Background:Cochlear hair cell injury is a common pathological feature of hearing loss.The basic helix-loop-helix family,member e40(Bhlhe40),a gene belonging to the basic helix-loop-helix(bHLH)family,exhibits strong tr...Background:Cochlear hair cell injury is a common pathological feature of hearing loss.The basic helix-loop-helix family,member e40(Bhlhe40),a gene belonging to the basic helix-loop-helix(bHLH)family,exhibits strong transcriptional repression activity.Methods:Oxidative damage,in House Ear Institute-Organ of Corti 1(HEI-OC1)cells,was caused using hydrogen peroxide(H2O2).The Ad-Bhlhe40 particles were constructed to overexpress Bhlhe40 in HEI-OC1 cells.Various assays including cell counting kit-8(CCK-8),terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay(TUNEL),flow cytometry,immunofluorescence,and corresponding commercial kits were employed to investigate the impacts of Bhlhe40 on cell viability,apoptosis,oxidative stress levels,mitochondrial membrane potential and cellular senescence.Additionally,a dual-luciferase reporter assay was performed to confirm the targeting of the histone deacetylases 2(Hdac2)by Bhlhe40.Results:The results revealed that Bhlhe40 was downregulated in H_(2)O_(2)-treated HEI-OC1 cells,but its overexpression improved cell viability and mitigated H_(2)O_(2)-induced oxidative injury in HEI-OC1 cells with increase of superoxide dismutase(SOD),catalase(CAT)and glutathione peroxidase(GPx)activities and decrease of reactive oxygen species(ROS)levels.Besides,overexpression of Bhlhe40 suppressed H_(2)O_(2)-triggered cell senescence,as evidenced by the fact that the upregulation of P53,P21,and P16 in HEI-OC1 cells treated with H2O2 were all alleviated by Bhlhe40 overexpression.And we further verified that overexpression of Bhlhe40 could inhibit the expression of Hdac2,which may be related to the repression of Hdac2 transcription.Conclusion:This study suggests that Bhlhe40 plays a protective role against senescence and oxidative damage in cochlear hair cells exposed to H2O2.展开更多
Cisplatin belongs to platinum-based drugs and is widely used in cancer chemotherapy.Ototoxicity is one of the major dose limiting side-effects of cisplatin.For toxicity to occur cisplatin must first be transported fro...Cisplatin belongs to platinum-based drugs and is widely used in cancer chemotherapy.Ototoxicity is one of the major dose limiting side-effects of cisplatin.For toxicity to occur cisplatin must first be transported from the bloodstream into cochlear cells.Three copper transporters are considered pathways for regulating the uptake and translocation of cisplatin into cells:Ctr1,ATP7A and ATP7B.Our recent study with cochlear organotypic cultures shows that cochlear hair cells can be destroyed by cisplatin at low concentrations from 10μm to 100μn.However,high doses of cisplatin cannot damage hair cells,maybe due to intrinsic feedback reactions that increase export of platinum by ATP7B when the platinum concentration is high in extracellular space.Cimitidine is a specific copper transporter inhibitor that can block the entrance of copper and platinum,and may prevent cisplatin-induced cochlear hair cell injury.To evaluate this hypothesis,we treated cochlear organotypic cultures with cisplatin (10 μm or 50 μm) alone,or cisplatin combined with cimitidine at concentrations ranging from 10-2000 μm for 48 hours.cisplatin at 10 μm damaged about 20% hair cells.In contrast,when cimitidine (10 μm,100 μm and 2000 μm) was added to the culture,near 100% cochlear hair cell survived.At higher concentration (50 μm),cisplatin destroyed about 80% of cochlear hair cells.However,100 μmcimitidine rescued about 50% hair cells from cisplatin damage,and 2000μm cimitidine protected about 80% hair cells.The data of western blot showed that CTR1 and ATP7B expressions were increased in cisplatin treated cochlear tissue,but cimitidine significantly reduced CTR1 and ATP7B.In addition,ATP7A expression was depressed a little after cisplatin treatment.Considering that Ctr1 is involved in copper and platinum influx,but the ATP7A and ATP7B are copper export transporters,the results suggest that cimitidine can effectively block the entrance by copper transporters and stop the influx of cisplatin.展开更多
The results from this study showed that the thresholds of brainstem auditory-evoked potentials peak following 10 successive days of intramuscular injection of Roman chickens with kanamycin, starting 3 days after birth...The results from this study showed that the thresholds of brainstem auditory-evoked potentials peak following 10 successive days of intramuscular injection of Roman chickens with kanamycin, starting 3 days after birth. Fluorescence immunohistochemistry analysis revealed few ganglion cells positively labeled for Ephrin A2 in the cochlea of experimental chickens from 2 days before until 7 days after the last kanamycin injection. The number of Ephrin A2-positive ganglion cell bodies was increased at 15 days after the last injection and was similar to that in normal chickens at 30 days following the cessation of kanamycin treatment. These experimental findings indicate that Ephrin A2 protein expression in the acoustic ganglia is synchronized with the connection damage and regeneration of cochlear hair cells after kanamycin exposure. Ephrin A2 may play an important role in the regeneration and plasticity of cochlear hair cells in the chick cochlea following kanamycin ototoxicity.展开更多
Voltage-gated sodium channels(VGSCs)are transiently expressed in cochlear hair cells before hearing onset and play an indispensable role in shaping spontaneous activity.In this study,we showed that Na^+currents shaped...Voltage-gated sodium channels(VGSCs)are transiently expressed in cochlear hair cells before hearing onset and play an indispensable role in shaping spontaneous activity.In this study,we showed that Na^+currents shaped the spontaneous action potentials in developing mouse inner hair cells(IHCs)by decreasing the time required for the membrane potential to reach the action-potential threshold.In immature IHCs,we identified 9 known VGSC subtypes(Navl.la-l.9ot),among which Navl.7a was the most highly expressed subtype and the main contributor to Na+currents in developing hair cells.Electrophysiological recordings of two cochlea-specific Navi.7 variants(CbmNavl.7a and CbmNavl.7b)revealed a novel loss-of-function mutation(C934R)at the extracellular linker between segments 5 and 6 of domain II.In addition,post-transcriptional modification events,such as alternative splicing and RNA editing,amended the gating properties and kinetic features of CbmNavl.7a(C934).These results provide molecular and functional characteristics of VGSCs in mammalian IHCs and their contributions to spontaneous physiological activity during cochlear maturation.展开更多
Diabetes mellitus (DM) is a chronic systemic disease characterized by hyperglycemia, with various patho-genic mechanisms. From absolute or relative insulin deficiency, patients with DM often demonstrate vari-ous level...Diabetes mellitus (DM) is a chronic systemic disease characterized by hyperglycemia, with various patho-genic mechanisms. From absolute or relative insulin deficiency, patients with DM often demonstrate vari-ous levels of metabolic disorders. Major clinical manifestations of DM include metabolic disorders, vascu-lar lesions, circulatory disturbances and neurologic complications. Along with advances in DM research, re-ports of DM related tinnitus and hearing impairment have increased continuously. Research on DM related auditory system dysfunction has focused on cochlear microcirculation, cellular homeostasis, genetics and ag-ing. Cochlear microcirculation plays an important role in cochlear physiology and its disorders are associat-ed with many inner ear diseases. Ischemia and subsequent reperfusion seen in cochlear microcirculation dis-orders are important factors in hearing damage. Understanding cochlear microcirculation and structural as well as functional changes in DM patients with hearing loss and their causal factors will help reveal patho-genic mechanisms in diabetic hearing loss and provide new ideas in developing interventions and preventing damages caused by diabetes.展开更多
Disabling hearing loss is the most common sensorineural disability worldwide.It affects around 466 million people and its incidence is expected to rise to around 900 million people by 2050,according to World Health Or...Disabling hearing loss is the most common sensorineural disability worldwide.It affects around 466 million people and its incidence is expected to rise to around 900 million people by 2050,according to World Health Organization estimates.Most cases of hearing impairment are due to the degeneration of hair cells(HCs)in the cochlea,mechano-receptors that transduce incoming sound information into electrical signals that are sent to the brain.Damage to these cells is mainly caused by exposure to aminoglycoside antibiotics and to some anti-cancer drugs such as cisplatin,loud sounds,age,infections and genetic mutations.Hearing deficits may also result from damage to the spiral ganglion neurons that innervate cochlear HCs.Differently from what is observed in avian and nonmammalian species,there is no regeneration of missing sensory cell types in the adult mammalian cochlea,what makes hearing loss an irreversible process.This review summarizes the research that has been conducted with the aim of developing cell-based strategies that lead to sensory cell replacement in the adult cochlea and,ultimately,to hearing restoration.Two main lines of research are discussed,one directed toward the transplantation of exogenous replacement cells into the damaged tissue,and another that aims at reactivating the regenerative potential of putative progenitor cells in the adult inner ear.Results from some of the studies that have been conducted are presented and the advantages and drawbacks of the various approaches discussed.展开更多
Studies have shown that phosphatase and tensin homolog deleted on chromosome ten(PTEN)participates in the regulation of cochlear hair cell survival.Bisperoxovanadium protects against neurodegeneration by inhibiting PT...Studies have shown that phosphatase and tensin homolog deleted on chromosome ten(PTEN)participates in the regulation of cochlear hair cell survival.Bisperoxovanadium protects against neurodegeneration by inhibiting PTEN expression.However,whether bisperoxovanadium can protect against noise-induced hearing loss and the underlying mechanism remains unclear.In this study,we established a mouse model of noise-induced hearing loss by exposure to 105 dB sound for 2 hours.We found that PTEN expression was increased in the organ of Corti,including outer hair cells,inner hair cells,and lateral wall tissues.Intraperitoneal administration of bisperoxovanadium decreased the auditory threshold and the loss of cochlear hair cells and inner hair cell ribbons.In addition,noise exposure decreased p-PI3K and p-Akt levels.Bisperoxovanadium preconditioning or PTEN knockdown upregulated the activity of PI3K-Akt.Bisperoxovanadium also prevented H_(2)O_(2)-induced hair cell death by reducing mitochondrial reactive oxygen species generation in cochlear explants.These findings suggest that bisperoxovanadium reduces noise-induced hearing injury and reduces cochlear hair cell loss.展开更多
The etiology of sudden deafness or idiopathic sudden sensorineural hearing loss(ISSHL) remains unclear. Over the past 15 years, we have investigated the mechanisms of ischemic-induced hearing loss using a gerbil model...The etiology of sudden deafness or idiopathic sudden sensorineural hearing loss(ISSHL) remains unclear. Over the past 15 years, we have investigated the mechanisms of ischemic-induced hearing loss using a gerbil model of transient cochlear ischemia. In the gerbil, cochlear ischemia can be induced by occluding the bilateral vertebral arteries simultaneously at the neck, because the posterior communicating arteries of the Circle of Willis close spontaneously around 1 mo after birth. When 15 min ischemia was loaded on this animal, permanent hearing loss of about 25 d B and the death of hair cells, especially inner hair cells were induced. These pathological changes were mainly due to lack of an energy source, glutamate excitotoxicity, and the production of free radicals, especially superoxide and nitrous oxide species. Ischemic damage could be prevented by various procedures, such as cooling the cochlea, intratympanic administration of insulin-like growth factor 1 or AM-111(an anti-apoptotic agent), and systemic administration of prednisolone(steroid), edarabone(free radical scavenger), ginsenoside Rb1(Kanpo), hematopoietic stem cells, glia-cell derived neurotrophic factor, and liposome-encapsulated hemoglobin(artificial red blood cells). We also found that the cochlea was protected by the ischemic tolerance, indi-cating that minor cochlear ischemia alleviates or prevents inner ear damage in subsequent severe cochlear ischemia. As ISSHL usually occurs suddenly, with no preceding sign or symptom, we suggest that most ISSHL cases are caused by circulatory disturbance, probably at the stria vascularis.展开更多
Background:Studies on animals have demonstrated that maternal iron deficiency anaemia(IDA)could result in decreased cochlear sensory hair cells and reduced amplitudes of distortion-product otoacoustic emissions(DPOAEs...Background:Studies on animals have demonstrated that maternal iron deficiency anaemia(IDA)could result in decreased cochlear sensory hair cells and reduced amplitudes of distortion-product otoacoustic emissions(DPOAEs)of young guinea pigs.Thus,it is essential to study the functioning of cochlear hair cells using DPOAEs in human newborn babies with maternal IDA.The current study explores maternal IDA’s effect on DPOAEs in newborn babies.Method:A total of 110 newborn babies with gestational age≥34 weeks were considered and a‘betweensubjects’design was used.The participants were divided into 3 groups-“Normal”(61 babies without maternal IDA),“Mild”(28 babies with mild maternal IDA)and“Moderate”(21 babies with moderate maternal IDA).The cord blood was collected and the DPOAEs were recorded for each baby for a range of frequencies(1 k 8 kHz)and a range of intensities(7040 dB SPL in 10 dB steps).Results:The analysis of both DP-gram and DP input-output(I/O)function showed that there was no significant difference(p>0.05)across the normal,mild,and moderate groups in the overall presence of DPOAEs as well as the amplitude across frequencies or intensities(7040 dB SPL).Also,the overall correlation of RBC indices with DPOAE amplitude across frequencies as well as the slope of the I/O function showed no relationship.Conclusion:The current study concludes that there is no effect of late-term maternal IDA on the DPOAEs of newborn babies.展开更多
It has been revealed in recent years that contralateral acoustic stimulation can affect cochlear active mechanisms through activating medial olivocochlear system (MOC) of the cochlear efferent nerve fibers. The MOC is...It has been revealed in recent years that contralateral acoustic stimulation can affect cochlear active mechanisms through activating medial olivocochlear system (MOC) of the cochlear efferent nerve fibers. The MOC is therefore postulated to exert protective effects on outer hair cells (OHCs) under intense sound condition. In this study the effects of 4 kHz intense tone exposure on distortion product otoacoustic emissions (DPOAEs) in guinea pigs with and without contralateral white noise stimulation were observed so that to investigate the protective effects of MOC on OHCs. The results showed that DPOAEs obviously deceased after the intense tone exposure in all animals, while both the amplitude reduction and the affected frequency range of DPOAEs were smaller in animals with simultaneously delivered contralateral white noise during the tone exposure than that in animals without colltralateral acoustic stimulation. The above results may suggest some protective nature of the contralateral sound stimulating effects which might be mediated through the activity of MOC. These perhaps can serve as the evidence that the protective mechanism against intense sound operates in the outer hair cells which are strongly innervated by MOC展开更多
基金This research was supported by the Special Fund for Economic and Technological Development of Longgang District,Shenzhen(LGKCYLWS2021000030).
文摘Background:Cochlear hair cell injury is a common pathological feature of hearing loss.The basic helix-loop-helix family,member e40(Bhlhe40),a gene belonging to the basic helix-loop-helix(bHLH)family,exhibits strong transcriptional repression activity.Methods:Oxidative damage,in House Ear Institute-Organ of Corti 1(HEI-OC1)cells,was caused using hydrogen peroxide(H2O2).The Ad-Bhlhe40 particles were constructed to overexpress Bhlhe40 in HEI-OC1 cells.Various assays including cell counting kit-8(CCK-8),terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay(TUNEL),flow cytometry,immunofluorescence,and corresponding commercial kits were employed to investigate the impacts of Bhlhe40 on cell viability,apoptosis,oxidative stress levels,mitochondrial membrane potential and cellular senescence.Additionally,a dual-luciferase reporter assay was performed to confirm the targeting of the histone deacetylases 2(Hdac2)by Bhlhe40.Results:The results revealed that Bhlhe40 was downregulated in H_(2)O_(2)-treated HEI-OC1 cells,but its overexpression improved cell viability and mitigated H_(2)O_(2)-induced oxidative injury in HEI-OC1 cells with increase of superoxide dismutase(SOD),catalase(CAT)and glutathione peroxidase(GPx)activities and decrease of reactive oxygen species(ROS)levels.Besides,overexpression of Bhlhe40 suppressed H_(2)O_(2)-triggered cell senescence,as evidenced by the fact that the upregulation of P53,P21,and P16 in HEI-OC1 cells treated with H2O2 were all alleviated by Bhlhe40 overexpression.And we further verified that overexpression of Bhlhe40 could inhibit the expression of Hdac2,which may be related to the repression of Hdac2 transcription.Conclusion:This study suggests that Bhlhe40 plays a protective role against senescence and oxidative damage in cochlear hair cells exposed to H2O2.
文摘Cisplatin belongs to platinum-based drugs and is widely used in cancer chemotherapy.Ototoxicity is one of the major dose limiting side-effects of cisplatin.For toxicity to occur cisplatin must first be transported from the bloodstream into cochlear cells.Three copper transporters are considered pathways for regulating the uptake and translocation of cisplatin into cells:Ctr1,ATP7A and ATP7B.Our recent study with cochlear organotypic cultures shows that cochlear hair cells can be destroyed by cisplatin at low concentrations from 10μm to 100μn.However,high doses of cisplatin cannot damage hair cells,maybe due to intrinsic feedback reactions that increase export of platinum by ATP7B when the platinum concentration is high in extracellular space.Cimitidine is a specific copper transporter inhibitor that can block the entrance of copper and platinum,and may prevent cisplatin-induced cochlear hair cell injury.To evaluate this hypothesis,we treated cochlear organotypic cultures with cisplatin (10 μm or 50 μm) alone,or cisplatin combined with cimitidine at concentrations ranging from 10-2000 μm for 48 hours.cisplatin at 10 μm damaged about 20% hair cells.In contrast,when cimitidine (10 μm,100 μm and 2000 μm) was added to the culture,near 100% cochlear hair cell survived.At higher concentration (50 μm),cisplatin destroyed about 80% of cochlear hair cells.However,100 μmcimitidine rescued about 50% hair cells from cisplatin damage,and 2000μm cimitidine protected about 80% hair cells.The data of western blot showed that CTR1 and ATP7B expressions were increased in cisplatin treated cochlear tissue,but cimitidine significantly reduced CTR1 and ATP7B.In addition,ATP7A expression was depressed a little after cisplatin treatment.Considering that Ctr1 is involved in copper and platinum influx,but the ATP7A and ATP7B are copper export transporters,the results suggest that cimitidine can effectively block the entrance by copper transporters and stop the influx of cisplatin.
基金supported by the Natural Science Foundation of Shanghai,No.08ZR1414900 and 11ZR1423600
文摘The results from this study showed that the thresholds of brainstem auditory-evoked potentials peak following 10 successive days of intramuscular injection of Roman chickens with kanamycin, starting 3 days after birth. Fluorescence immunohistochemistry analysis revealed few ganglion cells positively labeled for Ephrin A2 in the cochlea of experimental chickens from 2 days before until 7 days after the last kanamycin injection. The number of Ephrin A2-positive ganglion cell bodies was increased at 15 days after the last injection and was similar to that in normal chickens at 30 days following the cessation of kanamycin treatment. These experimental findings indicate that Ephrin A2 protein expression in the acoustic ganglia is synchronized with the connection damage and regeneration of cochlear hair cells after kanamycin exposure. Ephrin A2 may play an important role in the regeneration and plasticity of cochlear hair cells in the chick cochlea following kanamycin ototoxicity.
基金We thank Prof.Lin Chen(University of Science and Technology of China)and Dr.Juanmei Yang(Eye and ENT Hospital of Fudan University)for valuable help with cochlear microscopic anatomy.This work was supported by the National Natural Science Foundation of China(31571032,31771191.81730028)the National Basic Research Development Program of China(SQ2017YFSF080012)the Postdoctoral Science Foundation of China(2018M640407).
文摘Voltage-gated sodium channels(VGSCs)are transiently expressed in cochlear hair cells before hearing onset and play an indispensable role in shaping spontaneous activity.In this study,we showed that Na^+currents shaped the spontaneous action potentials in developing mouse inner hair cells(IHCs)by decreasing the time required for the membrane potential to reach the action-potential threshold.In immature IHCs,we identified 9 known VGSC subtypes(Navl.la-l.9ot),among which Navl.7a was the most highly expressed subtype and the main contributor to Na+currents in developing hair cells.Electrophysiological recordings of two cochlea-specific Navi.7 variants(CbmNavl.7a and CbmNavl.7b)revealed a novel loss-of-function mutation(C934R)at the extracellular linker between segments 5 and 6 of domain II.In addition,post-transcriptional modification events,such as alternative splicing and RNA editing,amended the gating properties and kinetic features of CbmNavl.7a(C934).These results provide molecular and functional characteristics of VGSCs in mammalian IHCs and their contributions to spontaneous physiological activity during cochlear maturation.
基金Projects of Hebei Provincial Administration of Traditional Chinese Medicine,No.2012068
文摘Diabetes mellitus (DM) is a chronic systemic disease characterized by hyperglycemia, with various patho-genic mechanisms. From absolute or relative insulin deficiency, patients with DM often demonstrate vari-ous levels of metabolic disorders. Major clinical manifestations of DM include metabolic disorders, vascu-lar lesions, circulatory disturbances and neurologic complications. Along with advances in DM research, re-ports of DM related tinnitus and hearing impairment have increased continuously. Research on DM related auditory system dysfunction has focused on cochlear microcirculation, cellular homeostasis, genetics and ag-ing. Cochlear microcirculation plays an important role in cochlear physiology and its disorders are associat-ed with many inner ear diseases. Ischemia and subsequent reperfusion seen in cochlear microcirculation dis-orders are important factors in hearing damage. Understanding cochlear microcirculation and structural as well as functional changes in DM patients with hearing loss and their causal factors will help reveal patho-genic mechanisms in diabetic hearing loss and provide new ideas in developing interventions and preventing damages caused by diabetes.
文摘Disabling hearing loss is the most common sensorineural disability worldwide.It affects around 466 million people and its incidence is expected to rise to around 900 million people by 2050,according to World Health Organization estimates.Most cases of hearing impairment are due to the degeneration of hair cells(HCs)in the cochlea,mechano-receptors that transduce incoming sound information into electrical signals that are sent to the brain.Damage to these cells is mainly caused by exposure to aminoglycoside antibiotics and to some anti-cancer drugs such as cisplatin,loud sounds,age,infections and genetic mutations.Hearing deficits may also result from damage to the spiral ganglion neurons that innervate cochlear HCs.Differently from what is observed in avian and nonmammalian species,there is no regeneration of missing sensory cell types in the adult mammalian cochlea,what makes hearing loss an irreversible process.This review summarizes the research that has been conducted with the aim of developing cell-based strategies that lead to sensory cell replacement in the adult cochlea and,ultimately,to hearing restoration.Two main lines of research are discussed,one directed toward the transplantation of exogenous replacement cells into the damaged tissue,and another that aims at reactivating the regenerative potential of putative progenitor cells in the adult inner ear.Results from some of the studies that have been conducted are presented and the advantages and drawbacks of the various approaches discussed.
基金supported by the National Natural Science Foundation of China,Nos.81670925(to FQC),81870732(to DJZ),81800918(to WL),81900933(to YLS)Department of Science and Technology Key Industry Innovation Chain Social Development Field Fund of Shaanxi Province,No.2021ZDLSF02-12(to FQC)the Natural Science Foundation of Shaanxi Province,No.2019JM-009(to JC).
文摘Studies have shown that phosphatase and tensin homolog deleted on chromosome ten(PTEN)participates in the regulation of cochlear hair cell survival.Bisperoxovanadium protects against neurodegeneration by inhibiting PTEN expression.However,whether bisperoxovanadium can protect against noise-induced hearing loss and the underlying mechanism remains unclear.In this study,we established a mouse model of noise-induced hearing loss by exposure to 105 dB sound for 2 hours.We found that PTEN expression was increased in the organ of Corti,including outer hair cells,inner hair cells,and lateral wall tissues.Intraperitoneal administration of bisperoxovanadium decreased the auditory threshold and the loss of cochlear hair cells and inner hair cell ribbons.In addition,noise exposure decreased p-PI3K and p-Akt levels.Bisperoxovanadium preconditioning or PTEN knockdown upregulated the activity of PI3K-Akt.Bisperoxovanadium also prevented H_(2)O_(2)-induced hair cell death by reducing mitochondrial reactive oxygen species generation in cochlear explants.These findings suggest that bisperoxovanadium reduces noise-induced hearing injury and reduces cochlear hair cell loss.
文摘The etiology of sudden deafness or idiopathic sudden sensorineural hearing loss(ISSHL) remains unclear. Over the past 15 years, we have investigated the mechanisms of ischemic-induced hearing loss using a gerbil model of transient cochlear ischemia. In the gerbil, cochlear ischemia can be induced by occluding the bilateral vertebral arteries simultaneously at the neck, because the posterior communicating arteries of the Circle of Willis close spontaneously around 1 mo after birth. When 15 min ischemia was loaded on this animal, permanent hearing loss of about 25 d B and the death of hair cells, especially inner hair cells were induced. These pathological changes were mainly due to lack of an energy source, glutamate excitotoxicity, and the production of free radicals, especially superoxide and nitrous oxide species. Ischemic damage could be prevented by various procedures, such as cooling the cochlea, intratympanic administration of insulin-like growth factor 1 or AM-111(an anti-apoptotic agent), and systemic administration of prednisolone(steroid), edarabone(free radical scavenger), ginsenoside Rb1(Kanpo), hematopoietic stem cells, glia-cell derived neurotrophic factor, and liposome-encapsulated hemoglobin(artificial red blood cells). We also found that the cochlea was protected by the ischemic tolerance, indi-cating that minor cochlear ischemia alleviates or prevents inner ear damage in subsequent severe cochlear ischemia. As ISSHL usually occurs suddenly, with no preceding sign or symptom, we suggest that most ISSHL cases are caused by circulatory disturbance, probably at the stria vascularis.
文摘Background:Studies on animals have demonstrated that maternal iron deficiency anaemia(IDA)could result in decreased cochlear sensory hair cells and reduced amplitudes of distortion-product otoacoustic emissions(DPOAEs)of young guinea pigs.Thus,it is essential to study the functioning of cochlear hair cells using DPOAEs in human newborn babies with maternal IDA.The current study explores maternal IDA’s effect on DPOAEs in newborn babies.Method:A total of 110 newborn babies with gestational age≥34 weeks were considered and a‘betweensubjects’design was used.The participants were divided into 3 groups-“Normal”(61 babies without maternal IDA),“Mild”(28 babies with mild maternal IDA)and“Moderate”(21 babies with moderate maternal IDA).The cord blood was collected and the DPOAEs were recorded for each baby for a range of frequencies(1 k 8 kHz)and a range of intensities(7040 dB SPL in 10 dB steps).Results:The analysis of both DP-gram and DP input-output(I/O)function showed that there was no significant difference(p>0.05)across the normal,mild,and moderate groups in the overall presence of DPOAEs as well as the amplitude across frequencies or intensities(7040 dB SPL).Also,the overall correlation of RBC indices with DPOAE amplitude across frequencies as well as the slope of the I/O function showed no relationship.Conclusion:The current study concludes that there is no effect of late-term maternal IDA on the DPOAEs of newborn babies.
文摘It has been revealed in recent years that contralateral acoustic stimulation can affect cochlear active mechanisms through activating medial olivocochlear system (MOC) of the cochlear efferent nerve fibers. The MOC is therefore postulated to exert protective effects on outer hair cells (OHCs) under intense sound condition. In this study the effects of 4 kHz intense tone exposure on distortion product otoacoustic emissions (DPOAEs) in guinea pigs with and without contralateral white noise stimulation were observed so that to investigate the protective effects of MOC on OHCs. The results showed that DPOAEs obviously deceased after the intense tone exposure in all animals, while both the amplitude reduction and the affected frequency range of DPOAEs were smaller in animals with simultaneously delivered contralateral white noise during the tone exposure than that in animals without colltralateral acoustic stimulation. The above results may suggest some protective nature of the contralateral sound stimulating effects which might be mediated through the activity of MOC. These perhaps can serve as the evidence that the protective mechanism against intense sound operates in the outer hair cells which are strongly innervated by MOC