Development and use of nuclear energy is currently growing very rapidly, in order to achieve increasingly advanced technology, both in terms of design, economic factors and safety factors. Thermal-hydraulics aspects o...Development and use of nuclear energy is currently growing very rapidly, in order to achieve increasingly advanced technology, both in terms of design, economic factors and safety factors. Thermal-hydraulics aspects of nuclear reactors should be done with calculation and near-perfect condition. Including today began development of a nuclear reactor with low power below 300 MW, or commonly called the Small Modular Reactor (SMR). One is CAREM-25 developed by Argentina with a power of 25 MW, where in CAREM already using natural circulation system and the use of nanofluid as coolant fluid. In this research, analytic modeling of thermal-hydraulics nuclear reactor SMR CAREM-25, when the nanofluid Al<sub>2</sub>O<sub>3</sub>-Water used as cooling fluid in the cooling system of a nuclear reactor. Further to this analytic modeling will be done on CFD. Analytic modeling with CFD to determine the flow phenomena and distribution as well as the effect of nano-particles of Al<sub>2</sub>O<sub>3</sub>-Water based on the volume fraction (1% and 3%) of the coefficient of heat transfer by natural convection.展开更多
A static model of the forced cooling of inductors used for induction heating is proposed in order to achieve better coil design to prolong its lifetime and prevent failures.The main aim is to define for the most commo...A static model of the forced cooling of inductors used for induction heating is proposed in order to achieve better coil design to prolong its lifetime and prevent failures.The main aim is to define for the most common copper tubes and inductor geometries an equivalent convection heat transmission coefficient depending upon temperature and pressure of the cooling fluid,in order to model the very complex physics of forced cooling with a strongly simplified method.The model,called 'Line Region Model',considers only the coil's copper tube and its internal surface(interface copper-water)as boundary where the heat exchange conditions are imposed.展开更多
文摘Development and use of nuclear energy is currently growing very rapidly, in order to achieve increasingly advanced technology, both in terms of design, economic factors and safety factors. Thermal-hydraulics aspects of nuclear reactors should be done with calculation and near-perfect condition. Including today began development of a nuclear reactor with low power below 300 MW, or commonly called the Small Modular Reactor (SMR). One is CAREM-25 developed by Argentina with a power of 25 MW, where in CAREM already using natural circulation system and the use of nanofluid as coolant fluid. In this research, analytic modeling of thermal-hydraulics nuclear reactor SMR CAREM-25, when the nanofluid Al<sub>2</sub>O<sub>3</sub>-Water used as cooling fluid in the cooling system of a nuclear reactor. Further to this analytic modeling will be done on CFD. Analytic modeling with CFD to determine the flow phenomena and distribution as well as the effect of nano-particles of Al<sub>2</sub>O<sub>3</sub>-Water based on the volume fraction (1% and 3%) of the coefficient of heat transfer by natural convection.
文摘A static model of the forced cooling of inductors used for induction heating is proposed in order to achieve better coil design to prolong its lifetime and prevent failures.The main aim is to define for the most common copper tubes and inductor geometries an equivalent convection heat transmission coefficient depending upon temperature and pressure of the cooling fluid,in order to model the very complex physics of forced cooling with a strongly simplified method.The model,called 'Line Region Model',considers only the coil's copper tube and its internal surface(interface copper-water)as boundary where the heat exchange conditions are imposed.