期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Research for Optimizing Porosity of Porous Thermal-insulating Materials
1
作者 HE Miaolin ZHANG Meijie HUANG Ao 《China's Refractories》 CAS 2018年第2期41-44,共4页
With the energy crisis and ecological environment deterioration, porous thermal-insulating materials become an advanced research hotspot, and the influence of pore distribution cannot be ignored. The mathematical mode... With the energy crisis and ecological environment deterioration, porous thermal-insulating materials become an advanced research hotspot, and the influence of pore distribution cannot be ignored. The mathematical model is established basing on the heat transfor theory, regarding the minimum heat flux density as the objective function, the constant total porosity as a constraint condition, using the BFGS method to optimize the pore distribution. The results show that when the heat flux is the minimum, in the case of the fixed total porosity, the high temperature zone has high porosity, the low temperature zone has low porosity; the maximal fluctuating amplitude of porosity between the adjacent discrete points has great impact on the thermal insulating performanee, the greater the fluctuating amplitude, the better the thermal insulating ability. After calculating the temperature field of the corresponding physical model, it can be found that the temperature gradient is non-uniform, the temperature gradient of the high temperature zone is steep, and that of the low temperature zone is gentle. These results have guiding significance for preparation of porous thermal-insulating materials. 展开更多
关键词 porous thermal-insulating materials coefficient of thermal conductivity heat flow density optimal pore distribution
下载PDF
Mechanical, electrical, and thermal expansion properties of carbon nanotube-based silver and silver–palladium alloy composites 被引量:3
2
作者 Hemant Pal Vimal Sharma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第11期1132-1140,共9页
The mechanical, electrical, and thermal expansion properties of carbon nanotube(CNT)-based silver and silver–palladium(10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were ... The mechanical, electrical, and thermal expansion properties of carbon nanotube(CNT)-based silver and silver–palladium(10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were incorporated into a silver matrix by a modified molecular level-mixing process. CNTs interact weakly with silver because of their non-reactive nature and lack of mutual solubility. Therefore, palladium was utilized as an alloying element to improve interfacial adhesion. Comparative microstructural characterizations and property evaluations of the nanocomposites were performed. The structural characterizations revealed that decorated type-CNTs were dispersed, embedded, and anchored into the silver matrix. The experimental results indicated that the modification of the silver and silver–palladium nanocomposite with CNT resulted in increases in the hardness and Young's modulus along with concomitant decreases in the electrical conductivity and the coefficient of thermal expansion(CTE). The hardness and Young's modulus of the nanocomposites were increased by 30%?40% whereas the CTE was decreased to 50%-60% of the CTE of silver. The significantly improved CTE and the mechanical properties of the CNT-reinforced silver and silver–palladium nanocomposites are correlated with the intriguing properties of CNTs and with good interfacial adhesion between the CNTs and silver as a result of the fabrication process and the contact action of palladium as an alloying element. 展开更多
关键词 metal matrix composites carbon nanotubes mechanical properties coefficient of thermal expansion electrical conductivity
下载PDF
Detection of Thermophysical Properties for High Strength Concrete after Exposure to High Temperature 被引量:3
3
作者 杜红秀 WU Jia +2 位作者 LIU Gaili WU Huiping YAN Ruizhen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第1期113-120,共8页
Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of therma... Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of thermal conductivity,apparent density,and compressive strength test on C80 high-strength concrete(HSC) in the presence and absence of polypropylene fibers under completely heated conditions.Only slight damages were detected below 400 ℃,whereas more and more severe deterioration events were expected when the temperature was above 500 ℃.The results show that the elevated temperature through infrared images generally exhibits an upward trend with increasing temperature,while the coefficient of thermal conductivity and apparent density decrease gradually.Additionally,the addition of polypropylene fibers with appropriate length,diameter,and quantity contributes to the improvement of the high-temperature resistance of HSC. 展开更多
关键词 high-strength concrete polypropylene fiber high temperature infrared thermal imaging technique coefficient of thermal conductivity compressive strength ratio
下载PDF
A New Type of Paper-frame Cavernous Material and Its Application in Energy Efficiency in Buildings
4
作者 袁海庆 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2001年第4期80-82,共3页
This paper introduces a new type of paper-frame cavernous material, which is a made-up hollow material, by using silicate-cinder size to drench and daub. It possesses excellent performances such as light-weight, high-... This paper introduces a new type of paper-frame cavernous material, which is a made-up hollow material, by using silicate-cinder size to drench and daub. It possesses excellent performances such as light-weight, high-intensity, fire-resistance, sound-insulation, heat-insulation and no-pollution. Composed with concrete materials, a new type of bearing and energy-efficient block can be gained, which is kind of excellent wall materials and has a wide application prospect. 展开更多
关键词 energy efficiency in buildings wall material heat transfer coefficient coefficient of thermal conductivity heat resistance paper-frame cavernous material
下载PDF
Thermal properties of diamond/Al composites by pressure infiltration:comparison between methods of coating Ti onto diamond surfaces and adding Si into Al matrix 被引量:4
5
作者 Cai-Yu Guo Xin-Bo He +1 位作者 Shu-Bin Ren Xuan-Hui Qu 《Rare Metals》 SCIE EI CAS CSCD 2016年第3期249-255,共7页
This study was pertained to the effects of Ti coating on diamond surfaces and Si addition into Al matrix on the thermal conductivity(TC) and the coefficient of thermal expansion(CTE) of diamond/Al composites by pr... This study was pertained to the effects of Ti coating on diamond surfaces and Si addition into Al matrix on the thermal conductivity(TC) and the coefficient of thermal expansion(CTE) of diamond/Al composites by pressure infiltration.The fracture surfaces,interface microstructures by metal electro-etching and interfacial thermal conductance of the composites prepared by two methods were compared.The results reveal that Ti coating on diamond surfaces and only12.2 wt% Si addition into Al matrix could both improve the interfacial bonding and increase the TCs of the composites.But the Ti coating layer introduces more interfacial thermal barrier at the diamond/Al interface compared to adding 12.2 wt% Si into Al matrix.The diamond/Al composite with 12.2 wt% Si addition exhibits maximum TC of 534 W·m^-1·K^-1and a very low CTE of 8.9×10^-6K^-1,while the coating Ti-diamond/Al composite has a TC of 514 W·m^-1·K^-1 and a CTE of 11.0×10^-6K^-1. 展开更多
关键词 Metal matrix composites Coating thermal conductivity coefficient of thermal expansion Pressure infiltration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部