期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Acoustic emission assessment of interface cracking in thermal barrier coatings 被引量:6
1
作者 Li Yang Zhi-Chun Zhong +4 位作者 Yi-Chun Zhou Wang Zhu Zhi-Biao Zhang Can-Ying Cai Chun-Sheng Lu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第2期342-348,共7页
In this paper,acoustic emission(AE) and digital image correlation methods were applied to monitor interface cracking in thermal barrier coatings under compression.The interface failure process can be identifie via i... In this paper,acoustic emission(AE) and digital image correlation methods were applied to monitor interface cracking in thermal barrier coatings under compression.The interface failure process can be identifie via its AE features,including buckling,delamination incubation and spallation.According to the Fourier transformation of AE signals,there arefourdifferentfailuremodes:surfaceverticalcracks,opening and sliding interface cracks,and substrate deformation.The characteristic frequency of AE signals from surface vertical cracks is 0.21 MHz,whilst that of the two types of interface cracks are 0.43 and 0.29 MHz,respectively.The energy released of the two types of interface cracks are 0.43 and 0.29 MHz,respectively.Based on the energy released from cracking and the AE signals,a relationship is established between the interface crack length and AE parameters,which is in good agreement with experimental results. 展开更多
关键词 Thermal barrier coatings Acoustic emission Interface cracking Crack type Quantitative analysis
下载PDF
Quantitative assessment of the surface crack density in thermal barrier coatings 被引量:5
2
作者 Li Yang Zhi-Chun Zhong +1 位作者 Yi-Chun Zhou Chun-Sheng Lu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第2期167-174,共8页
In this paper, a modified shear-lag model is developed to calculate the surface crack density in thermal barrier coatings(TBCs). The mechanical properties of TBCs are also measured to quantitatively assess their sur... In this paper, a modified shear-lag model is developed to calculate the surface crack density in thermal barrier coatings(TBCs). The mechanical properties of TBCs are also measured to quantitatively assess their surface crack density. Acoustic emission(AE) and digital image correlation methods are applied to monitor the surface cracking in TBCs under tensile loading. The results show that the calculated surface crack density from the modified model is in agreement with that obtained from experiments. The surface cracking process of TBCs can be discriminated by their AE characteristics and strain evolution. Based on the correlation of energy released from cracking and its corresponding AE signals, a linear relationship is built up between the surface crack density and AE parameters, with the slope being dependent on the mechanical properties of TBCs. 展开更多
关键词 Thermal barrier coatings Acoustic emission Surface crack density Quantitative assessment
下载PDF
Study on oxygen transport and titanium oxidation in coating cracks under parallel gas flow based on LBM modelling
3
作者 Shengfeng Luo Song Zhang +3 位作者 Yiping Zeng Hui Zhang Lili Zheng Zhaopeng Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期15-24,共10页
The oxygen transportation from surrounding air to coating cracks is an important factor in the oxidation and ignition of titanium alloy. In this work, the oxygen transport and surface oxidation of titanium in inclined... The oxygen transportation from surrounding air to coating cracks is an important factor in the oxidation and ignition of titanium alloy. In this work, the oxygen transport and surface oxidation of titanium in inclined cracks of coating under parallel airflow are studied with the lattice Boltzmann method(LBM).A boundary scheme of LBM about surface reaction is developed. The conversion factors are utilized to build the relationship between the physical scale and the lattice scale. The reliability of the LBM model is validated by the finite element method(FEM). The results show that the convective mass transport driven by the surrounding airflow and the vortex structure formed inside the crack are the two significant factors that influence the oxygen transport in cracks. The convective mass transfer plays a major role in oxygen transport when the inclination angle of the crack is small. For the cases with a large inclination angle, the oxygen transfer from the top to the bottom of the crack is mainly controlled by mass diffusion mechanism. The oxygen concentration in inclined cracks is generally less than that in vertical cracks, and oxidation and ignition of the substrate titanium might be more likely to occur in relatively vertical cracks. 展开更多
关键词 coating crack OXIDATION Transport IGNITION Numerical simulation
下载PDF
Enhancing ductility of the Al-Si coating on hot stamping steel by controlling the Fe-Al phase transformation during austenitization 被引量:7
4
作者 GUI ZhongXiang LIANG WeiKang ZHANG YiSheng 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第9期1785-1793,共9页
In this study, austenitizing heat treatment before hot stamping of Al-10% Si coated boron steel is first investigated through en- vironment scanning electron microscopy (ESEM) equipped with energy dispersive x-ray a... In this study, austenitizing heat treatment before hot stamping of Al-10% Si coated boron steel is first investigated through en- vironment scanning electron microscopy (ESEM) equipped with energy dispersive x-ray analysis (EDAX). The cracking be- havior of the coating was evaluated using Gleeble 3500, a thermo-mechanical simulator under uniaxial plastic deformation at elevated temperatures. The extent and number of cracks developed in the coating were carefully assessed through an optical microscope. The coating layer under hot-dipped condition consists of an Al-Si eutectic matrix, Fe2Al7Si, Fe3Al2Si3 and Fe2Al5, from the coating surface to the steel substrate. The coating layer remains dense, continuous and smooth. During austenitization, the Al-rich Fe-Al intermetallics in the coating transform to more Fe-rich intermetallics, promoted by the Fe diffusion process. The coating finally shows the coexistence of two types of Fe-Al intermetallics, namely, FeAl2 and FeAl. Microcracks and Kirkendall voids occur in the coating layer and diffusion zone, respectively. The coating is heavily cracked and broken into segments during the hot tensile tests. Bare steel exposed between the separate segments of the coating is oxidized and covered with a thin FeOx layer. The appearance of the oxide decreases the adhesion of the Al-Si coating. It is found that the ductile FeAl is preferred as a coating microstructure instead of the brittle FeAl2. Therefore, the ductility of the Al-Si coating on hot stamping boron steer could be enhanced by controlling the ductile Fe-rich intermetallic phase transformations within it during austenitization. Experiments indicate that a higher austenitizing temperature or longer dwell time facilitate the Fe-rich inter- metallics transformation, increasing the volume fraction of FeAl. This phase transformation also contributes to reducing the crack density and depth. 展开更多
关键词 hot stamping Al-Si coating coating crack phase transformation DUCTILITY
原文传递
Effect of interfacial delamination on coating crack in thick diamond-like carbon coatings under indentation 被引量:1
5
作者 Zhongbao Wang Xiangli Zhong +5 位作者 Limei Jiang Fugang Qi Xiaoping Ouyang Jinbin Wang Bin Liao Jun Luo 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第2期524-535,共12页
Coating crack and interfacial delamination are recognized as two critical factors inducing spallation of thick diamond-like carbon(DLC)coatings.The effect of the two factors is found to dramatically accelerate the fai... Coating crack and interfacial delamination are recognized as two critical factors inducing spallation of thick diamond-like carbon(DLC)coatings.The effect of the two factors is found to dramatically accelerate the failure of thick DLC coatings.However,there are few reports on the effect of interfacial delamination on coating crack.In this work,in order to investigate the evolution of the coating crack and interfacial delamination,as well as the effect of interfacial delamination on coating crack,a finite element model that combines the bilinear cohesive zone model and the extended finite element method(XFEM)is established.It is found that the occurrence of interfacial delamination triggers a second expansion of coating crack.Factors influencing the degree of interfacial delamination on coating crack can be modulated by coating thickness and coating elastic modulus.As the coating thickness increases,the length of interfacial delamination increases,and thus the propagation of coating crack is accelerated.In contrast,the increase of coating elastic modulus could reduce the length of interfacial delamination,which consequently weakens its influence on the propagation of coating crack. 展开更多
关键词 coating crack Interfacial delamination Interaction Indentation test Cohesive zone model
原文传递
Influence of heating parameters on properties of the Al-Si coating applied to hot stamping 被引量:8
6
作者 LIANG WeiKang TAO WenJie +1 位作者 ZHU Bin ZHANG YiSheng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第7期1088-1102,共15页
The Al-Si coating of ultra-high strength steel has been applied to hot stamping more and more widely, owing to solving the problem of oxidation and decarburization. However, the evolution of Al-Si coating during the h... The Al-Si coating of ultra-high strength steel has been applied to hot stamping more and more widely, owing to solving the problem of oxidation and decarburization. However, the evolution of Al-Si coating during the heating process was rarely studied in the previous study. The tests about the influence of heating parameters, such as heating temperature, heating rates and dwell time, on properties of the Al-Si coating were carried out on the Gleeble-3500 thermal simulator. The properties of the Al-Si coating, for instance, volume fraction of FeAl intermetallics, α-Fe layer as well as porosity and 3D surface topography, were explored in the study. Results showed that more and more Kirkendall voids and cracks appeared in the Al-Si coating when the heating temperature exceeded 600°C. The heating rates almost had no influence on properties of the Al-Si coating when the temperature was equal to or lower than 500°C. The volume fraction of FeAl intermetallics in the coating with dwell time from 3 s to 8 min at 930°C was0, 6.19%, 17.03% and 20.65%, separately. The volume fraction of the α-Fe layer in the coating changed from zero to 31.52%with the prolonged dwell time. The porosity of the coating ranged from 0.51% to 4.98% with the extension of dwell time. The unsmooth degree of the surface of the coating rose gradually with the increasing of heating rates and the extension of dwell time.The 3D surface topography of the coating was determined by the comprehensive effect of atoms diffusion, new formed phases,surface tension and the degree of oxidation of the coating surface. Experiments indicated that rapid heating was not suitable for the coating when the temperature exceeded 500°C. Experiments also demonstrated that enough dwell time was essential to obtain the superior properties of the coating. 展开更多
关键词 Al-Si coating heating parameters thermal simulator Kirkendall voids cracks 3D surface topography
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部