期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Reservoir reconstruction technologies for coalbed methane recovery in deep and multiple seams 被引量:11
1
作者 Wang Liang Liu Shimin +3 位作者 Cheng Yuanping Yin Guangzhi Zhang Dongming Guo Pinkun 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期277-284,共8页
Multiple coal seams widely develop in the deep Chinese coal-bearing strata. Ground in situ stress and coal seam gas pressure increase continuously with the increase of the mining depth, and coal and gas outburst disas... Multiple coal seams widely develop in the deep Chinese coal-bearing strata. Ground in situ stress and coal seam gas pressure increase continuously with the increase of the mining depth, and coal and gas outburst disasters become increasingly severe. When the coal is very deep, the gas content and pressure will elevate and thus coal seams tends to outburst-prone seams. The safety and economics of exploited firstmined coal seams are tremendously restricted. Meanwhile, the multiple seams occurrence conditions resulted in different methane pressure systems in the coal-bearing strata, which made the reservoir reconstruction of coal difficult. Given the characteristics of low saturation, low permeability, strong anisotropy and soft coal of Chinese coal seams, a single hydraulic fracturing surface well for reservoir reconstruction to pre-drain the coalbed methane(CBM) of multiple seams concurrently under the different gas pressure systems has not yet gained any breakthroughs. Based on analyses of the main features of deep CBM reservoirs in China, current gas control methods and the existing challenges in deep and multiple seams, we proposed a new technology for deep CBM reservoir reconstruction to realize simultaneous high-efficiency coal mining and gas extraction. In particular, we determined the first-mined seam according to the principles of effectiveness and economics, and used hydraulic fracturing surface well to reconstruct the first-mined seam which enlarges the selection range of the first-mined seam. During the process of mining first-mined seam, adjacent coal seams could be reconstructed under the mining effect which promoted high-efficiency pressure relief gas extraction by using spatial and comprehensive gas drainage methods(combination of underground and ground CBM extraction methods). A typical integrated reservoir reconstruction technology, ‘‘One well for triple use", was detailed introduced and successfully applied in the Luling coal mine. The application showed that the proposed technology could effectively promote coal mining safety and simultaneously high-efficiency gas extraction. 展开更多
关键词 Reservoir reconstruction coalbed methane Multiple seam Surface well gas drainage
下载PDF
Preferential adsorption behaviour of CH_4 and CO_2 on high-rank coal from Qinshui Basin,China 被引量:4
2
作者 Yu Hongguan Jing Renxia +2 位作者 Wang Panpan Chen Lihui Yang Yongjie 《International Journal of Mining Science and Technology》 SCIE EI 2014年第4期491-497,共7页
In order to better understand the prevailing mechanism of CO2 storage in coal and estimate CO2 sequestration capacity of a coal seam and enhanced coalbed methane recovery (ECBM) with CO2 injection into coal, we inve... In order to better understand the prevailing mechanism of CO2 storage in coal and estimate CO2 sequestration capacity of a coal seam and enhanced coalbed methane recovery (ECBM) with CO2 injection into coal, we investigated the preferential adsorption of CH4 and CO2 on coals. Adsorption of pure CO2, CH4 and their binary mixtures on high-rank coals from Qinshui Basin in China were employed to study the preferential adsorption behaviour. Multiple regression equations were presented to predict CH4 equi- librium concentration from equilibrium pressure and its initial-composition in feed gas. The results show that preferential adsorption of CO2 on coals over the entire pressure range under competitive sorption conditions was observed, however, preferential adsorption of CH4 over CO2 on low-volatile bituminous coal from higher CH4-compostion in source gas was found at up to 1O MPa pressure. Preferential adsorp- tion of CO2 increases with increase of CH4 concentration in source gas, and decreases with increasing pressure. Although there was no systematic investigation of the effect of coal rank on preferential adsorp- tion, there are obvious differences in preferential adsorption of gas between low-volatile bituminous coal and anthracite. The obtained preferential adsorption gives rise to the assumption that CO2 sequestration in coal beds with subsequent CO2-ECBM might be an ootion in Qinshui Basins, China. 展开更多
关键词 Coal Preferential adsorption coalbed methane gas mixtures CO2 sequestration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部