期刊文献+
共找到72篇文章
< 1 2 4 >
每页显示 20 50 100
Magnetic Fe_3O_4-Reduced Graphene Oxide Nanocomposites-Based Electrochemical Biosensing 被引量:4
1
作者 Lili Yu Hui Wu +4 位作者 Beina Wu Ziyi Wang Hongmei Cao Congying Fu Nengqin Jia 《Nano-Micro Letters》 SCIE EI CAS 2014年第3期258-267,共10页
An electrochemical biosensing platform was developed based on glucose oxidase(GOx)/Fe3O4-reduced graphene oxide(Fe3O4-RGO) nanosheets loaded on the magnetic glassy carbon electrode(MGCE).With the advantages of the mag... An electrochemical biosensing platform was developed based on glucose oxidase(GOx)/Fe3O4-reduced graphene oxide(Fe3O4-RGO) nanosheets loaded on the magnetic glassy carbon electrode(MGCE).With the advantages of the magnetism, conductivity and biocompatibility of the Fe3O4-RGO nanosheets, the nanocomposites could be facilely adhered to the electrode surface by magnetically controllable assembling and beneficial to achieve the direct redox reactions and electrocatalytic behaviors of GOx immobilized into the nanocomposites. The biosensor exhibited good electrocatalytic activity, high sensitivity and stability. The current response is linear over glucose concentration ranging from 0.05 to 1.5 m M with a low detection limit of0.15 μM. Meanwhile, validation of the applicability of the biosensor was carried out by determining glucose in serum samples. The proposed protocol is simple, inexpensive and convenient, which shows great potential in biosensing application. 展开更多
关键词 Fe3o4-reduced graphene oxide(Fe3o4-RGo) NANoCoMPoSITES Magnetically controllable assembling Direct electron transfer BIoSENSoR
下载PDF
Leaching kinetics of low grade zinc oxide ore in NH_3-NH_4Cl-H_2O system 被引量:13
2
作者 王瑞祥 唐谟堂 +4 位作者 杨声海 张文海 唐朝波 何静 杨建广 《Journal of Central South University of Technology》 2008年第5期679-683,共5页
The leaching kinetics of low grade zinc oxide ore in NH3-NH4Cl-H2O system was studied. The effects of ore particle size, reaction temperature and the sum concentration of ammonium ion and ammonia on the leaching effic... The leaching kinetics of low grade zinc oxide ore in NH3-NH4Cl-H2O system was studied. The effects of ore particle size, reaction temperature and the sum concentration of ammonium ion and ammonia on the leaching efficiency of zinc were examined. The leaching kinetics of low-grade zinc oxide ore in NH3-NH4Cl-H2O system follows the kinetic law of shrinking-core model. The results show that diffusion through the inert particle pores is the leaching kinetics rate controlling step. The calculated apparent activation energy of the process is about 7.057 kJ/mol. The leaching efficiency of zinc is 92.1% under the conditions of ore particle size of 69 μm, holding at 80 ℃ for 60 min, sum ammonia concentration of 7.5 mol/L, the molar ratio of ammonium to ammonia being 2-1, and the ratio (g/mL) of solid to liquid being 1-10. 展开更多
关键词 NH3-NH4Cl-H2o system low-grade zinc oxide ore LEACHING KINETICS
下载PDF
Insight into catalytic properties of Co3O4-CeO2 binary oxides for propane total oxidation 被引量:6
3
作者 Wenjun Zhu Xiao Chen +3 位作者 Jianhui Jin Xin Di Changhai Liang Zhongmin Liu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第4期679-690,共12页
A series of Co3O4-CeO2 binary oxides with various Co/(Ce+Co)molar ratios were synthesized using a citric acid method,and their catalytic properties toward the total oxidation of propane were examined.The activities of... A series of Co3O4-CeO2 binary oxides with various Co/(Ce+Co)molar ratios were synthesized using a citric acid method,and their catalytic properties toward the total oxidation of propane were examined.The activities of the catalysts decrease in the order CoCeOx-70>CoCeOx-90>Co3O4>CoCeOx-50>CoCeOx-20>CeO2.CoCeOx-70(Co/(Ce+Co)=70% molar ratio)exhibits the highest catalytic activity toward the total oxidation of propane,of which the T90 is 310℃(GHSV=120000 mL h^-1 g^-1],which is 25℃ lower than that of pure Co3 O4.The enhancement of the catalytic performance of CoCeOx-70 is attributed to the strong interaction between CeO2 and Co3O4,the improvement of the low-temperature reducibility,and the increase in the number of active oxygen species.In-situ DRIFTS and reaction kinetics measurement reveal that Ce addition does not change the reaction mechanism,but promotes the adsorption and activation of propane on the catalyst surface.The addition of water vapor and CO2 in reactant gas has a negative effect on the propane conversion,and the catalyst is more sensitive to water vapor than to CO2.In addition,CoCeOx-70 exhibits excellent stability and reusability in water vapor and CO2 atmosphere. 展开更多
关键词 PRoPANE Total oxidation co3o4-Ceo2 In-suit DRIFTS Volatile organic compounds
下载PDF
Investigation of CO and formaldehyde oxidation over mesoporous Ag/Co_3O_4 catalysts 被引量:3
4
作者 Fangli Yu Zhenping Qu +2 位作者 Xiaodong Zhang Qiang Fu Yi Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第6期845-852,共8页
CO and formaldehyde(HCHO)oxidation reactions were investigated over mesoporous Ag/Co3O4 catalysts prepared by one-pot(OP)and impregnation(IM)methods.It was found that the one-pot method was superior to the impregnatio... CO and formaldehyde(HCHO)oxidation reactions were investigated over mesoporous Ag/Co3O4 catalysts prepared by one-pot(OP)and impregnation(IM)methods.It was found that the one-pot method was superior to the impregnation method for synthesizing Ag/Co3O4 catalysts with high activity for both reactions.It was also found that the catalytic behavior of mesoporous Co3O4 and Ag/Co3O4 catalysts for the both reactions was different.And the addition of silver on mesoporous Co3O4 did not always enhance the catalytic activity of final catalyst for CO oxidation at room temperature(20 C),but could significantly improve the catalytic activity of final catalyst for HCHO oxidation at low temperature(90 C).The high surface area,uniform pore structure and the pretty good dispersion degree of the silver particle should be responsible for the excellent low-temperature CO oxidation activity.However,for HCHO oxidation,the addition of silver played an important role in the activity enhancement.And the silver particle size and the reducibility of Co3O4 should be indispensable for the high activity of HCHO oxidation at low temperature. 展开更多
关键词 mesoporous materials co3o4 AG Co oxidation HCHo oxidation
下载PDF
CeO_2-Co_3O_4 Catalysts for CO Oxidation 被引量:3
5
作者 许秀艳 李进军 郝郑平 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第2期172-176,共5页
CeO2-Co3O4 catalysts for low-temperature CO oxidation were prepared by a co-precipitation method. In combination with the characterization methods of N2 adsorption/desorption, XRD, temperature-programmed reduction (... CeO2-Co3O4 catalysts for low-temperature CO oxidation were prepared by a co-precipitation method. In combination with the characterization methods of N2 adsorption/desorption, XRD, temperature-programmed reduction (TPR), and FT-IR, the influence of the cerium content on the catalytic performance of CeO2-Co3O4 was investigated. The results indicate that the prepared CeO2-Co3O4 catalysts exhibit a better activity than that of pure CeO2 or pure Co3O4. The catalyst with the Ce/Co atomic ratio 1 : 16 exhibits the best activity, which converts 77% of CO at room temperature and completely oxidizes CO at 45 ℃. 展开更多
关键词 Co oxidation CEo2 co3o4 Ceo2-co3o4 catalyst rare earths
下载PDF
Growth of High Magnetic a-Fe2O3 and Fe3O4 Nanowires via an Oxide Assisted Vapor-Solid Process
6
作者 章明 许乃锋 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第1期109-114,I0004,共7页
We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid... We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid process. Experimental results also indicate that previous immersion of the substrates in a solution of oxalic acid causes the grown nanowires to convert gradually into magnetite (Fe3O4) nanowires. Additionally, the saturated state of Fe3O4 nanowires is achieved as the oxalic acid concentration reaches 0.75 mol/L. The average diameter and length of nanowires expands with an increasing operation temperature and the growth density of nanowires accumulates with an increasing gas flux in the vapor-solid process. The growth mechanism of a-Fe2O3 and Fe3O4 nanowires is also discussed. The results demonstrate that the entire synthesis of nanowires can be completed within 2 h. 展开更多
关键词 oxide assisted vapor-solid process Fe3o4 NWs a-Fe2o3 NWs oxalic acid Magnetic material
下载PDF
Polygonal mesopores microflower catalysts for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene to 2-nitro-4-methylsulfonylbenzoic acid in a continuous-flow microreactor
7
作者 Jianzhi Wang Xugen Li +6 位作者 Cheng Zhang Yuan Pu Jiawu Liu Jie Liu Yanping Liu Xiao Lin Faquan Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期212-221,共10页
The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium prese... The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium presents a significant challenge for the chemical industry.Here,we report the synthesis of FeOOH/Fe_(3)O_(4)/metal-organic framework(MOF)polygonal mesopores microflower templated from a MIL-88B(Fe)at room temperature,which exposes polygonal mesopores with atomistic edge steps and lattice defects.The obtained FeOOH/Fe_(3)O_(4)/MOF catalyst was adsorbed onto glass beads and then introduced into the microchannel reactor.In the alkaline environment,oxygen was used as oxidant to catalyze the oxidation of NMST to NMSBA,showing impressive performance.This sustainable system utilizes oxygen as a clean oxidant in an inexpensive and environmentally friendly NaOH/methanol mixture.The position and type of substituent critically affect the products.Additionally,this sustainable protocol enabled gram-scale preparation of carboxylic acid and benzyl alcohol derivatives with high chemoselectivities.Finally,the reactions can be conducted in a pressure reactor,which can conserve oxygen and prevent solvent loss.Moreover,compared with the traditional batch reactor,the self-built microchannel reactor can accelerate the reaction rate,shorten the reaction time,and enhance the selectivity of catalytic oxidation reactions.This approach contributes to environmental protection and holds potential for industrial applications. 展开更多
关键词 2-nitro-4-methylsulfonylbenzoic 2-nitro-4-methylsulfonyltoluene FeooH/Fe3o4/MoF Catalyst MICRoREACToR oxidation
下载PDF
Effect of Calcination Temperature on Surface Oxygen Vacancies and Catalytic Performance Towards CO Oxidation of Co3O4 Nanoparticles Supported on SiO2 被引量:1
8
作者 李金兵 姜志全 +1 位作者 王坤 黄伟新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第1期103-109,I0004,共8页
Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD),... Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD), laser Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR) and X-ray absorption fine structure (XAFS) spectroscopy. Both XRD and Raman spectroscopy only detect the existence of Co3O4 crystallites in all catalysts. However, XPS results indicate that excess Co2+ ions are present on the surface of Co3O4 in Co3O4(200)/Si02 as compared with bulk Co3O4. Meanwhile, TPR results suggest the presence of surface oxygen vacancies on Co3O4 in Co3O4(200)/SiO2, and XAFS results demonstrate that Co3O4 in Co3O4(200)/SIO2 contains excess Co2+. Increasing calcination temperature results in oxidation of excess Co2+ and the decrease of the concentration of surface oxygen vacancies, consequently the for- mation of stoichiometric Co3O4 on supported catalysts. Among all Co3O4/SiO2 catalysts, Co3O4(200)/SiO2 exhibits the best catalytic performance towards CO oxidation, demonstrating that excess Co2+ and surface oxygen vacancies can enhance the catalytic activity of Co3O4 towards CO oxidation. These results nicely demonstrate the effect of calcination temperature on the structure and catalytic performance towards CO oxidation of silicasupported Co3O4 catalysts and highlight the important role of surface oxygen vacancies on Co3O4. 展开更多
关键词 co3o4/8io2 catalyst Co oxidation Calcination temperature Surface oxygen vacancies
下载PDF
Oxidation of NO over cobalt oxide supported on mesoporous silica 被引量:5
9
作者 Yan Huang Dongmei Gao Zhiquan Tong Junfeng Zhang He Luo 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第4期421-428,共8页
Cobalt oxide catalysts supported on mesoporous silica (Co3O4/MPS) were prepared, characterized and applied for catalytic oxidation of NO. Effects of catalyst supports, calcination temperatures, H2O and SO2 on NO con... Cobalt oxide catalysts supported on mesoporous silica (Co3O4/MPS) were prepared, characterized and applied for catalytic oxidation of NO. Effects of catalyst supports, calcination temperatures, H2O and SO2 on NO conversion were investigated. The samples were also characterized by BET, XRD, FTIR and TG/DTG. The results suggested that Co3O4/MPS catalyst calcined at 573 K had the smallest crystal particles and the best surface dispersion. This catalyst had the highest activity and yielded 82% NO conversion at 573 K, at a space velocity of 12000 h^-1. Although the conversion of NO decreased with the introduction of H2O, it could be restored completely after removing residual H2O from Co3O4/MPS catalyst by heating at 573 K. In the presence of SO2, the oxidation activity decreased and COSO4 was detected on the catalyst. The NO conversion decreased to 30.2% in the presence of SO2 and H2O. It could not be restored completely after cutting off H2O and SO2. The deactivation of the catalyst in the presence of SO2 and H2O was attributed to the formation of cobalt sulfate species. 展开更多
关键词 catalytic oxidation No co3o4/mesoporous silica H2o So2
下载PDF
Enhanced Fenton,photo-Fenton and peroxidase-like activity and stability over Fe_3O_4/g-C_3N_4 nanocomposites 被引量:8
10
作者 Yanan Liu Anwu Xu 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第12期2110-2119,共10页
We prepared the Fe3O4/g‐C3N4nanoparticles(NPs)through a simple electrostatic self‐assembly method with a3:97weight ratio to investigate their Fenton,photo‐Fenton and oxidative functionalities besides photocatalytic... We prepared the Fe3O4/g‐C3N4nanoparticles(NPs)through a simple electrostatic self‐assembly method with a3:97weight ratio to investigate their Fenton,photo‐Fenton and oxidative functionalities besides photocatalytic functionality.We observed an improvement of the Fenton and photo‐Fenton activities of the Fe3O4/g‐C3N4nanocomposites.This improvement was attributed to efficient charge transfer between Fe3O4and g‐C3N4at the heterojunctions,inhibition of electron‐hole recombination,a high surface area,and stabilization of Fe3O4against leaching by the hydrophobic g‐C3N4.The obtained NPs showed a higher degradation potential for rhodamine B(RhB)dye than those of Fe3O4and g‐C3N4.As compared to photocatalysis,the efficiency of RhB degradation in the Fenton and photo‐Fenton reactions was increased by20%and90%,respectively.Additionally,the horseradish peroxidase(HRP)activity of the prepared nanomaterials was studied with3,3,5,5‐tetramethylbenzidinedihydrochloride(TMB)as a substrate.Dopamine oxidation was also examined.Results indicate that Fe3O4/g‐C3N4nanocomposites offers more efficient degradation of RhB dye in a photo‐Fenton system compared with regular photocatalytic degradation,which requires a long time.Our study also confirmed that Fe3O4/g‐C3N4nanocomposites can be used as a potential material for mimicking HRP owing to its high affinity for TMB.These findings suggest good potential for applications in biosensing and as a catalyst in oxidation reactions. 展开更多
关键词 Fe3o4/g‐C3N4 nanocomposites Fenton reaction Dye degradation Peroxidase activity Horseradish peroxidase mimicking Dopamine oxidation
下载PDF
Enhancing catalytic toluene oxidation over MnO2@Co3O4 by constructing a coupled interface 被引量:3
11
作者 Quanming Ren Shengpeng Mo +8 位作者 Jie Fan Zhentao Feng Mingyuan Zhang Peirong Chen Jiajian Gao Mingli Fu Limin Chen Junliang Wu Daiqi Ye 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第12期1873-1883,共11页
Herein,a bottom-down design is presented to successfully fabricate ZIF-derived Co3O4,grown in situ on a one-dimensional(1D)α-MnO2 material,denoted as α-MnO2@Co3O4.The synergistic effect derived from the coupled inte... Herein,a bottom-down design is presented to successfully fabricate ZIF-derived Co3O4,grown in situ on a one-dimensional(1D)α-MnO2 material,denoted as α-MnO2@Co3O4.The synergistic effect derived from the coupled interface constructed betweenα-MnO2 and Co3O4 is responsible for the enhanced catalytic activity.The resultantα-MnO2@Co3O4 catalyst exhibits excellent catalytic activity at a T90%(temperature required to achieve a toluene conversion of 90%)of approximately 229℃,which is 47 and 28℃ lower than those of the pureα-MnO2 nanowire and Co3O4-b obtained via pyrolysis of ZIF-67,respectively.This activity is attributed to the increase in the number of surface-adsorbed oxygen species,which accelerate the oxygen mobility and enhance the redox pairs of Mn^4+/Mn^3+ and Co^2+/Co^3+.Moreover,the result of in situ diffuse reflectance infrared Fourier transform spectroscopy suggests that the gaseous oxygen could be more easily activated to adsorbed oxygen species on the surface of α-MnO2@Co3O4 than on that of α-MnO2.The catalytic reaction route of toluene oxidation over theα-MnO2@Co3O4 catalyst is as follows:toluene→benzoate species→alkanes containing oxygen functional group→CO2 and H2O.In addition,the α-MnO2@Co3O4 catalyst shows excellent stability and good water resistance for toluene oxidation.Furthermore,the preparation method can be extended to other 1D MnO2 materials.A new strategy for the development of high-performance catalysts of practical significance is provided. 展开更多
关键词 Mno2@co3o4 Toluene oxidation Synergistic effect Coupled interface In situ DRIFTS
下载PDF
Effect of erbium substitution on thermoelectric properties of complex oxide Ca_3Co_2O_6 at high temperatures 被引量:2
12
作者 陆冬青 陈刚 +2 位作者 裴健 杨曦 线恒泽 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第2期168-172,共5页
Polycrystalline particles of Ca3-xErxCo2O6 (x=0.0, 0.15, 0.3, 0.45 and 0.6) were synthesized using sol-gel method combined with Low Temperature Sintering procedure (LTS) to evaluate the effect of Er substitution o... Polycrystalline particles of Ca3-xErxCo2O6 (x=0.0, 0.15, 0.3, 0.45 and 0.6) were synthesized using sol-gel method combined with Low Temperature Sintering procedure (LTS) to evaluate the effect of Er substitution on the thermoelectric properties of Ca3Co2O6. The crystal structure and microstructure were investigated using X-ray diffraction, infrared spectroscopy and scanning electron microscope. The electrical conductivity and Seebeck coefficient of the complex oxides were measured from 300 to 1073 K. The results showed that all the sampies were p-type semiconductors. The electrical conductivity increased with the increase in temperature. Er substitutions at Ca site affected carrier concentrations and carder mobility, resulting an increase in Seebeck coefficient and decrease in electrical conductivity. The power factor of Ca2.85Er0.15Co2O6 reached 10.66 μw/mK^2 at 1073 K. 展开更多
关键词 Ca3Co2o6 thermoelectric properties rare earth substitution cobalt oxide rare earths
下载PDF
In situ studies on ceria promoted cobalt oxide for CO oxidation 被引量:3
13
作者 Weiwei Huan Jie Li +1 位作者 Jiahui Ji Mingyang Xing 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第5期656-663,共8页
In situ studies of catalysts play valuable roles in observing phase transformation, understanding the corresponding surface chemistry and the mechanism of the reaction. In this paper, ceria promoted cobalt oxide was p... In situ studies of catalysts play valuable roles in observing phase transformation, understanding the corresponding surface chemistry and the mechanism of the reaction. In this paper, ceria promoted cobalt oxide was prepared by the calcination method and investigated for the CO oxidation. The microstructure and morphology of CeO2-Co3O4 were investigated by the Scanning Electron Microscope, High-resolution transmission electron microscopy, Raman and X-ray photoelectron spectroscopy characterization. The effect of CeO2 doping on Co3O4 for CO oxidation was characterized by in situ X-ray Diffraction (in situ XRD) and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS). In situ XRD was carried out under H2 atmosphere to evaluate the redox property of catalysts. The results indicated that the ceria doping can enhance the reducibility of Co2+ and promote the Co3+-Co2+-Co3+ cycle, owing to the oxygen replenish property of CeO2. Furthermore, adsorbed carbonate species on the surface of CeO2-Co3O4 were investigated by in situ-DRIFTS experiment. It was turned out that carbonate species on ceria promoted cobalt oxide catalysts showed different IR peaks compared with pure cobalt oxide. The carbonate species on ceria promoted catalyst are more active, and similar to free state carbonate species with weak bonding to catalyst surface, which can effectively inhibit catalyst inactivation. This study revealed the mechanism of ceria promoting CO oxidation over cobalt oxide, which will provide theoretical support for the design of efficient CO oxidation catalysts. 展开更多
关键词 Ceo2-co3o4 Co oxidation In situ X-ray diffraction In situ diffuse reflectance infrared Fourier transform spectroscopy Carbonate species
下载PDF
Utilization of the superior properties of highly mesoporous PVP modified NiCo_2O_4 with accessible 3D nanostructure and flower-like morphology towards electrochemical methanol oxidation reaction 被引量:1
14
作者 Gracita M.Tomboc Medhen W.Abebe +1 位作者 Anteneh F.Baye Hern Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第2期136-146,共11页
Up to this date,researchers are still facing difficulties to expand the technology of direct methanol fuel cells(DMFCs) because of the high overpotential required to oxidize the methanol and its relatively poor perfor... Up to this date,researchers are still facing difficulties to expand the technology of direct methanol fuel cells(DMFCs) because of the high overpotential required to oxidize the methanol and its relatively poor performance due to CO poisoning of the leading-high cost anode catalyst.In line with this,we have successfully modified the morphological structure and composition of low cost cobalt based-metal oxides,MCo_2O_4(M = Zn and Ni),with the simple and noble use of polyvinyl pyrrolidone(PVP) as growth modifier and surface stabilizer during the synthesis of nanoparticles in our previous reports,which shown high electrocatalytic activity and strong stability.Due to the good performance of our PVP modified MCo_2O_4 towards pseudocapacitor and oxygen evolution reaction applications,we decided to extend our research study to methanol oxidation reaction.Remarkably,PVP modified Ni Co_2O_4 electrode directly grown on nickel foam substrate via a simple hydrothermal process exhibited better performance compared with PVP modified ZnCo_2O_4 and NiCo_2O_4 without PVP.It had obtained a remarkably low onset potential of 0.285 V and high current density of 280 m A cm^(-2),and shown great stability and high poison tolerance during a continuous CV cycling and Chronoamperometry test,which attained high efficiency of 86.86%and 98.52%,respectively.These positive results of PVP modified Ni Co_2O_4 electrode towards MOR might be attributed to its hierarchical 3 D nanostructures with highly mesoporous surface and large surface area which may have provided numerous electroactive sites,and the exceptional corrosion stability of Ni Co_2O_4 electrode in alkaline solution. 展开更多
关键词 NiCo2o4 3D NANoSTRUCTURE ELECTRoCHEMICAL METHANoL oxidation Current density
下载PDF
Photosynthetic Toxicity and Oxidative Damage Induced by nano-Fe3O4 on <i>Chlorella vulgaris</i>in Aquatic Environment 被引量:1
15
作者 Xiaoxiao Chen Xing Zhu +3 位作者 Rui Li Hanchao Yao Zhisong Lu Xu Yang 《Open Journal of Ecology》 2012年第1期21-28,共8页
With the rapid development of nanotechnology and widespread use of nanoproducts, concerns have arisen regarding the ecotoxicity of these materials. In this paper, the photosynthetic toxicity and oxidative damage induc... With the rapid development of nanotechnology and widespread use of nanoproducts, concerns have arisen regarding the ecotoxicity of these materials. In this paper, the photosynthetic toxicity and oxidative damage induced by nano Fe3O4 on a model organism, Chlorella vulgaris (C. vulgaris) in aquatic environment, were studied. The results showed that Nano-Fe3O4 was toxic to C. vulgaris and affected its content of chlorophyll a, malonaldehyde and glutathione, CO2 absorption, net photosynthetic rate, superoxide dismutase activity and inhibition of hydroxyl radical generation. At higher concentrations, compared with the control group, the toxicity of nano-Fe3O4 was significantly different. It suggested that nano-Fe3O4 is ecotoxic to C. vulgaris in aquatic environment. 展开更多
关键词 NANo-FE3o4 Chlorella vulgaris PHoToSYNTHETIC ToXICITY oxidative Damage ECoToXICITY
下载PDF
Effect of Cu Loading to Catalytic Selective CO Oxidation of CuO/CeO<sub>2</sub>–Co<sub>3</sub>O<sub>4</sub> 被引量:3
16
作者 P. Aunbamrung A. Wongkaew 《Advances in Chemical Engineering and Science》 2013年第4期15-19,共5页
This work studied CuO/CeO2-Co3O4 with wt% Ce:Co ratio 95:5 for selective CO oxidation with effect of? wt% Cu loading. The catalysts were prepared by co-precipitation. Characterizations of catalysts were carried out by... This work studied CuO/CeO2-Co3O4 with wt% Ce:Co ratio 95:5 for selective CO oxidation with effect of? wt% Cu loading. The catalysts were prepared by co-precipitation. Characterizations of catalysts were carried out by XRD and BET techniques. The results showed a good dispersion of CuO for 5 wt% Cu loading catalysts and showed high specific surface area of catalyst. For selective CO oxidation, both 5CuO and 30CuO catalysts could remove completely CO in the presence of excess hydrogen at 423 K and 20CuO could eliminate CO completely at 443 K. Moreover, considering the selectivity to CO oxidation, the 5CuO catalyst has shown the highest selectivity of 85% while the 30CuO catalyst obtains the selectivity of 65% at the reaction temperature of 423 K. 展开更多
关键词 Selective Co oxidation Cuo/Ceo2 co3o4 CU LoADING Ce:Co Ratio Co-PRECIPITATIoN
下载PDF
Preparation of Fe_(3)O_(4) Film by in-situ Oxidative Hydrolysis on Chitosan
17
作者 Suwei YAO Zhaohui ZHAO Weiguo ZHANG Hongzhi WANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第3期329-332,共4页
The Fe3O4 films were prepared by in-situ oxidative hydrolysis on chitosan. The structures and characteristics of the prepared Fe3O4 films were investigated by X-ray diffractometry (XRD), scanning electron microscopy... The Fe3O4 films were prepared by in-situ oxidative hydrolysis on chitosan. The structures and characteristics of the prepared Fe3O4 films were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), atom force microscopy (AFM), vibrating sample magnetometry (VSM) and thermogravimetric-differentia thermal analysis (TG-DTA). The results show that, (1) the as-synthesized Fe3O4 films are pure Fe3O4 with cubic inverse spinel structure; (2) the network structured film can be obtained at lower temperature, and the compact particle film at higher temperature; (3) the prepared Fe3O4 films are super-paramagnetic, and the saturation magnetization is improved with increasing the reaction temperature, which is 49.03 emu/g at 80℃; (4) the temperature of phase transformation from Fe3O4 to a-Fe2O3 is about 495℃. Besides, the formation mechanism of Fe3O4 film was also proposed. 展开更多
关键词 Fe3o4 film IN-SITU oxidative hydrolysis CHIToSAN
下载PDF
Kinetics and Mechanism of Oxidation Induced Contraction of MgAl2O4 Spinel Carbon Composites Reinforced by Al4C3 in situ Reaction
18
作者 YANG Mengyao XIAO Guoqing +4 位作者 YANG Ding'ao YUAN Shouqian ZAO Jizeng ZHAO Wei GAO Song 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第4期778-785,共8页
Kinetics and mechanism of oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction were researched in air using vertical high temperature thermal dilatometer from 25℃to 1... Kinetics and mechanism of oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction were researched in air using vertical high temperature thermal dilatometer from 25℃to 1400℃.It is shown that oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced Al4C3 in situ reaction is the common logarithm of oxidation time t and the oxygen partial pressure P inside MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction in air at 1400℃is as follows:P=F(-2.75×10^-4A+2.13×10^-3)lnt.The nonsteady diffusion kinetic equation of O2 at 1400℃inside the composites is as follows:J=De lnt.Acceleration of the total diffusional?flux of oxygen inside the composites at 1400℃is in inverse proportion to the oxidation time.The nonsteady state effective diffusion coefficient De of O2(g)inside the composites decreases in direct proportional to the increase of the amount of metallic aluminium.The method of preventing the oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction is to increase the amount of Al.The slag erosion index of MgO-Al2O3 spinel carbon composite reinforced by Al4C3 in situ reaction is 0.47 times that of MgO-CaO brick used in the lining above slag line area of a VOD stainless steel-making vessel.HMOR of MgO-Al2O3 spinel carbon composite reinforced by Al4C3 in situ reaction is 26.7 MPa,HMOR of the composite is 3.6 times the same as that of MgO-CaO brick used in the lining above slag line area of a VOD vessel.Its service life is two times as many as that of MgO-CaO brick. 展开更多
关键词 KINETICS mechanism oxidATIoN CoNTRACTIoN MgAl2o4 spinel carbon Al4C3 in situ reaction
下载PDF
Rh_2O_3/monoclinic CePO_4 composite catalysts for N_2O decomposition and CO oxidation
19
作者 Huan Liu Zhen Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第1期109-115,共7页
CePO4 (in particular, monoclinic CePO4) has been rarely used to make supported catalysts. Herein, monoclinic CeP04 nanoparticles were prepared by calcining hexagonal CePO4 nanomds (prepared by precipitation) in ai... CePO4 (in particular, monoclinic CePO4) has been rarely used to make supported catalysts. Herein, monoclinic CeP04 nanoparticles were prepared by calcining hexagonal CePO4 nanomds (prepared by precipitation) in air at 900 ℃. Monoclinic CePO4 nanowires were prepared by calcining hexagonal CePO4 nanowires (prepared by hydrothermal synthesis at 150 ℃) in air at 900 ℃. Both monoclinic CePO4 materials were used to support Rh2O3 by impregnation using Rh(NO3)3 as a precursor (followed by calcination). The catalytic performance of Rh2O3/monoclinic CePO4 composite materials in N2O decomposition and CO oxidation was investigated. It was found that Rh2O3 supported on monoclinic CePO4 nanowims was much more active than Rh2O3 supported on monoclinic CePO4 nanoparticles. The stability of catalysts as a function of reaction time on stream was studied in both reactions. The influence of co-fed CO2, O2, and H2O on the catalytic activity in N20 decomposition was also studied. These catalysts were characterized by employing N2 adsorption-desorption, ICP-OES, XRD, TEM, XPS, H2-TPR, O2-TPD, and CO2-TPD. The correlation between physicochemical properties and catalytic properties was discussed. 展开更多
关键词 Rh2o3 CePo4 N2o decomposition Co oxidation Catalyst
下载PDF
Heterogeneous catalytic activation of peroxymonosulfate for efficient degradation of organic pollutants by magnetic Cu^0/Fe_3O_4 submicron composites 被引量:10
20
作者 聂刚 黄佳 +3 位作者 胡冶州 丁耀彬 韩小彦 唐和清 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期227-239,共13页
Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-pr... Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-prepared magnetic Cu^0/Fe3O4 submicron composites were composed of Cu^0 and Fe3O4 crystals and had an average size of approximately 220 nm.The Cu^0/Fe3O4 composites could efficiently catalyze the activation of PMS to generate singlet oxygen,and thus induced the rapid degradation of rhodamine B,methylene blue,orange Ⅱ,phenol and 4-chlorophenol.The use of0.1 g/L of the Cu^0/Fe3O4 composites induced the complete removal of rhodamine B(20 μmol/L) in15 min,methylene blue(20 μmol/L) in 5 min,orange Ⅱ(20 μmol/L) in 10 min,phenol(0.1mmol/L) in 30 min and 4-chlorophenol(0.1 mmol/L) in 15 min with an initial pH value of 7.0 and a PMS concentration of 0.5 mmol/L.The total organic carbon(TOC) removal higher than 85%for all of these five pollutants was obtained in 30 min when the PMS concentration was 2.5 mmol/L.The rate of degradation was considerably higher than that obtained with Cu^0 or Fe3O4 particles alone.The enhanced catalytic activity of the Cu^0/Fe3O4 composites in the activation of PMS was attributed to the synergistic effect of the Cu^0 and Fe3O4 crystals in the composites.Singlet oxygen was identified as the primary reactive oxygen species responsible for pollutant degradation by electron spin resonance and radical quenching experiments.A possible mechanism for the activation of PMS by Cu^0/Fe3O4 composites is proposed as electron transfer from the organic pollutants to PMS induces the activation of PMS to generate ^1O2,which induces the degradation of the organic pollutants.As a magnetic catalyst,the Cu^0/Fe3O4 composites were easily recovered by magnetic separation,and exhibited excellent stability over five successive degradation cycles.The present study provides a facile and green heterogeneous catalysis method for the oxidative removal of organic pollutants. 展开更多
关键词 Heterogeneous catalysis Magnetic Cu^0/Fe3o4 composite PERoXYMoNoSULFATE Singlet oxygen oxidative degradation
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部