In this paper ,spodumene mineral was used as raw material for fabricating glass ceramic with the addition of MgO,ZnO and TiO2,ZrO2. The expansion coefficient of the materials is 5. 5×107/℃ . Also the effects of ...In this paper ,spodumene mineral was used as raw material for fabricating glass ceramic with the addition of MgO,ZnO and TiO2,ZrO2. The expansion coefficient of the materials is 5. 5×107/℃ . Also the effects of the heat treatment on the crystallzing behaviour has been discussed by XRD and DTA.展开更多
The launch shudder phenomenon induced by self-excited vibration of driveline was stud- ied with a compact car equipped with AMT as research object. The research showed that self-excited vibration was closely related w...The launch shudder phenomenon induced by self-excited vibration of driveline was stud- ied with a compact car equipped with AMT as research object. The research showed that self-excited vibration was closely related with damping of driveline, the variation of friction coefficient, equiva- lent radius of friction plate and applied force of pressure plate. Six DOFs torsional vibration model of vehicle driveline was established according to the parameters of the certain compact car. The simula- tion was carried out and the result was compared with test data. It was found that the negative slope of friction coefficient with relative slip speed does not necessarily lead to self-excited vibration and the frequency of self-excited vibration on 1st gear is near to the 1st order of torsional natural frequen- cy. The influence of each viscous damping in driveline on self-excited vibration was analyzed by sim- ulation and the results showed that increasing the torsional dampings of half-axles and tires properly was effective to improve launch shudder phenomenon.展开更多
The paper presents results of phenol oxidized under the conditions of high temperature created during collapse of cavitation bubbles.The degradation efficiency has been greatly improved by using cavitation water jets ...The paper presents results of phenol oxidized under the conditions of high temperature created during collapse of cavitation bubbles.The degradation efficiency has been greatly improved by using cavitation water jets combined with H2O2 as demonstrated in laboratory tests.Various factors affecting phenol removal ratio were ex-amined and the degradation mechanism was revealed by high performance liquid chromatography(HPLC).The re-sults showed that 99.85% of phenol was mineralized when phenol concentration was 100 mg·L-1 with pH value of 3.0,H2O2 concentration of 300 mg·L-1,confining pressure of 0.5 MPa,and pumping pressure of 20 MPa.The in-termediate products after phenol oxidation were composed of catechol,hydroquinone and p-benzoquinone.Finally,phenol was degraded into maleic acid and acetic acid.Furthermore,a dynamic model of phenol oxidation via cavi-tation water jets combined with H2O2 has been developed.展开更多
The study on slide stability of hydraulic structures on subbed soil was made. Using the slide test results of dragged concreting base plates on subbed soil pits, the decreased value of bearing capacity on slide after ...The study on slide stability of hydraulic structures on subbed soil was made. Using the slide test results of dragged concreting base plates on subbed soil pits, the decreased value of bearing capacity on slide after re- bound and repression influence of subbed soil was determined, and the envelope of ultimate slide shear resistance was also quantitatively determined. Due to the lack of similar mechanisms of slide stability on subbed soil and base plate of hydraulic structures, different safety coefficients for the slide stability were adopted. It was suggested to use the maximum compressive stress O'm~ of eccentric load to predict structure displacement, slide and creepy slippage of subbed soil, to determine the sliding creepy contour and limit the maximum load on subbed soil. Two hydraulic structures that had been put into operation were reviewed by this method, and the results accorded with the real conditions.展开更多
Palladium-based alloy is a kind of material with a high glass forming ability and can be easily formed into an amorphous state. After an annealing process, it can also be maintained at a crystallized state. To study t...Palladium-based alloy is a kind of material with a high glass forming ability and can be easily formed into an amorphous state. After an annealing process, it can also be maintained at a crystallized state. To study the thermal and electrical transport properties of crystallized palladium-based alloys, the steady-state T-type method, standard four-probe method, and AC heating-DC detecting T-type method were used to measure the thermal conductivity, electrical conductivity, and Seebeck coeffi- cient of crystallized Pd4oNiloCu3oP2o and Pd43Nilo- Cu27P2o alloys respectively. The results show that compared to amorphous samples, the thermal conductivity and electrical conductivity of crystallized palladium-based alloys are significantly higher, while the Seebeck coeffi- cient is lower. The ratio of crystallized and amorphous thermal conductivity is higher for Pd43Ni10Cu27P2o alloy fiber which has a higher glass forming ability, while the ratio of electronic thermal conductivity almost remains constant for both alloy fibers. The results also show that the slope of electrical resistivity to temperature is a function of elemental composition for crystallized quaternary palla- dium-based alloy fibers. The sensitivity of thermal conductivity and electrical conductivity to the composition is high, while the correlation between Seebeck coefficient and composition is relatively weak.展开更多
文摘In this paper ,spodumene mineral was used as raw material for fabricating glass ceramic with the addition of MgO,ZnO and TiO2,ZrO2. The expansion coefficient of the materials is 5. 5×107/℃ . Also the effects of the heat treatment on the crystallzing behaviour has been discussed by XRD and DTA.
基金Supported by the National Natural Science Foundation of China(51175379)
文摘The launch shudder phenomenon induced by self-excited vibration of driveline was stud- ied with a compact car equipped with AMT as research object. The research showed that self-excited vibration was closely related with damping of driveline, the variation of friction coefficient, equiva- lent radius of friction plate and applied force of pressure plate. Six DOFs torsional vibration model of vehicle driveline was established according to the parameters of the certain compact car. The simula- tion was carried out and the result was compared with test data. It was found that the negative slope of friction coefficient with relative slip speed does not necessarily lead to self-excited vibration and the frequency of self-excited vibration on 1st gear is near to the 1st order of torsional natural frequen- cy. The influence of each viscous damping in driveline on self-excited vibration was analyzed by sim- ulation and the results showed that increasing the torsional dampings of half-axles and tires properly was effective to improve launch shudder phenomenon.
基金Supported by the National Natural Science Foundation of China (50921063,51104191)the Natural Science Foundationof Chongqing (2009BA6047)
文摘The paper presents results of phenol oxidized under the conditions of high temperature created during collapse of cavitation bubbles.The degradation efficiency has been greatly improved by using cavitation water jets combined with H2O2 as demonstrated in laboratory tests.Various factors affecting phenol removal ratio were ex-amined and the degradation mechanism was revealed by high performance liquid chromatography(HPLC).The re-sults showed that 99.85% of phenol was mineralized when phenol concentration was 100 mg·L-1 with pH value of 3.0,H2O2 concentration of 300 mg·L-1,confining pressure of 0.5 MPa,and pumping pressure of 20 MPa.The in-termediate products after phenol oxidation were composed of catechol,hydroquinone and p-benzoquinone.Finally,phenol was degraded into maleic acid and acetic acid.Furthermore,a dynamic model of phenol oxidation via cavi-tation water jets combined with H2O2 has been developed.
文摘The study on slide stability of hydraulic structures on subbed soil was made. Using the slide test results of dragged concreting base plates on subbed soil pits, the decreased value of bearing capacity on slide after re- bound and repression influence of subbed soil was determined, and the envelope of ultimate slide shear resistance was also quantitatively determined. Due to the lack of similar mechanisms of slide stability on subbed soil and base plate of hydraulic structures, different safety coefficients for the slide stability were adopted. It was suggested to use the maximum compressive stress O'm~ of eccentric load to predict structure displacement, slide and creepy slippage of subbed soil, to determine the sliding creepy contour and limit the maximum load on subbed soil. Two hydraulic structures that had been put into operation were reviewed by this method, and the results accorded with the real conditions.
文摘Palladium-based alloy is a kind of material with a high glass forming ability and can be easily formed into an amorphous state. After an annealing process, it can also be maintained at a crystallized state. To study the thermal and electrical transport properties of crystallized palladium-based alloys, the steady-state T-type method, standard four-probe method, and AC heating-DC detecting T-type method were used to measure the thermal conductivity, electrical conductivity, and Seebeck coeffi- cient of crystallized Pd4oNiloCu3oP2o and Pd43Nilo- Cu27P2o alloys respectively. The results show that compared to amorphous samples, the thermal conductivity and electrical conductivity of crystallized palladium-based alloys are significantly higher, while the Seebeck coeffi- cient is lower. The ratio of crystallized and amorphous thermal conductivity is higher for Pd43Ni10Cu27P2o alloy fiber which has a higher glass forming ability, while the ratio of electronic thermal conductivity almost remains constant for both alloy fibers. The results also show that the slope of electrical resistivity to temperature is a function of elemental composition for crystallized quaternary palla- dium-based alloy fibers. The sensitivity of thermal conductivity and electrical conductivity to the composition is high, while the correlation between Seebeck coefficient and composition is relatively weak.