, high-K calc-alkaline, alkaline and shoshonitic series, and that there are 5 genetic types, i.e., I-, S-, M-, A- and SH-type, of which SH-type is first put forward in this paper, which corresponds to shoshonitic granitoids.
基金Project(50490274) supported by the National Natural Science Foundation of China
文摘Based on the measured displacements,the change laws of the effect of distance in phase space on the deformation of mine lane were analyzed and the chaotic time series model to predict the surrounding rocks deformation of deep mine lane in soft rock by nonlinear theory and methods was established.The chaotic attractor dimension(D) and the largest Lyapunov index(Emax) were put forward to determine whether the deformation process of mine lane is chaotic and the degree of chaos.The analysis of examples indicates that when D>2 and Emax>0,the surrounding rock's deformation of deep mine lane in soft rock is the chaotic process and the laws of the deformation can still be well demonstrated by the method of the reconstructive state space.Comparing with the prediction of linear time series and grey prediction,the chaotic time series prediction has higher accuracy and the prediction results can provide theoretical basis for reasonable support of mine lane in soft rock.The time of the second support in Maluping Mine of Guizhou,China,is determined to arrange at about 40 d after the initial support according to the prediction results.
基金This study was financially supported by CAGS(Project No:97-8)China National Petroleum Corporation(Project No:GJ9471908-2)
文摘Abstract: A great amount of black rock series has been found in the Upper Sinian Members 2 and 4 of the Jinjiadong Formation, middle-upper Liuchapo Formation and the Lower Cambrian Xiaoyanxi Formation in West Hunan, which is associated with periodic sea-level changes. By the studies of relationships between the distribution and development of the biota and the abundance of Au, Ag, U, V, Ni, Mo and Cu in the Upper Sinian and Early Cambrian black rock series in Cili, Dayong, Yuanling, Xupu and Qianyang of West Hunan, central China, it has been revealed that the enrichment of Ag, V, and Mo is related with the development of multi-cell plants and vendotaenides, and that of Cu and Ni is related to flourishing of bacteria and shelly fossils. The black rock series in the study area contains abundant organic matter, among which the siliceous shale contains the highest TOC, amounting to 4.51–13.4%. All the values of the equivalent vitrinite reflectance (medium values) determinated with the IR-spectroscopic method in the area are over 2.65%, indicating that the organic evolution was at an overmature stage. Due to the effect of enhancement of organic maturation by hydrothermal fluids, the Upper Sinian and Lower Cambrian had a reverse organic maturity profile in most areas of West Hunan. The enrichment of Ag, V, Ni, Mo and U is a result of organic absorption, and that of Au might be attributed to the migration by hydrothermal fluids.
文摘This paper discusses the late Yanshanian-Himalayan igneous rock series and minerogenetic series (Cheng et al., 1979, 1982) related to tin polymetallic deposits in the Tengchong area. The multi-stage differentiation and evolution of the igneous rock series led to the concentration of metal and ore-forming elements in a cupola of a granite body formed in the late stage. The minerogenetic series shows a zoning of Nb-Ta-W-Sn, Sn-Fe and Sn around the cupola in space and a multi-stage regularity in time. Finally a minerogenetic model and three key factors of tin minerogenesis are put forward for tin polymetallic deposits in the area.
文摘A silicalite bed was found in the hanging wall and foot wall of the sulfide-rich bed ofthe Lower Cambrian black rock series in South China. Its origin was not described before. Onthe oxide (SiO2-Al2O3, SiO-2-MgO, SiO2-K2O+ Na2O) diagrams for discriminating silicalitesof chemical, biological and volcanic origins (Liu Xiufeng, 1991), most of the data points of silicalites fall within the areas representing silicaIites of chemical and volcanic origins. On the AlFe-Mn diagram for discriminating silicalites of hydrothermal and biological origins (Yamamoto,1987), the data points fall within the areas representing silicalites of hydrothermal and hydrothermal-biological origins. On the SiO2-Al2O3 diagram for discriminating silicalites of hydrothermal and hydrogenous origins (Bonatti, 1975 ), the data points mostly fall within thehydrothermal area. The ratios of SiO2Al2O3, SiO2/(K2O+Na2O), SiO2/MgO, and K2O/Na2O in the silicalites stand between those of volcanic sediments and of sea floor hydrothermalsediments. The total amount of rareuearth elements in the silicalites is low; the North American Shale-normalized REE patterns decline leftward with obvious negative Ce anomaly. Thetrace elements Mo, Zn, As, Sb, Se, U, and Ba are higher than those in non-hydrothermalsediments and U/Th≥1. The present authors think that the silicalites are derived fromseafloor hot brines which had attracted elements from igneous rocks.
文摘Some extraditional types—black rock series types of platinum group element (PGE), gold and silver mineralization occurrences were found in the Lower Cambrian in Guizhou and Hunan provinces of southwest China where PGE concentration reaches more than 800×10 -6. Sea floor hydrothermal fluid eruption was suggested to have been the main origin of the ore-forming materials. The whole process from the sedimentation to the redistribution of the ore-forming elements occurred on the conditions of intermediate to weak alkaline, weak reduction to weak oxidation. The temperature for the sedimentation and redistribution of the ore-forming elements was lower than 210 ℃. At such a low temperature, inert elements such as PGE, Au and Ag could quite easily be remobilized.
文摘The Daiyunshan-Shiniushan volcanic depression in Fujian Province is situated in a volcanic belt of the southeast coastal area in China along the west Pacific Ocean. A new breakthrough has been made in the exploration of gold and silver ore deposits in recent years. The minerogenic series of the Daiyunshan-Shiniushan volcanic depression is discussed in this paper based on the analysis of major metallogenic types and factors. According to the study of enormous ore deposits and occurrences in the study area, two minerogenic series have been recognized: 1. Late Jurassic Au-Ag-Pb-Zn minerogenic series related to intermediate-acid, acid volcanic formations; 2. nonmetallic minerogenic series (pyrophyllite, alunite pearlite, andalusite, zeolite, corundum and so on) related to intermediate and acid volcanic formations. The division and study of the minerogenic series have revealed metallogenic and time-space distribution characteristics of the ore deposits in the volcanic belt of the southeast coastal area in China, which are of economic importance for metallogenic prognosis.
基金financially supported by Xinjiang Oilfield Company of China(Grant No.2020-C4006)。
文摘In order to study the hydrocarbon generation(HCGE)characteristics of coal-bearing basins,the coal-measure source rocks of the Middle Jurassic-Lower Jurassic(MLJ)of the piedmont thrust belt in the southern margin of the Junggar Basin in Northwest China are taken as research objects.More than 60 MLJ samples were collected from outcrops and wells.Total organic carbon(TOC),rock pyrolysis(Rock-Eval),organic petrological,vitrinite reflectance(%Ro),and hydrous pyrolysis were performed to analyze the relevant samples.The pyrolysis gases and liquid products were measured,and then the chemical composition,as well as carbon isotopes of the gases,were analyzed.The results indicate that the MLJ source rocks have the capacity for large-scale gas generation.In addition,for coal-measure source rocks,the heavier the carbon isotope of kerogen(δ^(13)C_(kerogen)),the lower the liquid hydrocarbon and hydrocarbon gas yield,and the easier it is to produce non-hydrocarbon gas.It is worth noting that when theδ^(13)C_(kerogen)in organic matter(OM)is relatively heavier,the fractionation of its products may become weaker in the evolutionary process.The vital contribution of the MLJ source rock to natural gas resources in the study area was further confirmed by comparing it with the Jurassic source gas.
文摘Systematic microthermometric measurements of fluid inclusions in the PGE-polymetallic deposits hosted in the Lower Cambrian black rock series in southern China were performed, and the results suggest: (1) there exist two types of fluid inclusions. TypeⅠis of NaCl-H-2O system with low-medium salinity, and its homogenization temperatures (T-h) and salinities are {106.9}-{286.4℃} and ({0.8}-{21.8}) wt%NaCl eq. respectively; TypeⅡ is of CaCl-2-NaCl-H-2O system with medium-high salinities, and its homogenization temperatures and salinities range from {120.1℃} to {269.6℃} and ({11.4}-{31.4}) wt%NaCl eq., respectively. The typeⅡ fluid inclusions have been discovered for the first time in this kind of deposits; (2) two generations of ore-forming fluids were recognized. Characteristics of fluid inclusions in the PGE-polymetallic ores and carbonate-quartz stockworks in the underlying phosphorites are almost of no difference, they may represent ore-forming fluids at the main metallogenic stage. The peak value of homogenization temperature of those fluid inclusions is about 170℃, while their salinities possess a remarkable bimodal distribution pattern with two peak values of (27-31) wt%NaCl eq. and (4-6) wt%NaCl eq. On the contrary, fluid inclusions in the carbonate-quartz veins in the hanging wall may represent ore-forming fluids at the post-metallogenetic stage. The homogenization temperatures and the peak values of salinities are mostly 130-170℃ and (12-14) wt%NaCl eq., respectively; (3) nobel gas isotopic composition analyses in combination with the microthermometric measurements of fluid inclusions suggest that the ore-forming fluids at the main metallogenetic stage were probably derived from mixing of basinal hot brines with the CaCl-2-NaCl-H-2O system and seawater with the NaCl-H-2O system; (4) in the Early Cambrian, the basinal hot brines were trapped in the Caledonian basins, which were distributed along the southern margin of the Yangtze Craton, and where giant thick sediments were accumulated, and expelled and migrated laterally along the strata because of the pressure caused by overlying sediments. The basinal hot brines absorbed Ni, Mo, V, PGE from the surrounding rocks and were transformed into ore-bearing hydrothermal fluids with the CaCl-2-NaCl-H-2O system and medium-high salinities, then ascended along faults and mixed with seawater of the NaCl-H-2O system, and finally PGE-polymetallic deposits or occurrences were formed in the black rock series.
基金the National Key R&D Program of China(No.2022YFC2904103)the Key Program of the National Natural Science Foundation of China(No.52034001)+1 种基金the 111 Project(No.B20041)the China National Postdoctoral Program for Innovative Talents(No.BX20230041)。
文摘Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body–surrounding rock combination under high-stress conditions.Current monitoring data processing methods cannot fully consider the complexity of monitoring objects,the diversity of monitoring methods,and the dynamics of monitoring data.To solve this problem,this paper proposes a phase space reconstruction and stability prediction method to process heterogeneous information of backfill–surrounding rock combinations.The three-dimensional monitoring system of a large-area filling body–surrounding rock combination in Longshou Mine was constructed by using drilling stress,multipoint displacement meter,and inclinometer.Varied information,such as the stress and displacement of the filling body–surrounding rock combination,was continuously obtained.Combined with the average mutual information method and the false nearest neighbor point method,the phase space of the heterogeneous information of the filling body–surrounding rock combination was then constructed.In this paper,the distance between the phase point and its nearest point was used as the index evaluation distance to evaluate the stability of the filling body–surrounding rock combination.The evaluated distances(ED)revealed a high sensitivity to the stability of the filling body–surrounding rock combination.The new method was then applied to calculate the time series of historically ED for 12 measuring points located at Longshou Mine.The moments of mutation in these time series were at least 3 months ahead of the roadway return dates.In the ED prediction experiments,the autoregressive integrated moving average model showed a higher prediction accuracy than the deep learning models(long short-term memory and Transformer).Furthermore,the root-mean-square error distribution of the prediction results peaked at 0.26,thus outperforming the no-prediction method in 70%of the cases.
基金supported by the Russian Foundation for Basic Research (Project Nos.16-05-00708 and 15-05-01214)
文摘Compositional peculiarities of the siliceous high-Mg series(SHMS)rocks formed at the Archean-Paleoproterozoic boundary as a function of plume activity are discussed using example of Early Paleoproterozoic mafic volcanic rocks of the Vodlozero Domain,Fennoscandian Shield.These rocks are characterized by wide variations in Mg#(33-67)and Cr contents(25-1123 ppm),LREE enrichment,and weakly negative_(εNd)(from-0.7 to-2.9).The high Gd/Yb ratio in the primitive high-Mg rocks of the Vodlozero Domain suggests their generation from a garnet-bearing source.At the same time,their negative _(εNd)in combination with LREE enrichment points to the crustal contamination.A new model was proposed to explain the remarkable global-scale similarity of SHMS.Such rocks can be generated by the contamination of a high-degree(30%)partial melt derived from a depleted mantle.The lower crustal sanukitoid-type rocks can be considered as a universal crustal contaminant.Modeling showed that such mixing can provide the observed narrow_(εNd)variations in Early Paleoproterozoic volcanics.The Neoarchean sanukitoid suites,which are widespread on all cratons,presumably composed the lower crust at the beginning of the Paleoproterozoic.Therefore,this mechanism can be considered universal for the genesis of the SHMS rocks.The high-to low-Cr rock series can be produced by the fractionation of the mafic melt coupled with an insignificant crustal assimilation of felsic end members of the sanukitoid suite of the Vodlozero Domain en route to the surface,as suggested by the positive correlation of_(εNd)with Cr and Mg#,negative correlation with Th,and slight decrease of_(εNd)in the more evolved varieties.
基金The Major National Science and Technology Programs in the "Twelfth Five-Year" Plan period under contract No.2011ZX05025-002-02-02the National Natural Science Foundation of China under contract Nos 41472084,41202074 and 41172123the foundation of Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences) of Ministry of Education under contract No.TPR-2013-13
文摘Owing to the fact that the coal-beds are with the characteristics of multi-beds, thin single-bed, rapid lateral changes and deep burial, coal-bearing source rocks are difficult to be identified and predicted, especially in the lower exploration deepwater area. In this paper, a new integrative process utilizing geology and geophysics is proposed for better predicting the distribution of coal-bearing source rocks. Coal-beds were identified by the logging responses of“three higher, three lower, and one expand”and carbargilite were recognized by the characteristics of“four higher and one lower”. Based on the above logical decision, coal-beds and carbargilite can be distinguished automatically by cluster analysis of logging curves in verticality. Within the constraints of well-seismic calibration, the coal-beds group also can be detected in horizontality by the integrated representation of“negative phase, higher Q, lower impedance and lower frequency”within the seismic data. However, the distribution of coal-bearing source rocks utilizing geophysical methodology may do not conform to the geological rules of coal accumulation. And then the main geological controlling factors of coal accumulation are comprehensively analyzed as follows:(1) Paleotopography and tectonic subsidence determine the planar range of terrestrial-marine transitional facies markedly;(2) The relative sea level changes affect the accommodation space and shoreline migration, and limit the vertical range of coal-beds. More specifically, the relationship between the accommodation creation rate and the peat accumulation rate is a fundamental control on coal accumulation. The thickest and most widespread coals form where those two factors reached a state of balance;(3) The supply of autochthonous clasts and the distance between deposition places and paleovegetation accumulated area are the critical factor to form abundant coal, which means that if deposition area is close to paleouplift, there would be sufficient organic matters to form abundant source rocks. The results show that the integrated methods can significantly improve prediction accuracy of coal-bearing source rocks, which is suitable for early exploration of western deepwater area of South China Sea.
文摘Located in Western Hubei Province,this deposit is a large-scale Ag-V ore deposit,listed among the fifth type of silver deposit in China.1 Geological Characteristics It lies in the NE sector of the Yangtze flat of the Yangtze paraplatform.There are sporadically magmatic rocks and fold basement made up of upper Archaeozoicmiddle and lower Proterozoic strata.The sedimentary cover consists of Sinian-lower Paleozoic marine sediments,Mesozoic-Cenozoic intercalated marine and nonmarine sediments or nonmarine sediments.