期刊文献+
共找到7,809篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-model Predictive Control of Ultra-supercritical Coal-fired Power Unit 被引量:6
1
作者 王国良 阎威武 +2 位作者 陈世和 张曦 邵惠鹤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第7期782-787,共6页
The control of ultra-supercritical(USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control(MPC) based on multi... The control of ultra-supercritical(USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control(MPC) based on multi-model and double layered optimization is introduced for coordinated control of USC unit. The linear programming(LP) combined with quadratic programming(QP) is used in steady optimization for computation of the ideal value of dynamic optimization. Three inputs(i.e. valve opening, coal flow and feedwater flow) are employed to control three outputs(i.e. load, main steam temperature and main steam pressure). The step response models for the dynamic matrix control(DMC) are constructed using the three inputs and the three outputs. Piecewise models are built at selected operation points. Double-layered multi-model predictive controller is implemented in simulation with satisfactory performance. 展开更多
关键词 Ultra-supercritical power unit Coordinated control Multi-model constrained predictive control
下载PDF
Sensitivity Analysis of a 50+ Coal-Fired Power Unit Efficiency
2
作者 Katarzyna Stepczyńska-Drygas Slawomir Dykas Krystian Smolka 《Journal of Power and Energy Engineering》 2015年第12期19-31,共13页
The coal-fired power unit integration with a CO2 capture and compression installation involves a considerable rise in the costs of electricity generation. Therefore, there is a need for a continuous search for methods... The coal-fired power unit integration with a CO2 capture and compression installation involves a considerable rise in the costs of electricity generation. Therefore, there is a need for a continuous search for methods of improving the electricity generation efficiency in steam power plants. One technology which is especially promising is the advanced ultra-supercritical (A-USC) power unit. Apart from steam parameters upstream the turbine, the overall efficiency also depends on the efficiency values of individual elements of the plant and the size of energy consumption of the process of CO2 sequestration from the boiler flue gases. These problems are considered herein to emphasize that without specifying the efficiency values of the power plant main elements the information concerning its electricity generation efficiency is incomplete. This paper presents the influence of the efficiency of individual elements of the power plant on its electricity generation efficiency. The lack of information of the efficiencies of the power plant individual elements, by presenting its overall efficiency, may lead to the false conclusions. 展开更多
关键词 Sensitivity Analysis A-USC power unit Efficiency CO_(2) Capture
下载PDF
Flexible Operation Mode of Coal-fired Power Unit Coupling with Heat Storage of Extracted Reheat Steam 被引量:3
3
作者 WEI Haijiao LU Yuanwei +4 位作者 YANG Yanchun ZHANG Cancan WU Yuting LI Weidong ZHAO Dongming 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第2期436-447,共12页
In order to provide more grid space for the renewable energy power,the traditional coal-fired power unit should be operated flexibility,especially achieved the deep peak shaving capacity.In this paper,a new scheme usi... In order to provide more grid space for the renewable energy power,the traditional coal-fired power unit should be operated flexibility,especially achieved the deep peak shaving capacity.In this paper,a new scheme using the reheat steam extraction is proposed to further reduce the load far below 50%rated power.Two flexible operation modes of increasing power output mode and reducing fuel mode are proposed in heat discharging process.A 600 MW coal-fired power unit with 50%rated power is chosen as the research model.The results show that the power output is decreased from 300.03 MW to 210.07 MW when the extracted reheat steam flow rate is 270.70 t·h^(-1),which increases the deep peak shaving capacity by 15%rated power.The deep peak shaving time and the thermal efficiency are 7.63 h·d^(-1)and 36.91%respectively for the increasing power output mode,and they are 7.24 h·d^(-1)and 36.58%respectively for the reducing fuel mode.The increasing power output mode has the advantages of higher deep peak shaving time and the thermal efficiency,which is recommended as the preferred scheme for the flexible operation of the coal-fired power unit. 展开更多
关键词 coal-fired power unit flexible operation deep peak shaving extracted reheat steam heat storage
原文传递
Problems of Hazardous Waste Storage Facilities in Coal-fired Power Plants and Countermeasures
4
作者 Wenqi YUE 《Meteorological and Environmental Research》 CAS 2023年第2期57-60,65,共5页
The hazardous waste produced by coal-fired power plants are large in quantity and variety. It is important for ecological environment protection to properly store hazardous waste in coal-fired power plants. The enviro... The hazardous waste produced by coal-fired power plants are large in quantity and variety. It is important for ecological environment protection to properly store hazardous waste in coal-fired power plants. The environmental management of hazardous waste in coal-fired power plants started late, and there are many problems in the construction and management of their storage facilities. In this paper, taking eight typical coal-fired power plants as examples, the present problems of hazardous waste storage facilities in coal-fired power plants are analyzed, and corresponding countermeasures are put forward to solve the main common problems. 展开更多
关键词 coal-fired power plants Hazardous waste storage Types of problems COUNTERMEASURES
下载PDF
Tempospacial energy-saving effect-based diagnosis in large coal-fired power units:Energy-saving benchmark state
5
作者 FU Peng WANG NingLing +3 位作者 YANG Yong Ping XU Han LI XiaoEn ZHANG YuMeng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第12期2025-2037,共13页
The energy-saving analytics of coal-fired power units in China is confronting new challenges especially with even more complicated system structure, higher working medium parameters, time-dependent varying operation c... The energy-saving analytics of coal-fired power units in China is confronting new challenges especially with even more complicated system structure, higher working medium parameters, time-dependent varying operation conditions and boundaries such as load rate, coal quality, ambient temperature and humidity. Compared with the traditional optimization of specific operating parameters, the idea of the energy-consumption benchmark state was proposed. The equivalent specific fuel consumption(ESFC) analytics was introduced to determine the energy-consumption benchmark state, with the minimum ESFC under varying operation boundaries. Models for the energy-consumption benchmark state were established, and the endogenous additional specific consumption(ASFC) and exogenous ASFC were calculated. By comparing the benchmark state with the actual state, the energy-saving tempospacial effect can be quantified. As a case study, the energy consumption model of a 1000 MW ultra supercritical power unit was built. The results show that system energy consumption can be mainly reduced by improving the performance of turbine subsystem. This nearly doubles the resultant by improving the boiler system. The energy saving effect of each component increases with the decrease of load and has a greater influence under a lower load rate. The heat and mass transfer process takes priority in energy saving diagnosis of related components and processes. This makes great reference for the design and operation optimization of coal-fired power units. 展开更多
关键词 energy-saving diagnosis coal-fired power generation unit specific fuel consumption EXERGY THERMODYNAMICS
原文传递
8 large coal-fired generating units planned to be commissioned in Shandong Power Grid in 1997
6
《Electricity》 1997年第2期51-52,共2页
关键词 GRID large coal-fired generating units planned to be commissioned in Shandong power Grid in 1997
下载PDF
Considerations on FGD in Coal-Fired Power Plants 被引量:9
7
作者 赵鹏高 《Electricity》 2004年第4期36-40,共5页
Aiming at issues on flue gas des-ulfurization facing coal-fired power plants inChina, such as process selection, whetheradopting flue gas desulfurization (FGD) or not,qualification of flue gas desulfurization en-ginee... Aiming at issues on flue gas des-ulfurization facing coal-fired power plants inChina, such as process selection, whetheradopting flue gas desulfurization (FGD) or not,qualification of flue gas desulfurization en-gineering company, the localization of technicalequipment, charge for SO2 emission andnormalized management, this article makes acomprehensive analysis and puts forwardconstructive suggestions. These will providesome references for those being engaged in fluegas desulfurization in coal-fired power plants.[ 展开更多
关键词 coal-fired power plant FGD process selection charge for SO2 emission
下载PDF
Influence of flue gas cleaning system on characteristics of PM_(2.5)emission from coal-fired power plants 被引量:18
8
作者 Ao Wang Qiang Song +3 位作者 Gongming Tu Hui Wang Yong Yue Qiang Yao 《International Journal of Coal Science & Technology》 EI CAS 2014年第1期4-12,共9页
This study investigated the influence of precipitators and wet flue gas desulfurization equipment on characteristics of PM_(2.5)emission from coal-fired power stations.We measured size distribution and removal efficie... This study investigated the influence of precipitators and wet flue gas desulfurization equipment on characteristics of PM_(2.5)emission from coal-fired power stations.We measured size distribution and removal efficiencies,including hybrid electrostatic precipitator/bag filters(ESP/BAGs)which have rarely been studied.A bimodal distribution of particle concentrations was observed at the inlet of each precipitator.After the precipitators,particle concentrations were significantly reduced.Although a bimodal distribution was still observed,all peak positions shifted to the smaller end.The removal efficiencies of hybrid ESP/BAGs reached 99%for PM_(2.5),which is considerably higher than those for other types of precipitators.In particular,the influence of hybrid ESP/BAG operating conditions on the performance of dust removal was explored.The efficiency of hybrid ESP/BAGs decreased by 1.9%when the first electrostatic field was shut down.The concentrations and distributions of particulate matter were also measured in three coal-fired power plants before and after desulfurization devices.The results showed diverse removal efficiencies for different desulfurization towers.The reason for the difference requires further research.We estimated the influence of removal technology for particulate matter on total emissions in China.Substituting ESPs with hybrid ESP/BAGs could reduce the total emissions to 104.3 thousand tons,with 47.48 thousand tons of PM_(2.5). 展开更多
关键词 coal-fired power station PRECIPITATION PM_(2.5) Emission characteristics Electrostatic precipitator ESP/BAG
下载PDF
Effects of coal-fired power plants on soil microbial diversity and community structures 被引量:1
9
作者 Bowen Sun Renbin Zhu +6 位作者 Yu Shi Wanying Zhang Zeming Zhou Dawei Ma Runfang Wang Haitao Dai Chenshuai Che 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第3期206-223,共18页
Long-term deposition of atmospheric pollutants emitted from coal combustion and their effects on the eco-environment have been extensively studied around coal-fired power plants.However,the effects of coal-fired power... Long-term deposition of atmospheric pollutants emitted from coal combustion and their effects on the eco-environment have been extensively studied around coal-fired power plants.However,the effects of coal-fired power plants on soil microbial communities have received little attention through atmospheric pollutant deposition and coal-stacking.Here,we collected the samples of power plant soils(PS),coal-stacking soils(CSS)and agricultural soils(AS)around three coal-fired power plants and background control soils(BG)in Huainan,a typical mineral resource-based city in East China,and investigated the microbial diversity and community structures through a high-throughput sequencing technique.Coal-stacking significantly increased(p<0.05)the contents of total carbon,total nitrogen,total sulfur and Mo in the soils,whereas the deposition of atmospheric pollutants enhanced the levels of V,Cu,Zn and Pb.Proteobacteria,Actinobacteria,Thaumarchaeota,Thermoplasmata,Ascomycota and Basidiomycota were the dominant taxa in all soils.The bacterial community showed significant differences(p<0.05)among PS,CSS,AS and BG,whereas archaeal and fungal communities showed significant differences(p<0.01)according to soil samples around three coal-fired power plants.The predominant environmental variables affecting soil bacterial,archaeal and fungal communities were Mo-TN-TS,Cu-V-Mo,and organic matter(OM)-Mo,respectively.Certain soil microbial genera were closely related to multiple key factors associated with stacking coal and heavy metal deposition from power plants.This study provided useful insight into better understanding of the relationships between soil microbial communities and long-term disturbances from coal-fired power plants. 展开更多
关键词 coal-fired power plants Soil microbial communities Coal-stacking Heavy metals Environmental variables
原文传递
Progress and prospects of innovative coal-fired power plants within the energy internet 被引量:7
10
作者 Yongping Yang Chengzhou Li +1 位作者 Ningling Wang Zhiping Yang 《Global Energy Interconnection》 2019年第2期160-179,共20页
The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy ... The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy internet. Progressive penetration of intermittent renewable energy sources into the energy system has led to unprecedented challenges to the currently wide use of coal-fired power generation technologies. Here, the applications and prospects of advanced coal-fired power generation technologies are analyzed. These technologies can be summarized into three categories:(1) large-scale and higher parameters coal-fired power generation technologies, including 620/650/700 oC ultra-supercritical thermal power and double reheat ultra-supercritical coal-fired power generation technologies;(2) system innovation and specific, highefficiency thermal cycles, which consist of renewable energy-aided coal-fired power generation technologies, a supercritical CO_2 Brayton cycle for coal-fired power plants, large-scale air-cooling coal-fired power plant technologies, and innovative layouts for waste heat utilization and enhanced energy cascade utilization;(3) coal-fired power generation combined with poly-generation technologies, which are represented by integrated gasification combined cycle(IGCC) and integrated gasification fuel cell(IGFC) technologies. Concerning the existing coal-fired power units, which are responsible for peak shaving, possible strategies for enhancing flexibility and operational stability are discussed. Furthermore, future trends for coal-fired power plants coupled with cyber-physical system(CPS) technologies are introduced. The development of advanced, coal-fired power generation technologies demonstrates the progress of science and is suitable for the sustainable development of human society. 展开更多
关键词 En ergy In ternet coal-fired power GEN eration FLEXIBILITY Cyber-physical system Smart power plant
下载PDF
Environmental life cycle assessment of Indian coal-fired power plants 被引量:6
11
作者 Udayan Singh Naushita Sharma Siba Sankar Mahapatra 《International Journal of Coal Science & Technology》 EI 2016年第2期215-225,共11页
Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate ... Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate and health impacts. Various CO2 mitigation technologies (carbon capture and storage--CCS) and SO2/NOx mitigation technologies (flue gas desulfurization and selective catalytic reduction) have been employed to reduce the environmental impacts of the coal-fired power plants. Therefore, it is imperative to understand the feasibility of various mitigation technologies employed. This paper attempts to perform environmental life cycle assessment (LCA) of Indian coal-fired power plant with and without CO2, SO2 and NOx mitigation controls. The study develops new normalization factors for India in various damage categories, using the Indian emissions and energy consumption data, coupled with the emissions and particulate emission to come up with a final environmental impact of coal-fired electricity. The results show a large degree of dependence on the perspective of assessment used. The impact of sensitivities of individual substances and the effect of plant efficiency on the final LCA results is also studied. 展开更多
关键词 Lifeinventory Fluecycle assessment coal-fired power plants - Carbon capture and storage Environmental impact Plantgas desulfurization
下载PDF
Near-Zero Air Pollutant Emission Technologies and Applications for Clean Coal-Fired Power 被引量:7
12
作者 Shumin Wang 《Engineering》 SCIE EI 2020年第12期1408-1422,共15页
Coal is the dominant energy source in China,and coal-fired power accounts for about half of coal consumption.However,air pollutant emissions from coal-fired power plants cause severe ecological and environmental probl... Coal is the dominant energy source in China,and coal-fired power accounts for about half of coal consumption.However,air pollutant emissions from coal-fired power plants cause severe ecological and environmental problems.This paper focuses on near-zero emission technologies and applications for clean coal-fired power.The long-term operation states of near-zero emission units were evaluated,and synergistic and special mercury(Hg)control technologies were researched.The results show that the principle technical route of near-zero emission,which was applied to 101 of China’s coal-fired units,has good adaptability to coal properties.The emission concentrations of particulate matter(PM),SO2,and NOx were below the emission limits of gas-fired power plants and the compliance rates of the hourly average emission concentrations reaching near-zero emission in long-term operation exceeded 99%.With the application of near-zero emission technologies,the generating costs increased by about 0.01 CNY∙(kW∙h)-1.However,the total emissions of air pollutants decreased by about 90%,resulting in effective improvement of the ambient air quality.Furthermore,while the Hg emission concentrations of the near-zero emission units ranged from 0.51 to 2.89μg∙m^-3,after the modified fly ash(MFA)special Hg removal system was applied,Hg emission concentration reached as low as 0.29μg∙m^-3.The operating cost of this system was only 10%-15%of the cost of mainstream Hg removal technology using activated carbon injection.Based on experimental studies carried out in a 50000 m^3∙h^-1 coal-fired flue gas pollutant control pilot platform,the interaction relationships of multi-pollutant removal were obtained and solutions were developed for emissions reaching different limits.A combined demonstration application for clean coal-fired power,with the new“1123”eco-friendly emission limits of 1,10,20 mg∙m^-3,and 3μg∙m^-3,respectively,for PM,SO2,NOx,and Hg from near-zero emission coal-fired power were put forward and realized,providing engineering and technical support for the national enhanced pollution emission standards. 展开更多
关键词 Clean coal-fired power Air pollutants Near-zero emission Pilot platform New“1123”eco-friendly emission limits
下载PDF
Formation and emission characteristics of VOCs from a coal-fired power plant 被引量:3
13
作者 Jingying Xu Yue Lyu +3 位作者 Jiankun Zhuo Yishu Xu Zijian Zhou Qiang Yao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第7期256-264,共9页
On-site measurements of volatile organic compounds(VOCs)in different streams of flue gas were carried out on a real coal-fired power plant using sampling bags and SUMMA canisters to collect gas samples,filters to coll... On-site measurements of volatile organic compounds(VOCs)in different streams of flue gas were carried out on a real coal-fired power plant using sampling bags and SUMMA canisters to collect gas samples,filters to collect particle samples.Gas chromatography-flame ionization detector/mass spectrometry and gas chromatography-mass spectrometry was the offline analysis method.We found that the total mass concentration of the tested 102 VOC species at the outlet of wet flue gas desulfuration device was(13456±47)μg·m^(-3),which contained aliphatic hydrocarbons(57.9%),aromatic hydrocarbons(26.8%),halogen-containing species(14.5%),and a small amount of oxygen-containing and nitrogencontaining species.The most abundant species were 1-hexene,n-hexane and 2-methylpentane.The top ten species in terms of mass fraction(with a total mass fraction of 75.3%)were mainly hydrocarbons with a carbon number of 6 or higher and halogenated hydrocarbons with a lower carbon number.The mass concentration of VOC species in the particle phase was significantly lower than that in the gas phase.The change of VOC mass concentrations along the air pollution control devices indicates that conventional pollutant control equipment had a limited effect on VOC reduction.Ozone formation potential calculations showed that aromatic hydrocarbons contributed the highest ozone formation(46.4%)due to their relatively high mass concentrations and MIR(maximum increment reactivity)values. 展开更多
关键词 Volatile organic compounds Coal combustion Ozone formation potential coal-fired power plant On-site measurement
下载PDF
Optimization of an Existing Coal-fired Power Plant with CO<sup>2</sup>Capture 被引量:2
14
作者 Ying Wu Wenyi Liu Yong-ping Yang 《Energy and Power Engineering》 2013年第4期157-161,共5页
Nowadays, the worsening environmental issue caused by CO2 emission is greatly aggravated by human activity. Many CO2 reduction technologies are under fast development. Among these, monoethanolamine (MEA) based CO2 cap... Nowadays, the worsening environmental issue caused by CO2 emission is greatly aggravated by human activity. Many CO2 reduction technologies are under fast development. Among these, monoethanolamine (MEA) based CO2 capture technology has been paid great attention. However, when connecting the CO2 capture process with a coal-fired power plant, the huge energy and efficiency penalty caused by CO2 capture has become a serious problem for its application. Thus, it is of great significance to reduce the related energy consumption. Based on an existing coal-fired power plant, this paper proposes a new way for the decarburized retrofitting of the coal-fired power plant, which helps to improve the overall efficiency of the power plant with less energy and efficiency penalty. The decarburized retrofitting scheme proposed will provide a new route for the CO2 capture process in China. 展开更多
关键词 MEA CO2 CAPTURE Decarburized Retrofitting coal-fired power PLANT
下载PDF
Investigating Load Regulation Characteristics of a Wind-PV-Coal Storage Multi-Power Generation System
15
作者 Zhongping Liu Enhui Sun +3 位作者 Jiahao Shi Lei Zhang Qi Wang Jiali Dong 《Energy Engineering》 EI 2024年第4期913-932,共20页
There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regu... There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regulation model for a multi-power generation system comprising wind,PV,and coal energy storage using realworld data.The power supply process was divided into eight fundamental load regulation scenarios,elucidating the influence of each scenario on load regulation.Within the framework of the multi-power generation system with the wind(50 MW)and PV(50 MW)alongside a CFPP(330 MW),a lithium-iron phosphate energy storage system(LIPBESS)was integrated to improve the system’s load regulation flexibility.The energy storage operation strategy was formulated based on the charging and discharging priority of the LIPBESS for each basic scenario and the charging and discharging load calculation method of LIPBESS auxiliary regulation.Through optimization using the particle swarm algorithm,the optimal capacity of LIPBESS was determined to be within the 5.24-4.88 MWh range.From an economic perspective,the LIPBESS operating with CFPP as the regulating power source was 49.1% lower in capacity compared to the renewable energy-based storage mode. 展开更多
关键词 Wind power coal-fired power PV multi-power generation system lithium-iron phosphate energy storage system
下载PDF
Status and Prospect of Coal-fired Power Plant Automation in China 被引量:1
16
《Electricity》 1999年第1期28-31,共4页
关键词 MEH Status and Prospect of coal-fired power Plant Automation in China
下载PDF
Price prediction of power transformer materials based on CEEMD and GRU
17
作者 Yan Huang Yufeng Hu +2 位作者 Liangzheng Wu Shangyong Wen Zhengdong Wan 《Global Energy Interconnection》 EI CSCD 2024年第2期217-227,共11页
The rapid growth of the Chinese economy has fueled the expansion of power grids.Power transformers are key equipment in power grid projects,and their price changes have a significant impact on cost control.However,the... The rapid growth of the Chinese economy has fueled the expansion of power grids.Power transformers are key equipment in power grid projects,and their price changes have a significant impact on cost control.However,the prices of power transformer materials manifest as nonsmooth and nonlinear sequences.Hence,estimating the acquisition costs of power grid projects is difficult,hindering the normal operation of power engineering construction.To more accurately predict the price of power transformer materials,this study proposes a method based on complementary ensemble empirical mode decomposition(CEEMD)and gated recurrent unit(GRU)network.First,the CEEMD decomposed the price series into multiple intrinsic mode functions(IMFs).Multiple IMFs were clustered to obtain several aggregated sequences based on the sample entropy of each IMF.Then,an empirical wavelet transform(EWT)was applied to the aggregation sequence with a large sample entropy,and the multiple subsequences obtained from the decomposition were predicted by the GRU model.The GRU model was used to directly predict the aggregation sequences with a small sample entropy.In this study,we used authentic historical pricing data for power transformer materials to validate the proposed approach.The empirical findings demonstrated the efficacy of our method across both datasets,with mean absolute percentage errors(MAPEs)of less than 1%and 3%.This approach holds a significant reference value for future research in the field of power transformer material price prediction. 展开更多
关键词 power transformer material Price prediction Complementary ensemble empirical mode decomposition Gated recurrent unit Empirical wavelet transform
下载PDF
Source-Load Coordinated Optimal Scheduling Considering the High Energy Load of Electrofused Magnesium and Wind Power Uncertainty
18
作者 Juan Li Tingting Xu +3 位作者 Yi Gu Chuang Liu Guiping Zhou Guoliang Bian 《Energy Engineering》 EI 2024年第10期2777-2795,共19页
In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional un... In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional units obviously can not solve the new energy as the main body of the scheduling problem.To enhance the systemscheduling ability,based on the participation of thermal power units,incorporate the high energy-carrying load of electro-melting magnesiuminto the regulation object,and consider the effects on the wind unpredictability of the power.Firstly,the operating characteristics of high energy load and wind power are analyzed,and the principle of the participation of electrofusedmagnesiumhigh energy-carrying loads in the elimination of obstructedwind power is studied.Second,a two-layer optimization model is suggested,with the objective function being the largest amount of wind power consumed and the lowest possible cost of system operation.In the upper model,the high energy-carrying load regulates the blocked wind power,and in the lower model,the second-order cone approximation algorithm is used to solve the optimizationmodelwithwind power uncertainty,so that a two-layer optimizationmodel that takes into account the regulation of the high energy-carrying load of the electrofused magnesium and the uncertainty of the wind power is established.Finally,the model is solved using Gurobi,and the results of the simulation demonstrate that the suggested model may successfully lower wind abandonment,lower system operation costs,increase the accuracy of day-ahead scheduling,and lower the final product error of the thermal electricity unit. 展开更多
关键词 High energy load of electrofused magnesium wind energy consumption thermal power unit wind power uncertainty two-layer optimization
下载PDF
Field Studies on the Removal Characteristics of Particulate Matter and SO_(x) in Ultra-Low Emission Coal-Fired Power Plant
19
作者 Xu Zhao Houzhang Tan +1 位作者 Fuxin Yang Shuanghui Deng 《Energy Engineering》 EI 2022年第1期49-62,共14页
In order to reduce the environmental smog caused by coal combustion,air pollution control devices have been widely used in coal-fired power plants,especially of wet flue gas desulfurization(WFGD)and wet electrostatic ... In order to reduce the environmental smog caused by coal combustion,air pollution control devices have been widely used in coal-fired power plants,especially of wet flue gas desulfurization(WFGD)and wet electrostatic precipitator(WESP).In this work,particulate matter with aerodynamic diameter less than 10μm(PM_(10))and sulfur oxides(SO_(x))have been studied in a coal-fired power plant.The plant is equipped with selective catalytic reduction,electrostatic precipitator,WFGD,WESP.The results show that the PM_(10)removal efficiencies in WFGD and WESP are 54.34%and 50.39%,respectively,and the overall removal efficiency is 77.35%.WFGD and WESP have effects on the particle size distribution.After WFGD,the peak of particles shifts from 1.62 to 0.95μm,and the mass concentration of fine particles with aerodynamic diameter less than 0.61μm increases.After WESP,the peak of particle size shifts from 0.95 to 1.61μm.The differences are due to the agglomeration and growth of small particles.The SO_(3)mass concentration increases after SCR,but WFGD has a great influence on SO_(x)with the efficiency of 96.56%.WESP can remove SO_(x),but the efficiency is 20.91%.The final emission factors of SO_(2),SO_(3),PM_(1),PM_(2.5)and PM_(10)are 0.1597,0.0450,0.0154,0.0267 and 0.0215(kg·t^(−1)),respectively.Compared with the research results without ultra-low emission retrofit,the emission factors are reduced by 1~2 orders of magnitude,and the emission control level of air pollutants is greatly improved. 展开更多
关键词 Particulate matter sulfur oxides wet flue gas desulfurization wet electrostatic precipitator coal-fired power plant
下载PDF
Development of Carbon Dioxide Capture Technologies in Coal-Fired Power Plants
20
作者 Gao Shiwang, Xu Shisen, Liu Lianbo, Niu Hongwei and Cai Ming Xi’an Thermal Power Research Institute Co., Ltd. Liu Lianbo 《Electricity》 2010年第4期50-54,共5页
With a particular reference to China Huaneng Group's practices in CO_2 capture, this article presents a brief ing on the current development of CO_2 capture technologies in coal-fired power plants both in China an... With a particular reference to China Huaneng Group's practices in CO_2 capture, this article presents a brief ing on the current development of CO_2 capture technologies in coal-fired power plants both in China and abroad. Sooner or later, the integration of CO_2 capture and storage (CCS) facility with coal-fired power plant will be inevitably put on the agenda of developers. 展开更多
关键词 coal-fired power PLANT EMISSION control CARBON dioxide CAPTURE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部