In the present work, different silica-based supported cobalt (Co) catalysts were synthesized and used for CO2 hydrogenation for methanation. Different supports, such as SSP, MCM-41, TiSSP and TiMCM were used to prep...In the present work, different silica-based supported cobalt (Co) catalysts were synthesized and used for CO2 hydrogenation for methanation. Different supports, such as SSP, MCM-41, TiSSP and TiMCM were used to prepare Co catalysts with 20 wt% Co loading. The supports and catalysts were characterized by means of N2 physisorption, XRD, SEM/EDX, XPS, TPR and CO chemisorption. It is found that after calcination of catalysts, Ti is present in the form of anatase. The introduction of Ti plays important roles in the properties of Co catalysts by:(i) facilitating the reduction of Co oxides species which are strongly interacted with support, (ii) preventing the formation of silicate compounds, and (iii) inhibiting the RWGS reaction. Based on CO2 hydrogenation, the CoTiMCM catalyst exhibites the highest activity and stability.展开更多
Multiwall carbon nanotubes (MWNTs) and alumina are combined to give a new type of nanohybrid for Fisher-Tropsch synthesis (FTS) catalyst support. Alumina nano-particles (10 wt%) were introduced directly on funct...Multiwall carbon nanotubes (MWNTs) and alumina are combined to give a new type of nanohybrid for Fisher-Tropsch synthesis (FTS) catalyst support. Alumina nano-particles (10 wt%) were introduced directly on functionalized MWNTs by a modified sol-gel method. Microstructure observations show that alumina particles were homogeneously dispersed on the inside and outside of modified MWNTs surfaces. 15 wt% cobalt loading catalysts were prepared with this nanohybrid and γ-alumina as a reference, using a sol-gel technique and wet impregnation method respectively. These catalysts were characterized by TEM, XRD, N2-adsorption, H2 chemisorption and TPR. The deposition of cobalt nanoparticles synthesized by sol-gel technique on the MWNTs nanohybrid shift the reduction peaks to a low temperature, indicating higher reducibility for uniform cobalt particles. Nanohybrid also aided in high dispersion of metal clusters and high stability and performance of catalyst. The proposed MWNTs nanohybrid-supported cobalt catalysts showed the improved FTS rate (gHc/(gcat.min)), CO conversion (%), and water gas shift rate (WGS)(gcoz/(gcat.h)) of 0.012, 52, and 30E-3, respectively, as compared to those of 0.007, 25, and 18E-3, respectively, on the γ-alumina-supported cobalt catalysts with the same Co loading.展开更多
Four perovskite-type complex oxides (LaNiO_3, La_2NiO_4, LaCoO_3 andLa_2CoO_4) were successfully prepared using two sol-gel methods, the Pechini method (PC) and thecitric acid complexing method (CC). The catalysts wer...Four perovskite-type complex oxides (LaNiO_3, La_2NiO_4, LaCoO_3 andLa_2CoO_4) were successfully prepared using two sol-gel methods, the Pechini method (PC) and thecitric acid complexing method (CC). The catalysts were characterized by XRD and TPR. Afterreduction, the activity of the catalysts in the CO_2 reforming of methane was tested. Ni-basedcatalysts from La_2NiO_4 precursors were the most active and stable catalyst after calcination above850 ℃, which gave a methane conversion of 0.025 mmol/(g·s) for those prepared by the PC methodand 0.020 mmol/(g·s) by the CC method. It was proposed that the well-defined structure and lowerreducibility is responsible for the unusual catalytic behavior observed over the pre-reducedLa2NiO_4 catalyst.展开更多
Silicon nitride(Si_(3)N_(4))supported cobalt catalysts(Co/Si_(3)N_(4))were fabricated by using wetness impregnation procedure.The microscopic morphology,phase composition,and electronic states were characterized by XR...Silicon nitride(Si_(3)N_(4))supported cobalt catalysts(Co/Si_(3)N_(4))were fabricated by using wetness impregnation procedure.The microscopic morphology,phase composition,and electronic states were characterized by XRD,TEM,SEM,and XPS,respectively.For comparison,cobalt catalyst supported on SiO_(2)(Co/SiO_(2))was also investigated.XPS studies and DFT calculations show that the cobalt species in Co/Si_(3)N_(4) have lower valence state than those in Co/SiO_(2).The catalytic ESR reactions demonstrate that Co/Si_(3)N_(4) exhibits distinctly higher catalytic activity and hydrogen selectivity than Si_(3)N_(4) support and Co/SiO_(2) catalyst with the identical cobalt loading,indicative of the favorable effect of Si_(3)N_(4) support on the catalytic performance of supported cobalt catalyst.Durability tests and TG-DSC studies show that Co/Si_(3)N_(4) catalyst exhibits better stability and resistance to coke during the same catalytic experiment period.展开更多
A series of mesoporous alumina (MA) supported cobalt (Co/MA) catalysts with MA isomorphically substituted by zirconium (Zr) were synthesised and evaluated for their performance in the Fischer</span><span styl...A series of mesoporous alumina (MA) supported cobalt (Co/MA) catalysts with MA isomorphically substituted by zirconium (Zr) were synthesised and evaluated for their performance in the Fischer</span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">Tropsch synthesis. The Zr/(Zr + Al) atomic ratios varied from 1% - 15%. A zirconium-impregnated Co/MA catalyst prepared by wet impregnation with a Zr/(Zr + Al) atomic ratio of 5% was also evaluated to examine Zr incorporation’s effect method. The catalysts synthesised were characterised using N</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> adsorption-desorption, X-ray Powder Diffraction (XRD), Transmission Electron Microscopy (TEM), and X-Ray Photoelectron Spectroscopy (XPS). It was found that Zr</span><sup><span style="font-family:Verdana;">4+</span></sup><span style="font-family:Verdana;"> ions were incorporated into the framework of MA and kept intact up to a Zr/(Zr + Al) atomic ratio of 5%. The cobalt dispersion and reducibility were improved as the Zr/(Zr + Al) atomic ratio increased to 50%. The performance of these catalysts for Fischer</span></span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">Tropsch synthesis was evaluated using a fixed bed reactor at temperature and pressure of 493 K and 20 bar, respectively. The feed syngas </span><span><span style="font-family:Verdana;">had an H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/CO ratio of 2, diluted with 10% Ar. For isomorphically</span></span><span style="font-family:Verdana;"> Zr-substituted Co/MA, the CO conversion and selectivity of diesel (C</span><sub><span style="font-family:Verdana;">10</span></sub><span style="font-family:Verdana;"> - C</span><sub><span style="font-family:Verdana;">20</span></sub><span style="font-family:Verdana;">) increased first and then decreased with increasing the Zr/(Zr + Al) atomic ratio. The maximum 38.9% CO conversion and 34.6% diesel (C</span><sub><span style="font-family:Verdana;">10</span></sub><span style="font-family:Verdana;"> - C</span><sub><span style="font-family:Verdana;">20</span></sub><span style="font-family:Verdana;">) selectivity were obtained at Zr/(Zr + Al) atomic ratio of 5%. The isomorphic substitution method was better than the wet impregnation method in CO conversion and diesel selectivity.展开更多
The effect of ethylene diamine tetraacetic acid(EDTA) modification on the physico-chemical properties and catalytic performance of silica nanosprings(NS) supported cobalt(Co) catalyst was investigated in the conversio...The effect of ethylene diamine tetraacetic acid(EDTA) modification on the physico-chemical properties and catalytic performance of silica nanosprings(NS) supported cobalt(Co) catalyst was investigated in the conversion of syngas(H^(2+) CO) to hydrocarbons by Fischer-Tropsch synthesis(FTS). The unmodified Co/NS and modified Co/NS-EDTA catalysts were synthesized via an impregnation method. The prepared Co/NS and Co/NS-EDTA catalysts were characterized before the FTS reaction by BET surface area,X-ray diffraction(XRD),transmission electron microscopy(TEM),temperature programmed reduction(TPR),X-ray photoelectron spectroscopy(XPS),differential thermal analysis(DTA) and thermogravimetric analysis(TGA) in order to find correlations between physico-chemical properties of catalysts and catalytic performance. FTS was carried out in a quartz fixedbed microreactor(H_2/CO of 2 ∶1,230 ℃ and atmospheric pressure) and the products trapped and analyzed by GC-TCD and GC-MS to determine CO conversion and reaction selectivity. The experimental results indicated that the modified Co/NS-EDTA catalyst displayed a more-dispersed phase of Co_3O_4 nanoparticles(10.9%) and the Co_3O_4 average crystallite size was about 12.4 nm. The EDTA modified catalyst showed relatively higher CO conversion(70.3%) and selectivity toward C_(6-18)(JP-8,Jet A and diesel) than the Co/NS catalyst(C_(6-14))(JP-4).展开更多
Single-atomic catalysts(SACs)caught considerable attention due to their unique structural properties,complete exposed active site,and 100%atom utilization efficiency with remarkable catalytic activity.Mesoporous singl...Single-atomic catalysts(SACs)caught considerable attention due to their unique structural properties,complete exposed active site,and 100%atom utilization efficiency with remarkable catalytic activity.Mesoporous single-atomic cobalt catalyst with Co-N_(4) active sites was synthesized by using nitrogen-doped graphene derived from acrylonitrile.Single-atomic cobalt was observed by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)in Co@Nx-C-800.Notably,the density functional theory(DFT)calculation and the extended X-ray absorption fine structures(EXAFS)fitting results indicate that the coordination structure of Co-N is four-coordinated.In this work,the practical hydrogenation of nitroarenes to anilines enabled by Co@Nx-C-800 was established with excellent yields and selectivity,which proved its advantages and potential applications.展开更多
Calcium hydroxyapatite(HAp) supported cobalt and cobalt-cerium catalysts were examined for hydrogen production in glycerol steam reforming. The catalysts were synthesized by incipient wetness impregnation method and...Calcium hydroxyapatite(HAp) supported cobalt and cobalt-cerium catalysts were examined for hydrogen production in glycerol steam reforming. The catalysts were synthesized by incipient wetness impregnation method and characterized through X-ray diffraction, adsorption-desorption isotherms of N2 and temperature-programmed reduction of H2. Catalytic properties were examined in terms of glycerol conversion, selectivity toward hydrogen and C-containing products in temperature range of 650-800 ℃.The effect of active metal reduction and residence time(thereby flow feed rate) was analysed. It was found that the growth of residence time increased the hydrogen selectivity in the whole temperatures range whereas the catalyst reduction, before the catalytic process, decreased the hydrogen selectivity at temperatures lower than 750 ℃. The cerium addition improved the catalytic behaviour for hydrogen production via glycerol steam reforming. Cerium oxide suppressed the sintering of cobalt particles and as a result Co-Ce/HAp ensured higher stability and H2 selectivity than Co/HAp. Under reaction conditions investigated in this study, the highest selectivity toward hydrogen at 650 ℃ was obtained for 7.5 Co-Ce/HAp catalyst.展开更多
Hydrocarbon production rates and distributions on ruthenium promoted alumina supported cobalt Fischer-Tropsch synthesis (FTS) catalyst were studied by the concept of two superimposed Anderson-Schulz-Flory (ASF) di...Hydrocarbon production rates and distributions on ruthenium promoted alumina supported cobalt Fischer-Tropsch synthesis (FTS) catalyst were studied by the concept of two superimposed Anderson-Schulz-Flory (ASF) distributions.The results indicated that the characterizing growth probabilities α1 and α2 were strongly dependent on reaction conditions.By increasing the H2 /CO partial pressure ratios and reaction temperatures,deviation from normal ASF distribution decreases and the double-α-ASF distribution changes into a straight line.Based on the concept of double-α-ASF distribution,a useful rate equation for the production of hydrocarbons under industrial reaction conditions is obtained.展开更多
In this paper,a series of cobalt catalysts supported on reduced graphene oxide(rGO)nanosheets with the loading of 5,15 and 30 wt-%were provided by the impregnation method.The activity of the prepared catalysts is eval...In this paper,a series of cobalt catalysts supported on reduced graphene oxide(rGO)nanosheets with the loading of 5,15 and 30 wt-%were provided by the impregnation method.The activity of the prepared catalysts is evaluated in the Fischer-Tropsch synthesis(FTS).The prepared catalysts were carefully characterized by nitrogen adsorption-desorption,hydrogen chemisorption,X-ray diffraction,Fourier transform infrared spectroscopy,Raman spectroscopy,temperature programmed reduction,transmission electron microscopy,and field emission scanning electron microscopy techniques to confirm that cobalt particles were greatly dispersed on the rGO nanosheets.The results showed that with increasing the cobalt loading on the rGO support,the carbon defects are increased and as a consequence,the reduction of cobalt is decreased.The FTS activity results showed that the cobalt-time yield and turnover frequency passed from a maximum for catalyst with the Co0 average particle size of 15 nm due to the synergetic effect of cobalt reducibility and particle size.The products selectivity results indicated that the methane selectivity decreases,whereas the C5+selectivity raises with the increasing of the cobalt particle size,which can be explained by chain propagation in the primary chain growth reactions.展开更多
Silica nanotubes(SNT) have been synthesized using carbon nanotubes(CNT) as a template.Silica-coated carbon nanotubes(SNT-CNT) and SNT were loaded with a cobalt catalyst for use in Fischer-Tropsch synthesis(FTS).The ca...Silica nanotubes(SNT) have been synthesized using carbon nanotubes(CNT) as a template.Silica-coated carbon nanotubes(SNT-CNT) and SNT were loaded with a cobalt catalyst for use in Fischer-Tropsch synthesis(FTS).The catalysts were prepared by incipient wetness impregnation and characterized by N2 physisorption,X-ray diffraction(XRD),hydrogen temperature programmed reduction(H2-TPR) and transmission electron microscopy(TEM).FTS performance was evaluated in a fixed-bed reactor at 493 K and 1.0 MPa.Co/CNT and Co/SNT catalysts showed higher activity than Co/SNT-CNT in FTS because of the smaller cobalt particle size,higher dispersion and stronger reducibility.The results also showed that structure of the support affects the product selectivity in FTS.The synergistic effects of cobalt particle size,catalytic activity and diffusion limitations as a consequence of its small average pore size lead to medium selectivity to C5+ hydrocarbons and CH4 over Co/SNT-CNT.On the other hand,the Co/CNT showed higher CH4 selectivity and lower C5+ selectivity than Co/SNT,due to its smaller average pore size and cobalt particle size.展开更多
1 Results Great progresses have been made in the field of transition metal-based complexes as catalytic precursors for olefin oligomerization and polymerization,in which the core subjects will remain as "know and...1 Results Great progresses have been made in the field of transition metal-based complexes as catalytic precursors for olefin oligomerization and polymerization,in which the core subjects will remain as "know and how" to develop novel catalysts both in academic and industrial consideration.The key advantage of iron and cobalt catalyst for ethylene polymerization is to produce vinyl-type polyethylenes.Therefore following the pioneering works of bis(imino) pyridyl iron and cobalt catalyst by Brookhart[1] ...展开更多
Beckmann rearrangements of oximes to lactams often require harsh conditions and/or the use of large amounts of acid catalyst. To reduce the amount of Bronsted acid required, and to avoid the formation of a large amoun...Beckmann rearrangements of oximes to lactams often require harsh conditions and/or the use of large amounts of acid catalyst. To reduce the amount of Bronsted acid required, and to avoid the formation of a large amount of undesirable byproducts under mild reaction conditions, a low environmental load process was developed. Beckmann rearrangements of cyclohexanone oxime and cyclooctanone oxime were achieved using a combination of a Bronsted acid and cobalt tetra-fluoroborate hexahydrate. Various Bronsted acid catalysts (10 - 20 mol%) were used to obtain the corresponding lactams in high yields at 80℃.展开更多
Mesoporous carbon-supported cobalt (Co-MC) catalysts are widely applied as electrode materials for bat- teries. Conversely, the development of Co-MC as bifunctional catalysts for application in organic catalytic rea...Mesoporous carbon-supported cobalt (Co-MC) catalysts are widely applied as electrode materials for bat- teries. Conversely, the development of Co-MC as bifunctional catalysts for application in organic catalytic reactions and degradation of water contaminants is slower. Herein, the catalyst displayed high activity in the selective oxidation of toluene to benzaldehyde under mild conditions, attaining a high selectivity of 92.3%. Factors influencing the catalytic reaction performance were also investigated. Additionally, Co-MC displayed remarkable catalytic activity in degrading dyes relative to the pure metal counterpart. Moreover, the catalyst exhibited excellent reusability, as determined by the cyclic catalytic experiments. The paper demonstrates the potential of Co-MC as a bifunctional catalyst for both toluene selective oxidation and water contaminant degradation.展开更多
The Beckmann rearrangement of cyclohexanone oxime was achieved by the combined use of cobalt salt and Lewis acids co-catalysts (each 10 mol%). Various combinations of cobalt salts and Lewis acids gave lactams in a sat...The Beckmann rearrangement of cyclohexanone oxime was achieved by the combined use of cobalt salt and Lewis acids co-catalysts (each 10 mol%). Various combinations of cobalt salts and Lewis acids gave lactams in a satisfactory yield under mild conditions. This method makes it possible to reduce undesirable byproducts.展开更多
Solar‐driven conversion of carbon dioxide,water and nitrogen into high value‐added fuels(e.g.H_(2),CO,CH_(4),CH_(3)OH,NH_(3) and so on)is regarded as an environmental‐friendly and ideal route for relieving the gree...Solar‐driven conversion of carbon dioxide,water and nitrogen into high value‐added fuels(e.g.H_(2),CO,CH_(4),CH_(3)OH,NH_(3) and so on)is regarded as an environmental‐friendly and ideal route for relieving the greenhouse gas effect and countering energy crisis,which is an attractive and challenging topic.Hence,various types of photocatalysts have been developed successively to meet the requirements of these photocatalysis.Among them,cobalt‐based heterogeneous catalysts emerge as one of the most promising photocatalysts that open up alluring vistas in the field of solar‐to‐fuels conversion,which can effectively enhance photocatalytic efficiency by extending light absorption range,promoting charge separation,providing active sites,and lowering reaction barrier.In this review,we first present the working principles of cobalt‐based heterogeneous catalysts for photocatalytic water splitting,CO_(2) reduction,and N_(2) fixation.Second,five efficient strategies including surface modification,morphology modulation,crystallinity controlling,crystal engineering and doping,are discussed for improving the photocatalytic performance with different types cobalt‐based catalysts(cobalt nanoparticles and single atom,oxides,sulfides,phosphides,MOFs,COFs,LDHs,carbide,and nitrides).Third,we outline the applications for the state‐of‐the‐art photocatalytic CO_(2) reduction and water splitting,and nitrogen fixation over cobalt‐based heterogeneous catalysts.Finally,the central challenges and possible improvements of cobalt‐based photocatalysis in the future are presented.The purpose of this review is to summarize the past experience and lessons,and provide reference for the further development of cobalt‐based photocatalysis technology.展开更多
Co/Al2O3 Fischer-Tropsch synthesis catalysts with different cobalt loadings were prepared using incipient wetness impregnation method. The effects of cobalt loading on the properties of catalysts were studied by means...Co/Al2O3 Fischer-Tropsch synthesis catalysts with different cobalt loadings were prepared using incipient wetness impregnation method. The effects of cobalt loading on the properties of catalysts were studied by means of X-ray diffraction (XRD), temperature programmed reduction (TPR), hydrogen temperature programmed desorption (H2-TPD) and O2 titration. Co-support compound formation can be detected in catalyst system by XRD. For the Co/Al2O3 catalysts with low cobalt loading, CoAl2O4 phase appears visibly. Two different reduction regions can be presented for Co/Al2O3 catalysts, which belong to Co3O4 crystallites (reduction at 320 ℃) and cobalt oxide-alumina interaction species (reduction at above 400 ℃). Increasing Co loading results in the increase of Co3O4 crystallite size. The reduced Co/Al2O3 catalysts have two adsorption sites, and cobalt loading greatly influences the adsorption behavior. With the increase of cobalt loading, the amount of low temperature adsorption is increased, the amount of high temperature adsorption is decreased, and the percentage reduction and cobalt crystallite size are increased.展开更多
Different kinds of aluminum precursors were obtained from precipitating ammonium bicarbonate, ammonium carbonate, and saturated ammonium bicarbonate, then, boehmite (AlO(OH)), ammonium alumina carbonate hydroxide (AAC...Different kinds of aluminum precursors were obtained from precipitating ammonium bicarbonate, ammonium carbonate, and saturated ammonium bicarbonate, then, boehmite (AlO(OH)), ammonium alumina carbonate hydroxide (AACH) and their mixture were obtained, and then, different kinds of alumina were obtained after calcination. Three catalysts supported on the different alumina were obtained via impregnating cobalt and ruthenium by incipient wetness. The effects of different precipitants on composition of precursors were?studied by XRD, FTIR, and TGA. The property and structure of alumina were studied by XRD and BET. The supported catalysts were studied by characterizations of XRD and H2-TPR, and the catalytic performance for Fischer-Tropsch synthesis (FTS) were evaluated at a fix-bed reactor. The relations among the composition of precursors, the property of alumina and the catalytic performance of supported catalysts were researched thoroughly.展开更多
Silica, alumina, and activated carbon supported iron-cobalt catalysts were prepared by incipient wetness impregnation. These catalysts have been characterized by BET, X-ray diffraction (XRD), and temperature-program...Silica, alumina, and activated carbon supported iron-cobalt catalysts were prepared by incipient wetness impregnation. These catalysts have been characterized by BET, X-ray diffraction (XRD), and temperature-programmed reduction (TPR). Activity and selectivity of iron-cobalt supported on different carriers for CO hydrogenation were studied under the conditions of 1.5 MPa, 493 K, 630 h^-1, and H2/CO ratio of 1.6. The results indicate that the activity, C4 olefin/(C4 olefin+C4 paraffin) ratio, and C5 olefin/(C5 olefin+C5 paraffin) decrease in the order of Fe-Co/SiO2, Fe-Co/AC1, Fe-Co/Al2O3 and Fe- Co/AC2. The activity of Fe-Co/SiO2 reached a maximum. The results of TPR show that the Fe-Co/SiO2 catalyst is to some extent different. XRD patterns show that the Fe-Co/SiO2 catalyst differs significantly from the others; it has two diffraction peaks. The active spinel phase is correlated with the supports.展开更多
基金supported by the Thailand Research Fund(TRF)and Office of the Higher Education Commission(CHE)the National Research Council of Thailand(NRCT)NRU-CU(AM1088A)
文摘In the present work, different silica-based supported cobalt (Co) catalysts were synthesized and used for CO2 hydrogenation for methanation. Different supports, such as SSP, MCM-41, TiSSP and TiMCM were used to prepare Co catalysts with 20 wt% Co loading. The supports and catalysts were characterized by means of N2 physisorption, XRD, SEM/EDX, XPS, TPR and CO chemisorption. It is found that after calcination of catalysts, Ti is present in the form of anatase. The introduction of Ti plays important roles in the properties of Co catalysts by:(i) facilitating the reduction of Co oxides species which are strongly interacted with support, (ii) preventing the formation of silicate compounds, and (iii) inhibiting the RWGS reaction. Based on CO2 hydrogenation, the CoTiMCM catalyst exhibites the highest activity and stability.
基金supported by the Research Council of the Research Institute of Petroleum Industrythe Research and Development of the National Iranian Oil Company
文摘Multiwall carbon nanotubes (MWNTs) and alumina are combined to give a new type of nanohybrid for Fisher-Tropsch synthesis (FTS) catalyst support. Alumina nano-particles (10 wt%) were introduced directly on functionalized MWNTs by a modified sol-gel method. Microstructure observations show that alumina particles were homogeneously dispersed on the inside and outside of modified MWNTs surfaces. 15 wt% cobalt loading catalysts were prepared with this nanohybrid and γ-alumina as a reference, using a sol-gel technique and wet impregnation method respectively. These catalysts were characterized by TEM, XRD, N2-adsorption, H2 chemisorption and TPR. The deposition of cobalt nanoparticles synthesized by sol-gel technique on the MWNTs nanohybrid shift the reduction peaks to a low temperature, indicating higher reducibility for uniform cobalt particles. Nanohybrid also aided in high dispersion of metal clusters and high stability and performance of catalyst. The proposed MWNTs nanohybrid-supported cobalt catalysts showed the improved FTS rate (gHc/(gcat.min)), CO conversion (%), and water gas shift rate (WGS)(gcoz/(gcat.h)) of 0.012, 52, and 30E-3, respectively, as compared to those of 0.007, 25, and 18E-3, respectively, on the γ-alumina-supported cobalt catalysts with the same Co loading.
文摘Four perovskite-type complex oxides (LaNiO_3, La_2NiO_4, LaCoO_3 andLa_2CoO_4) were successfully prepared using two sol-gel methods, the Pechini method (PC) and thecitric acid complexing method (CC). The catalysts were characterized by XRD and TPR. Afterreduction, the activity of the catalysts in the CO_2 reforming of methane was tested. Ni-basedcatalysts from La_2NiO_4 precursors were the most active and stable catalyst after calcination above850 ℃, which gave a methane conversion of 0.025 mmol/(g·s) for those prepared by the PC methodand 0.020 mmol/(g·s) by the CC method. It was proposed that the well-defined structure and lowerreducibility is responsible for the unusual catalytic behavior observed over the pre-reducedLa2NiO_4 catalyst.
基金by the National Natural Science Foundation of China(Nos.21671154,U1732147)the Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials(WKDM202210)the State Key Laboratory of Refractories(SKLAR202009)。
文摘Silicon nitride(Si_(3)N_(4))supported cobalt catalysts(Co/Si_(3)N_(4))were fabricated by using wetness impregnation procedure.The microscopic morphology,phase composition,and electronic states were characterized by XRD,TEM,SEM,and XPS,respectively.For comparison,cobalt catalyst supported on SiO_(2)(Co/SiO_(2))was also investigated.XPS studies and DFT calculations show that the cobalt species in Co/Si_(3)N_(4) have lower valence state than those in Co/SiO_(2).The catalytic ESR reactions demonstrate that Co/Si_(3)N_(4) exhibits distinctly higher catalytic activity and hydrogen selectivity than Si_(3)N_(4) support and Co/SiO_(2) catalyst with the identical cobalt loading,indicative of the favorable effect of Si_(3)N_(4) support on the catalytic performance of supported cobalt catalyst.Durability tests and TG-DSC studies show that Co/Si_(3)N_(4) catalyst exhibits better stability and resistance to coke during the same catalytic experiment period.
文摘A series of mesoporous alumina (MA) supported cobalt (Co/MA) catalysts with MA isomorphically substituted by zirconium (Zr) were synthesised and evaluated for their performance in the Fischer</span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">Tropsch synthesis. The Zr/(Zr + Al) atomic ratios varied from 1% - 15%. A zirconium-impregnated Co/MA catalyst prepared by wet impregnation with a Zr/(Zr + Al) atomic ratio of 5% was also evaluated to examine Zr incorporation’s effect method. The catalysts synthesised were characterised using N</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> adsorption-desorption, X-ray Powder Diffraction (XRD), Transmission Electron Microscopy (TEM), and X-Ray Photoelectron Spectroscopy (XPS). It was found that Zr</span><sup><span style="font-family:Verdana;">4+</span></sup><span style="font-family:Verdana;"> ions were incorporated into the framework of MA and kept intact up to a Zr/(Zr + Al) atomic ratio of 5%. The cobalt dispersion and reducibility were improved as the Zr/(Zr + Al) atomic ratio increased to 50%. The performance of these catalysts for Fischer</span></span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">Tropsch synthesis was evaluated using a fixed bed reactor at temperature and pressure of 493 K and 20 bar, respectively. The feed syngas </span><span><span style="font-family:Verdana;">had an H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/CO ratio of 2, diluted with 10% Ar. For isomorphically</span></span><span style="font-family:Verdana;"> Zr-substituted Co/MA, the CO conversion and selectivity of diesel (C</span><sub><span style="font-family:Verdana;">10</span></sub><span style="font-family:Verdana;"> - C</span><sub><span style="font-family:Verdana;">20</span></sub><span style="font-family:Verdana;">) increased first and then decreased with increasing the Zr/(Zr + Al) atomic ratio. The maximum 38.9% CO conversion and 34.6% diesel (C</span><sub><span style="font-family:Verdana;">10</span></sub><span style="font-family:Verdana;"> - C</span><sub><span style="font-family:Verdana;">20</span></sub><span style="font-family:Verdana;">) selectivity were obtained at Zr/(Zr + Al) atomic ratio of 5%. The isomorphic substitution method was better than the wet impregnation method in CO conversion and diesel selectivity.
基金supported by Unité de Catalyse et Chimie du Solide (UCCS)sponsor of scholarship: China scholarship council and School of Environment, Tsinghua University
文摘The effect of ethylene diamine tetraacetic acid(EDTA) modification on the physico-chemical properties and catalytic performance of silica nanosprings(NS) supported cobalt(Co) catalyst was investigated in the conversion of syngas(H^(2+) CO) to hydrocarbons by Fischer-Tropsch synthesis(FTS). The unmodified Co/NS and modified Co/NS-EDTA catalysts were synthesized via an impregnation method. The prepared Co/NS and Co/NS-EDTA catalysts were characterized before the FTS reaction by BET surface area,X-ray diffraction(XRD),transmission electron microscopy(TEM),temperature programmed reduction(TPR),X-ray photoelectron spectroscopy(XPS),differential thermal analysis(DTA) and thermogravimetric analysis(TGA) in order to find correlations between physico-chemical properties of catalysts and catalytic performance. FTS was carried out in a quartz fixedbed microreactor(H_2/CO of 2 ∶1,230 ℃ and atmospheric pressure) and the products trapped and analyzed by GC-TCD and GC-MS to determine CO conversion and reaction selectivity. The experimental results indicated that the modified Co/NS-EDTA catalyst displayed a more-dispersed phase of Co_3O_4 nanoparticles(10.9%) and the Co_3O_4 average crystallite size was about 12.4 nm. The EDTA modified catalyst showed relatively higher CO conversion(70.3%) and selectivity toward C_(6-18)(JP-8,Jet A and diesel) than the Co/NS catalyst(C_(6-14))(JP-4).
基金supported by the National Natural Science Foundation of China(Nos.22061017 and 21862006)Science and technology program of Gansu Province(Nos.22YF7GG127 and 23JRRG0002)Hexi University Research Start-up Fund Project(Nos.KYQD2020013).
文摘Single-atomic catalysts(SACs)caught considerable attention due to their unique structural properties,complete exposed active site,and 100%atom utilization efficiency with remarkable catalytic activity.Mesoporous single-atomic cobalt catalyst with Co-N_(4) active sites was synthesized by using nitrogen-doped graphene derived from acrylonitrile.Single-atomic cobalt was observed by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)in Co@Nx-C-800.Notably,the density functional theory(DFT)calculation and the extended X-ray absorption fine structures(EXAFS)fitting results indicate that the coordination structure of Co-N is four-coordinated.In this work,the practical hydrogenation of nitroarenes to anilines enabled by Co@Nx-C-800 was established with excellent yields and selectivity,which proved its advantages and potential applications.
文摘Calcium hydroxyapatite(HAp) supported cobalt and cobalt-cerium catalysts were examined for hydrogen production in glycerol steam reforming. The catalysts were synthesized by incipient wetness impregnation method and characterized through X-ray diffraction, adsorption-desorption isotherms of N2 and temperature-programmed reduction of H2. Catalytic properties were examined in terms of glycerol conversion, selectivity toward hydrogen and C-containing products in temperature range of 650-800 ℃.The effect of active metal reduction and residence time(thereby flow feed rate) was analysed. It was found that the growth of residence time increased the hydrogen selectivity in the whole temperatures range whereas the catalyst reduction, before the catalytic process, decreased the hydrogen selectivity at temperatures lower than 750 ℃. The cerium addition improved the catalytic behaviour for hydrogen production via glycerol steam reforming. Cerium oxide suppressed the sintering of cobalt particles and as a result Co-Ce/HAp ensured higher stability and H2 selectivity than Co/HAp. Under reaction conditions investigated in this study, the highest selectivity toward hydrogen at 650 ℃ was obtained for 7.5 Co-Ce/HAp catalyst.
文摘Hydrocarbon production rates and distributions on ruthenium promoted alumina supported cobalt Fischer-Tropsch synthesis (FTS) catalyst were studied by the concept of two superimposed Anderson-Schulz-Flory (ASF) distributions.The results indicated that the characterizing growth probabilities α1 and α2 were strongly dependent on reaction conditions.By increasing the H2 /CO partial pressure ratios and reaction temperatures,deviation from normal ASF distribution decreases and the double-α-ASF distribution changes into a straight line.Based on the concept of double-α-ASF distribution,a useful rate equation for the production of hydrocarbons under industrial reaction conditions is obtained.
基金The authors of this work appreciate the financial support of the Ferdowsi University of Mashhad,Iran(Grant No.3/45803-29/9/96).
文摘In this paper,a series of cobalt catalysts supported on reduced graphene oxide(rGO)nanosheets with the loading of 5,15 and 30 wt-%were provided by the impregnation method.The activity of the prepared catalysts is evaluated in the Fischer-Tropsch synthesis(FTS).The prepared catalysts were carefully characterized by nitrogen adsorption-desorption,hydrogen chemisorption,X-ray diffraction,Fourier transform infrared spectroscopy,Raman spectroscopy,temperature programmed reduction,transmission electron microscopy,and field emission scanning electron microscopy techniques to confirm that cobalt particles were greatly dispersed on the rGO nanosheets.The results showed that with increasing the cobalt loading on the rGO support,the carbon defects are increased and as a consequence,the reduction of cobalt is decreased.The FTS activity results showed that the cobalt-time yield and turnover frequency passed from a maximum for catalyst with the Co0 average particle size of 15 nm due to the synergetic effect of cobalt reducibility and particle size.The products selectivity results indicated that the methane selectivity decreases,whereas the C5+selectivity raises with the increasing of the cobalt particle size,which can be explained by chain propagation in the primary chain growth reactions.
基金supported by the National Natural Science Foundation of China(21073238)the National Basic Research Program of China (2011CB211704)the Natural Science Foundation of Hubei Province (2009CDA049)
文摘Silica nanotubes(SNT) have been synthesized using carbon nanotubes(CNT) as a template.Silica-coated carbon nanotubes(SNT-CNT) and SNT were loaded with a cobalt catalyst for use in Fischer-Tropsch synthesis(FTS).The catalysts were prepared by incipient wetness impregnation and characterized by N2 physisorption,X-ray diffraction(XRD),hydrogen temperature programmed reduction(H2-TPR) and transmission electron microscopy(TEM).FTS performance was evaluated in a fixed-bed reactor at 493 K and 1.0 MPa.Co/CNT and Co/SNT catalysts showed higher activity than Co/SNT-CNT in FTS because of the smaller cobalt particle size,higher dispersion and stronger reducibility.The results also showed that structure of the support affects the product selectivity in FTS.The synergistic effects of cobalt particle size,catalytic activity and diffusion limitations as a consequence of its small average pore size lead to medium selectivity to C5+ hydrocarbons and CH4 over Co/SNT-CNT.On the other hand,the Co/CNT showed higher CH4 selectivity and lower C5+ selectivity than Co/SNT,due to its smaller average pore size and cobalt particle size.
文摘1 Results Great progresses have been made in the field of transition metal-based complexes as catalytic precursors for olefin oligomerization and polymerization,in which the core subjects will remain as "know and how" to develop novel catalysts both in academic and industrial consideration.The key advantage of iron and cobalt catalyst for ethylene polymerization is to produce vinyl-type polyethylenes.Therefore following the pioneering works of bis(imino) pyridyl iron and cobalt catalyst by Brookhart[1] ...
文摘Beckmann rearrangements of oximes to lactams often require harsh conditions and/or the use of large amounts of acid catalyst. To reduce the amount of Bronsted acid required, and to avoid the formation of a large amount of undesirable byproducts under mild reaction conditions, a low environmental load process was developed. Beckmann rearrangements of cyclohexanone oxime and cyclooctanone oxime were achieved using a combination of a Bronsted acid and cobalt tetra-fluoroborate hexahydrate. Various Bronsted acid catalysts (10 - 20 mol%) were used to obtain the corresponding lactams in high yields at 80℃.
文摘Mesoporous carbon-supported cobalt (Co-MC) catalysts are widely applied as electrode materials for bat- teries. Conversely, the development of Co-MC as bifunctional catalysts for application in organic catalytic reactions and degradation of water contaminants is slower. Herein, the catalyst displayed high activity in the selective oxidation of toluene to benzaldehyde under mild conditions, attaining a high selectivity of 92.3%. Factors influencing the catalytic reaction performance were also investigated. Additionally, Co-MC displayed remarkable catalytic activity in degrading dyes relative to the pure metal counterpart. Moreover, the catalyst exhibited excellent reusability, as determined by the cyclic catalytic experiments. The paper demonstrates the potential of Co-MC as a bifunctional catalyst for both toluene selective oxidation and water contaminant degradation.
文摘The Beckmann rearrangement of cyclohexanone oxime was achieved by the combined use of cobalt salt and Lewis acids co-catalysts (each 10 mol%). Various combinations of cobalt salts and Lewis acids gave lactams in a satisfactory yield under mild conditions. This method makes it possible to reduce undesirable byproducts.
文摘Solar‐driven conversion of carbon dioxide,water and nitrogen into high value‐added fuels(e.g.H_(2),CO,CH_(4),CH_(3)OH,NH_(3) and so on)is regarded as an environmental‐friendly and ideal route for relieving the greenhouse gas effect and countering energy crisis,which is an attractive and challenging topic.Hence,various types of photocatalysts have been developed successively to meet the requirements of these photocatalysis.Among them,cobalt‐based heterogeneous catalysts emerge as one of the most promising photocatalysts that open up alluring vistas in the field of solar‐to‐fuels conversion,which can effectively enhance photocatalytic efficiency by extending light absorption range,promoting charge separation,providing active sites,and lowering reaction barrier.In this review,we first present the working principles of cobalt‐based heterogeneous catalysts for photocatalytic water splitting,CO_(2) reduction,and N_(2) fixation.Second,five efficient strategies including surface modification,morphology modulation,crystallinity controlling,crystal engineering and doping,are discussed for improving the photocatalytic performance with different types cobalt‐based catalysts(cobalt nanoparticles and single atom,oxides,sulfides,phosphides,MOFs,COFs,LDHs,carbide,and nitrides).Third,we outline the applications for the state‐of‐the‐art photocatalytic CO_(2) reduction and water splitting,and nitrogen fixation over cobalt‐based heterogeneous catalysts.Finally,the central challenges and possible improvements of cobalt‐based photocatalysis in the future are presented.The purpose of this review is to summarize the past experience and lessons,and provide reference for the further development of cobalt‐based photocatalysis technology.
文摘Co/Al2O3 Fischer-Tropsch synthesis catalysts with different cobalt loadings were prepared using incipient wetness impregnation method. The effects of cobalt loading on the properties of catalysts were studied by means of X-ray diffraction (XRD), temperature programmed reduction (TPR), hydrogen temperature programmed desorption (H2-TPD) and O2 titration. Co-support compound formation can be detected in catalyst system by XRD. For the Co/Al2O3 catalysts with low cobalt loading, CoAl2O4 phase appears visibly. Two different reduction regions can be presented for Co/Al2O3 catalysts, which belong to Co3O4 crystallites (reduction at 320 ℃) and cobalt oxide-alumina interaction species (reduction at above 400 ℃). Increasing Co loading results in the increase of Co3O4 crystallite size. The reduced Co/Al2O3 catalysts have two adsorption sites, and cobalt loading greatly influences the adsorption behavior. With the increase of cobalt loading, the amount of low temperature adsorption is increased, the amount of high temperature adsorption is decreased, and the percentage reduction and cobalt crystallite size are increased.
文摘Different kinds of aluminum precursors were obtained from precipitating ammonium bicarbonate, ammonium carbonate, and saturated ammonium bicarbonate, then, boehmite (AlO(OH)), ammonium alumina carbonate hydroxide (AACH) and their mixture were obtained, and then, different kinds of alumina were obtained after calcination. Three catalysts supported on the different alumina were obtained via impregnating cobalt and ruthenium by incipient wetness. The effects of different precipitants on composition of precursors were?studied by XRD, FTIR, and TGA. The property and structure of alumina were studied by XRD and BET. The supported catalysts were studied by characterizations of XRD and H2-TPR, and the catalytic performance for Fischer-Tropsch synthesis (FTS) were evaluated at a fix-bed reactor. The relations among the composition of precursors, the property of alumina and the catalytic performance of supported catalysts were researched thoroughly.
文摘Silica, alumina, and activated carbon supported iron-cobalt catalysts were prepared by incipient wetness impregnation. These catalysts have been characterized by BET, X-ray diffraction (XRD), and temperature-programmed reduction (TPR). Activity and selectivity of iron-cobalt supported on different carriers for CO hydrogenation were studied under the conditions of 1.5 MPa, 493 K, 630 h^-1, and H2/CO ratio of 1.6. The results indicate that the activity, C4 olefin/(C4 olefin+C4 paraffin) ratio, and C5 olefin/(C5 olefin+C5 paraffin) decrease in the order of Fe-Co/SiO2, Fe-Co/AC1, Fe-Co/Al2O3 and Fe- Co/AC2. The activity of Fe-Co/SiO2 reached a maximum. The results of TPR show that the Fe-Co/SiO2 catalyst is to some extent different. XRD patterns show that the Fe-Co/SiO2 catalyst differs significantly from the others; it has two diffraction peaks. The active spinel phase is correlated with the supports.