In this paper,we give a relationship between projective generators(resp.,injective cogenerators) in the category of R-modules and the counterparts in the category of complexes of R-modules.As a consequence,we get th...In this paper,we give a relationship between projective generators(resp.,injective cogenerators) in the category of R-modules and the counterparts in the category of complexes of R-modules.As a consequence,we get that complexes of W^--Gorenstein modules are actually W-Gorenstein complexes whenever W is a subcategory of R-modules satisfying W⊥W,where W^- is the subcategory of exact complexes with all cycles in W.We also study when all cycles of a W-Gorenstein complexes are W^--Gorenstein modules.展开更多
It is well known that the concept of cotilting modules generalizes injective cogenerators and in turn,the concept of cosilting modules generalizes cotilting modules.In this paper,we further investigate the close conne...It is well known that the concept of cotilting modules generalizes injective cogenerators and in turn,the concept of cosilting modules generalizes cotilting modules.In this paper,we further investigate the close connections among injective cogenerators,cotilting modules and cosilting modules from the viewpoint of morphism categories.Some applications are also given.展开更多
The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and p...The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units,the hydraulic and thermodynamic characteristics of the heating network,and the energy loads.Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case,the interaction effect among the source-side prime movers,the heating networks,and the terminal demand thermal parameters were investigated based on the designed values,the plant testing data,and the validated simulation.The operating maps of the gas-steam combined cycle cogeneration units were obtained using THERMOFLEX,and the minimum source-side steam parameters of the steam network were solved using an inverse solution procedure based on the hydro-thermodynamic coupling model.The cogeneration operating maps indicate that the available operating domain considerably narrows with the rise of the extraction steam pressure and flow rate.The heating network inverse solution demonstrates that the source-side steam pressure and temperature can be optimized from the originally designed 1.11 MPa and 238.8°C to 1.074 MPa and 191.15°C,respectively.Under the operating strategy with the minimum source-side heating parameters,the power peak regulation depth remarkably increases to 18.30%whereas the comprehensive thermal efficiency decreases.The operation under the minimum source-side heating steam parameters can be superior to the originally designed one in the economy at a higher price of the heating steam.At a fuel price of$0.38/kg and the power to fuel price of 0.18 kg/(kW·h),the critical price ratio of heating steam to fuel is 119.1 kg/t.The influence of the power-fuel price ratio on the economic deviation appears relatively weak.展开更多
The electrical and thermal performances of a simulated 60 kW Proton Exchange Membrane Fuel Cell (PEMFC) cogeneration system are first analyzed and then strategies to make the system operation stable and efficient are ...The electrical and thermal performances of a simulated 60 kW Proton Exchange Membrane Fuel Cell (PEMFC) cogeneration system are first analyzed and then strategies to make the system operation stable and efficient are developed. The system configuration is described first, and then the power response and coordination strategy are presented on the basis of the electricity model. Two different thermal models are used to estimate the thermal performance of this cogeneration system, and heat management is discussed. Based on these system designs, the 60 kW PEMFC cogeneration system is analyzed in detail. The analysis results will be useful for further study and development of the system.展开更多
In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the ...In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the cogeneration system consisted of a coal-based thermal power plant (TPP), a multi-stage flash desalination (MSF) module and reverse osmosis desalination (RO) module. For different demands of water, heat and power production, the corresponding optimal production structure was different. After reasonable simplification, the process model ot each unit was built. The economical model, including the unit investment, and operation and maintenance cost, was presented. By solving this non-linear programming (NLP) model, whose objective is to minimize the annual cost, an optimal cogeneration system can be obtained. Compared to separate production systems, the optimal system can reduce 16.1%-21.7% of the total annual cost. showing this design method was effective.展开更多
Recovery of waste heat from boiler flue gas is an effective way to improve energy utilization efficiency.Taking a heating station heating project as an example,the existing heating system of this heating station was a...Recovery of waste heat from boiler flue gas is an effective way to improve energy utilization efficiency.Taking a heating station heating project as an example,the existing heating system of this heating station was analyzed for its underutilized flue gas waste heat and low energy utilization rate.Rankine cycle is an effective waste heat recovery method,and a steam boiler organic Rankine cycle(ORC)cogeneration waste heat utilization method is proposed.The system model simulation is constructed and verified.First,a thermodynamic model was constructed in MATLAB and five suitable work gases were selected to analyze the effects of evaporation temperature and condensation temperature on the network and thermal efficiency of the waste heat cycle power system.Secondly,the ORC model is invoked in TRNSYS to construct the improved cogeneration system,and the rationality of the remaining heat utilization methods is determined by calculating and analyzing the thermal performance,economy,and environmental protection of the improved system.The simulation results show that the system can generate about 552,000 kWh of electricity per year,and improving the energy utilization rate from 0.72 to 0.78.展开更多
Currently, fossil fuels such as oil, coal and natural gas represent the prime energy sources in the world. However, it is anticipated that these sources of energy will deplete within the next 40 - 50 years. Moreover, ...Currently, fossil fuels such as oil, coal and natural gas represent the prime energy sources in the world. However, it is anticipated that these sources of energy will deplete within the next 40 - 50 years. Moreover, the expected environmental damages such as the global warming, acid rain and urban smog due to the production of emissions from these sources have tempted the world to try to reduce carbon emissions by 80% and shift towards utilizing a variety of renewable energy resources (RES) which are less environmentally harmful such as solar, wind, biomass, etc. in a sustainable way. Biomass is one of the earliest sources of energy with very specific properties. In this review, we present the different cogeneration systems to provide electrical power and heating for isolated communities. It has been found that the steam turbine process is the most relevant for biomass cogeneration plants for its high efficiency and technological maturity. The future of CHP plants depends upon the development of the markets for fossil fuels and on policy decisions regarding the biomass market.展开更多
This work aims to assess the effect of energy conversion (Thermal oil, Natural gas and cogeneration system) on atmospheric emission and energy consumption in ceramic tile product sector in Tunisia. Two tile manufactur...This work aims to assess the effect of energy conversion (Thermal oil, Natural gas and cogeneration system) on atmospheric emission and energy consumption in ceramic tile product sector in Tunisia. Two tile manufactures were selected. The first plant has two production lines: The first line (FF1) operates with thermal oil with a lower calorific value (LHV) of 9811 cal/g and the second line (FG1) operating with natural gas has a lower calorific value (HHV) of 10,520 cal/g, ensuring a daily output of 300 tons each one. The second manufacture (SC2) operates with natural gas with the same LHV value. The thermal oil energy balance showed a specific consumption of 0.0481 toe/ton tile product for the FF1 manufacture line, 0.0198 toe/ton of tile product for the FG1 manufacture line and 0.0143 toe/ton of tile product for the SC2 manufactory. The electrical energy consumption was 0.0121 toe/ton of tile product for the FF1 line, 0.0108 toe/ton of tile product for the FG1 line and a production of energy (exergy) of 0.014 toe/ton for the SC2 production line. The specific consumption was split into 40% for dryer and 60% for tunnel kilns. The conversion allow to record a dryer reduction rate of 80% for nitrogen oxides (NOx), 56% for sulfur oxides (SOx), 56% for fluorinated compounds, 52% for chlorinated compounds and 52% for volatile organic compound. Whereas, the kiln reduction rate was 36% for nitrogen oxides, 51% for sulfur oxides, 36% for chlorinated compounds and 55% for fluorinated and 50% for volatile organic compounds (VCOs). Compared to natural gas line, the use of cogeneration system in kiln process shows a decrease of 67% for NOx emissions, 80% for SOx emissions, 89% for fluorinated compounds, 58% for chlorinated emissions and 64% for volatiles organic compounds. Compared to thermal oil, the use of cogeneration system reduces the thermal energy consumption by 70% and allowed to save 30% of electric energy by generate 20% of needed electric energy. The specific atmospheric gaseous emission level decrease from 2.066 g/kg of tile product for the thermal oil process to reach 0.43 g/kg of tile product for cogeneration process.展开更多
In order for economically viable distributed generation systems for apartment buildings to spread, it is essential to develop an efficient and low-cost heat supply system. We have developed a new eogeneration system c...In order for economically viable distributed generation systems for apartment buildings to spread, it is essential to develop an efficient and low-cost heat supply system. We have developed a new eogeneration system called the Neighboring Cogeneration system (NCG). The key concept of this system is to install a heat accumulator with a hot water supply and a room heating function at each household and to connect different households by a single loop of hot water pipe. As a result, time leveling of the heat supply and heat transferring among households becomes possible. Thus, the costs of the pipe and the heat source equipment decrease. Furthermore, because all of the heat accumulators store heat, the total heat storage capacity is large enough for cogeneration to generate exhaust heat according to the electricity demand and with a high operating rate. In this paper, we report the results of the NCG system for 7 lived-in households. The controlling system worked efficiently. All of the households were able to use hot water without any difficulties. Further, we report the results of the energy saving effect of the NCG system for 50 lived-in households by means of a simulation based on the experimental results for NEXT21.展开更多
A steam power plant can work as a dual purpose plant for simultaneous production of steam and elec-trical power. In this paper we seek the optimum integration of a steam power plant as a source and a site utility sys-...A steam power plant can work as a dual purpose plant for simultaneous production of steam and elec-trical power. In this paper we seek the optimum integration of a steam power plant as a source and a site utility sys-tem as a sink of steam and power. Estimation for the cogeneration potential prior to the design of a central utility system for site utility systems is vital to the targets for site fuel demand as well as heat and power production. In this regard, a new cogeneration targeting procedure is proposed for integration of a steam power plant and a site utility consisting of a process plant. The new methodology seeks the optimal integration based on a new cogenera-tion targeting scheme. In addition, a modified site utility grand composite curve(SUGCC) diagram is proposed and compared to the original SUGCC. A gas fired steam power plant and a process site utility is considered in a case study. The applicability of the developed procedure is tested against other design methods(STAR? and Thermoflex software) through a case study. The proposed method gives comparable results, and the targeting method is used for optimal integration of steam levels. Identifying optimal conditions of steam levels for integration is important in the design of utility systems, as the selection of steam levels in a steam power plant and site utility for integration greatly influences the potential for cogeneration and energy recovery. The integration of steam levels of the steam power plant and the site utility system in the case study demonstrates the usefulness of the method for reducing the overall energy consumption for the site.展开更多
This paper presents a review of low molecular weight alkane-fed solid oxide fuel cells(SOFCs),which,unlikely the conventional use of SOFCs for only power production,are utilized to cogenerate produce useful chemicals ...This paper presents a review of low molecular weight alkane-fed solid oxide fuel cells(SOFCs),which,unlikely the conventional use of SOFCs for only power production,are utilized to cogenerate produce useful chemicals at the same time.The cogeneration processes in SOFC have been classified according to the different types of fuel.C_(2)and C_(3)alkenes and synthesis gas are the main cogenerated chemicals together with electricity.The chemicals and energy cogeneration in a fuel cell reactor seems to be an effective alternative to conventional reactors for only chemicals production and conventional fuel cells for only power production.Although,the use of SOFCs for chemicals and energy cogeneration has proved successful in the industrial setting,the development of new catalysts aimed at obtaining the desired chemicals together with the production of a high amount of energy,and optimizing SOFC operation conditions is still a challenge to enhance system performance and make commercial applications workable.展开更多
A thermodynamic model was developed to analyze the performance of cogeneration plant based on irreversible recuperative Brayton cycle. A parameter, dimensionless total useful energy rate (DTUER), was used as the crite...A thermodynamic model was developed to analyze the performance of cogeneration plant based on irreversible recuperative Brayton cycle. A parameter, dimensionless total useful energy rate (DTUER), was used as the criterion for performance optimization of cogeneration plant. The effects of cycle parameters, internal irreversibilities, and recuperator efficiency on maximum DTUER and on the efficiency at maximum DTUER were numerically investigated. The relation between DTUER and cogeneration efficiency was also analyzed. The results show that there exists an optimal compressor pressure ratio which maximizes the DTUER. It is also found that there exists an optimal power-to-heat ratio which results in a dual-maximum DTUER.展开更多
The worldwide demand for portable water is steadily growing due to population, industrial and agricultural growth, the result is water shortages that are already reaching serious proportions in many parts of the world...The worldwide demand for portable water is steadily growing due to population, industrial and agricultural growth, the result is water shortages that are already reaching serious proportions in many parts of the world. This is particularly true in Ghana where there is an increasing reliance on bottled water due to shortage of safe, fresh drinking water. Nuclear and conventional co-production of electricity and portable water has been identified as key solution to the perennial water shortages in coastal towns in Ghana. A reliable desalination cost date catering for site-specific condition in Ghana is required for policy makers, planners, consultants, process engineers, plant suppliers and researchers. This present paper is aims comparing the cost of co-production of power and portable water using reverse osmosis (RO) plant coupled with both nuclear and fossil power plant operating under different cycles using the desalination economic evaluation programme (DEEP4.0) developed by the international atomic energy agency (IAEA). The study concentrates on conditions of seawater in Accra, Ghana. Results show that co-production nuclear power plant operating on steam cycle can be the most economic among a number of power-water production options.展开更多
Industrial applications that require steam for their end-use generally utilize steam boilers that are typically oversized,citing operations flexibility.Similarly,gas turbine-based power plants corroborate a gas turbin...Industrial applications that require steam for their end-use generally utilize steam boilers that are typically oversized,citing operations flexibility.Similarly,gas turbine-based power plants corroborate a gas turbine system that may eventually relieve the usable exhaust into the atmosphere.This study explores the economic and technical feasibility of a topping cycle combined heat and power(CHP)system.It does so by leveraging a partially loaded boiler or gas turbine by increasing its unused load to generate steam and heat for subsequent usage.To this end,a decision support tool(COGENTEC)was developed,which emulates a given facility’s boiler or gas-turbine system,and its operational parameters with the application of steam turbines.The tool provides necessary insights into the most appropriate parameters that enable a CHP system to be technically and economically advantageous.Based on input variables such as boiler-rated capacity,steam pressure,steam temperature,and existing boiler load,among others,COGENTEC designs a topping cycle CHP system to inform a user whether this system is feasible in their facility or not.If applicable,the tool assists the user to realize the point of break-even(fuel cost incurred and cost savings)at the desired steam flow rate.It also conducts sensitivity analyses between energy usage,cost savings,and payback on the investment of the operating parameters to understand the relationship between relevant variables.By utilizing parameters from a pulp and paper manufacturing facility,the research determines that the fuel cost,electricity cost,and steam flow rate are the most important parameters for the feasibility of the system with a desirable payback on the investment.展开更多
The demand for more efficient power generation is not only a prominent subject for environmental reasons but for economic reasons as well. Continuing growth in population contributes to more and more consumption of fr...The demand for more efficient power generation is not only a prominent subject for environmental reasons but for economic reasons as well. Continuing growth in population contributes to more and more consumption of fresh water, demanding less expensive desalination production, especially in the regions with little or no natural fresh water. Multigeneration desalination power plants may provide solutions to these issues through advanced and efficient designs that are capable of supplying fresh water and power to remote or arid regions of the world. This paper examines the flexibility and versatility of multigeneration systems to showcase the myriad of combinations that are available to accommodate any specific application. It also proposes a specific design for a multi-stage flash desalination system that is powered directly by the exhaust gases of a natural gas micro-turbine capable of producing around 1 MW of electrical power. The performance characteristics, the fresh water produced per kW and the overall plant efficiency, are numerically investigated and compared with previous designs that were analyzed on a larger scale. It is determined that the multigeneration system can produce 56,891 gallons of fresh water per day and an estimated 4.07 tons of salt per day and that a small scale multi-generation desalting systems is feasible.展开更多
The aim of this study is analyzed in detail for better understanding of energy and power of an aero-engine. In this regard, this study presents energy equations were applied to the turbofan engine components. The engi...The aim of this study is analyzed in detail for better understanding of energy and power of an aero-engine. In this regard, this study presents energy equations were applied to the turbofan engine components. The engine has a thrust range of 82 to 109 kN. It consists of fan, axial low pressure compressor (LPC), axial high pressure compressor (HPC), an annular combustion chamber, high-pressure turbine (HPT) and low pressure turbine (LPT). The results show that power of the engine flow approaches a maximum value to be 82.85 MW in the combustor outlet, while minimum power is observed at LPC inlet with the value of 1.37 MW. Furthermore, important parameters of the engine are also analyzed from reverse-engineering method. It is expected that results of this study will be beneficial of power, cogeneration and aero-propulsive generation systems in similar environment.展开更多
For a ring A, an extension ring B, a fixed right A-module M, the endomorphism ring D formed by M, the endomorphism ring E formed by , and the endomorphism ring F formed by HomA (B,M), we present equivalences and duali...For a ring A, an extension ring B, a fixed right A-module M, the endomorphism ring D formed by M, the endomorphism ring E formed by , and the endomorphism ring F formed by HomA (B,M), we present equivalences and dualities between subcategories of B-modules which are finitely cogenerated injective as A-modules and E-modules and F-modules which are finitely generated projective as D-modules.展开更多
Combined heat and power (CHP) plants (co-generation plants) using biomass as fuel, can be an interesting alternative to the predominant electrical heating in Canada. The biomass-fueled boiler provides heat for the ste...Combined heat and power (CHP) plants (co-generation plants) using biomass as fuel, can be an interesting alternative to the predominant electrical heating in Canada. The biomass-fueled boiler provides heat for the steam cycle which in turn generates electricity from the generator connected to the steam turbine. In addition, heat from the process is supplied to a district heating system. The heat can be extracted from the system in a number of ways, by using a back-pressure steam turbine, an extraction steam turbine or by extracting heat directly from the boiler. The objective of the paper is the design, modeling and simulation of such CHP plant. The plant should be sized for providing electric-ity and heat for the Anticosti Island community in Quebec.展开更多
The most economical and rational means of heat supply for city inhabitants are district heating systems. Heat generated in power plants and large heat sources is cheaper than heat from individual sources. The reason f...The most economical and rational means of heat supply for city inhabitants are district heating systems. Heat generated in power plants and large heat sources is cheaper than heat from individual sources. The reason for that is the amount of the generated heat and the used fuel (coal for most heat sources). District heating, a very important energy sub-sector for the Polish economy, provides heat supply to centralised heating systems, which, on average, satisfy 72% of the demand for heat in Polish cities. Therefore, several million Polish citizens use heat from district heating systems that produce heat in professional, industrial and municipal power plants. In Europe, over 100 million citizens use district heating systems. The present situation of the Polish district heating sector is a result of Poland's transformation that took place at the beginning of the 1990s. The reform put the obligation of heat supply on the local authorities, on the municipality, instead of the state. Along with the transformation, district heating also made huge technological and technical progress. Increasing expectations of recipients posed new challenges for the branch, however.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.11301240,11371187 and 11101197)the Young Scholars Science Foundation of Lanzhou Jiaotong University(Grant No.2012020)
文摘In this paper,we give a relationship between projective generators(resp.,injective cogenerators) in the category of R-modules and the counterparts in the category of complexes of R-modules.As a consequence,we get that complexes of W^--Gorenstein modules are actually W-Gorenstein complexes whenever W is a subcategory of R-modules satisfying W⊥W,where W^- is the subcategory of exact complexes with all cycles in W.We also study when all cycles of a W-Gorenstein complexes are W^--Gorenstein modules.
基金Supported by NSFC(Grant Nos.12171230,12271249)NSF of Jiangsu Province of China(Grant No.BK20211358)。
文摘It is well known that the concept of cotilting modules generalizes injective cogenerators and in turn,the concept of cosilting modules generalizes cotilting modules.In this paper,we further investigate the close connections among injective cogenerators,cotilting modules and cosilting modules from the viewpoint of morphism categories.Some applications are also given.
基金Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization(South China University of Technology)(2013A061401005)Research Fund(JMSWFW-2110-044)from Zhongshan Jiaming Electric Power Co.,Ltd.
文摘The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units,the hydraulic and thermodynamic characteristics of the heating network,and the energy loads.Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case,the interaction effect among the source-side prime movers,the heating networks,and the terminal demand thermal parameters were investigated based on the designed values,the plant testing data,and the validated simulation.The operating maps of the gas-steam combined cycle cogeneration units were obtained using THERMOFLEX,and the minimum source-side steam parameters of the steam network were solved using an inverse solution procedure based on the hydro-thermodynamic coupling model.The cogeneration operating maps indicate that the available operating domain considerably narrows with the rise of the extraction steam pressure and flow rate.The heating network inverse solution demonstrates that the source-side steam pressure and temperature can be optimized from the originally designed 1.11 MPa and 238.8°C to 1.074 MPa and 191.15°C,respectively.Under the operating strategy with the minimum source-side heating parameters,the power peak regulation depth remarkably increases to 18.30%whereas the comprehensive thermal efficiency decreases.The operation under the minimum source-side heating steam parameters can be superior to the originally designed one in the economy at a higher price of the heating steam.At a fuel price of$0.38/kg and the power to fuel price of 0.18 kg/(kW·h),the critical price ratio of heating steam to fuel is 119.1 kg/t.The influence of the power-fuel price ratio on the economic deviation appears relatively weak.
基金Project (No. 2002AA517020) supported by the Hi-Tech Researchand Development Program (863) of China
文摘The electrical and thermal performances of a simulated 60 kW Proton Exchange Membrane Fuel Cell (PEMFC) cogeneration system are first analyzed and then strategies to make the system operation stable and efficient are developed. The system configuration is described first, and then the power response and coordination strategy are presented on the basis of the electricity model. Two different thermal models are used to estimate the thermal performance of this cogeneration system, and heat management is discussed. Based on these system designs, the 60 kW PEMFC cogeneration system is analyzed in detail. The analysis results will be useful for further study and development of the system.
基金Supported by the National Natural Science Foundation of China(21076202)
文摘In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the cogeneration system consisted of a coal-based thermal power plant (TPP), a multi-stage flash desalination (MSF) module and reverse osmosis desalination (RO) module. For different demands of water, heat and power production, the corresponding optimal production structure was different. After reasonable simplification, the process model ot each unit was built. The economical model, including the unit investment, and operation and maintenance cost, was presented. By solving this non-linear programming (NLP) model, whose objective is to minimize the annual cost, an optimal cogeneration system can be obtained. Compared to separate production systems, the optimal system can reduce 16.1%-21.7% of the total annual cost. showing this design method was effective.
基金supported by research funds from Shanghai’s 2020 Annual Science and Technology Innovation Action Plan:Social development and Science&Technology Project(No.20dz1205302).
文摘Recovery of waste heat from boiler flue gas is an effective way to improve energy utilization efficiency.Taking a heating station heating project as an example,the existing heating system of this heating station was analyzed for its underutilized flue gas waste heat and low energy utilization rate.Rankine cycle is an effective waste heat recovery method,and a steam boiler organic Rankine cycle(ORC)cogeneration waste heat utilization method is proposed.The system model simulation is constructed and verified.First,a thermodynamic model was constructed in MATLAB and five suitable work gases were selected to analyze the effects of evaporation temperature and condensation temperature on the network and thermal efficiency of the waste heat cycle power system.Secondly,the ORC model is invoked in TRNSYS to construct the improved cogeneration system,and the rationality of the remaining heat utilization methods is determined by calculating and analyzing the thermal performance,economy,and environmental protection of the improved system.The simulation results show that the system can generate about 552,000 kWh of electricity per year,and improving the energy utilization rate from 0.72 to 0.78.
文摘Currently, fossil fuels such as oil, coal and natural gas represent the prime energy sources in the world. However, it is anticipated that these sources of energy will deplete within the next 40 - 50 years. Moreover, the expected environmental damages such as the global warming, acid rain and urban smog due to the production of emissions from these sources have tempted the world to try to reduce carbon emissions by 80% and shift towards utilizing a variety of renewable energy resources (RES) which are less environmentally harmful such as solar, wind, biomass, etc. in a sustainable way. Biomass is one of the earliest sources of energy with very specific properties. In this review, we present the different cogeneration systems to provide electrical power and heating for isolated communities. It has been found that the steam turbine process is the most relevant for biomass cogeneration plants for its high efficiency and technological maturity. The future of CHP plants depends upon the development of the markets for fossil fuels and on policy decisions regarding the biomass market.
文摘This work aims to assess the effect of energy conversion (Thermal oil, Natural gas and cogeneration system) on atmospheric emission and energy consumption in ceramic tile product sector in Tunisia. Two tile manufactures were selected. The first plant has two production lines: The first line (FF1) operates with thermal oil with a lower calorific value (LHV) of 9811 cal/g and the second line (FG1) operating with natural gas has a lower calorific value (HHV) of 10,520 cal/g, ensuring a daily output of 300 tons each one. The second manufacture (SC2) operates with natural gas with the same LHV value. The thermal oil energy balance showed a specific consumption of 0.0481 toe/ton tile product for the FF1 manufacture line, 0.0198 toe/ton of tile product for the FG1 manufacture line and 0.0143 toe/ton of tile product for the SC2 manufactory. The electrical energy consumption was 0.0121 toe/ton of tile product for the FF1 line, 0.0108 toe/ton of tile product for the FG1 line and a production of energy (exergy) of 0.014 toe/ton for the SC2 production line. The specific consumption was split into 40% for dryer and 60% for tunnel kilns. The conversion allow to record a dryer reduction rate of 80% for nitrogen oxides (NOx), 56% for sulfur oxides (SOx), 56% for fluorinated compounds, 52% for chlorinated compounds and 52% for volatile organic compound. Whereas, the kiln reduction rate was 36% for nitrogen oxides, 51% for sulfur oxides, 36% for chlorinated compounds and 55% for fluorinated and 50% for volatile organic compounds (VCOs). Compared to natural gas line, the use of cogeneration system in kiln process shows a decrease of 67% for NOx emissions, 80% for SOx emissions, 89% for fluorinated compounds, 58% for chlorinated emissions and 64% for volatiles organic compounds. Compared to thermal oil, the use of cogeneration system reduces the thermal energy consumption by 70% and allowed to save 30% of electric energy by generate 20% of needed electric energy. The specific atmospheric gaseous emission level decrease from 2.066 g/kg of tile product for the thermal oil process to reach 0.43 g/kg of tile product for cogeneration process.
文摘In order for economically viable distributed generation systems for apartment buildings to spread, it is essential to develop an efficient and low-cost heat supply system. We have developed a new eogeneration system called the Neighboring Cogeneration system (NCG). The key concept of this system is to install a heat accumulator with a hot water supply and a room heating function at each household and to connect different households by a single loop of hot water pipe. As a result, time leveling of the heat supply and heat transferring among households becomes possible. Thus, the costs of the pipe and the heat source equipment decrease. Furthermore, because all of the heat accumulators store heat, the total heat storage capacity is large enough for cogeneration to generate exhaust heat according to the electricity demand and with a high operating rate. In this paper, we report the results of the NCG system for 7 lived-in households. The controlling system worked efficiently. All of the households were able to use hot water without any difficulties. Further, we report the results of the energy saving effect of the NCG system for 50 lived-in households by means of a simulation based on the experimental results for NEXT21.
文摘A steam power plant can work as a dual purpose plant for simultaneous production of steam and elec-trical power. In this paper we seek the optimum integration of a steam power plant as a source and a site utility sys-tem as a sink of steam and power. Estimation for the cogeneration potential prior to the design of a central utility system for site utility systems is vital to the targets for site fuel demand as well as heat and power production. In this regard, a new cogeneration targeting procedure is proposed for integration of a steam power plant and a site utility consisting of a process plant. The new methodology seeks the optimal integration based on a new cogenera-tion targeting scheme. In addition, a modified site utility grand composite curve(SUGCC) diagram is proposed and compared to the original SUGCC. A gas fired steam power plant and a process site utility is considered in a case study. The applicability of the developed procedure is tested against other design methods(STAR? and Thermoflex software) through a case study. The proposed method gives comparable results, and the targeting method is used for optimal integration of steam levels. Identifying optimal conditions of steam levels for integration is important in the design of utility systems, as the selection of steam levels in a steam power plant and site utility for integration greatly influences the potential for cogeneration and energy recovery. The integration of steam levels of the steam power plant and the site utility system in the case study demonstrates the usefulness of the method for reducing the overall energy consumption for the site.
文摘This paper presents a review of low molecular weight alkane-fed solid oxide fuel cells(SOFCs),which,unlikely the conventional use of SOFCs for only power production,are utilized to cogenerate produce useful chemicals at the same time.The cogeneration processes in SOFC have been classified according to the different types of fuel.C_(2)and C_(3)alkenes and synthesis gas are the main cogenerated chemicals together with electricity.The chemicals and energy cogeneration in a fuel cell reactor seems to be an effective alternative to conventional reactors for only chemicals production and conventional fuel cells for only power production.Although,the use of SOFCs for chemicals and energy cogeneration has proved successful in the industrial setting,the development of new catalysts aimed at obtaining the desired chemicals together with the production of a high amount of energy,and optimizing SOFC operation conditions is still a challenge to enhance system performance and make commercial applications workable.
基金Project(2011FJ1007-1) supported by the Funds of Key Science and Technology of Hunan Province, ChinaProject(YB2010B027)supported by the Funds for the Author of Provincial Excellent Doctoral Dissertation of Hunan Province, ChinaProject(KF200903)supported by the Opening Funds of Hunan Provincial Key Laboratory of Safe Mining Techniques of Coal Mines, China
文摘A thermodynamic model was developed to analyze the performance of cogeneration plant based on irreversible recuperative Brayton cycle. A parameter, dimensionless total useful energy rate (DTUER), was used as the criterion for performance optimization of cogeneration plant. The effects of cycle parameters, internal irreversibilities, and recuperator efficiency on maximum DTUER and on the efficiency at maximum DTUER were numerically investigated. The relation between DTUER and cogeneration efficiency was also analyzed. The results show that there exists an optimal compressor pressure ratio which maximizes the DTUER. It is also found that there exists an optimal power-to-heat ratio which results in a dual-maximum DTUER.
文摘The worldwide demand for portable water is steadily growing due to population, industrial and agricultural growth, the result is water shortages that are already reaching serious proportions in many parts of the world. This is particularly true in Ghana where there is an increasing reliance on bottled water due to shortage of safe, fresh drinking water. Nuclear and conventional co-production of electricity and portable water has been identified as key solution to the perennial water shortages in coastal towns in Ghana. A reliable desalination cost date catering for site-specific condition in Ghana is required for policy makers, planners, consultants, process engineers, plant suppliers and researchers. This present paper is aims comparing the cost of co-production of power and portable water using reverse osmosis (RO) plant coupled with both nuclear and fossil power plant operating under different cycles using the desalination economic evaluation programme (DEEP4.0) developed by the international atomic energy agency (IAEA). The study concentrates on conditions of seawater in Accra, Ghana. Results show that co-production nuclear power plant operating on steam cycle can be the most economic among a number of power-water production options.
基金funded in part by the IndustrialAssessmentCenter Project,supported by grants fromthe US Department of Energy and by theWest Virginia Development Office.
文摘Industrial applications that require steam for their end-use generally utilize steam boilers that are typically oversized,citing operations flexibility.Similarly,gas turbine-based power plants corroborate a gas turbine system that may eventually relieve the usable exhaust into the atmosphere.This study explores the economic and technical feasibility of a topping cycle combined heat and power(CHP)system.It does so by leveraging a partially loaded boiler or gas turbine by increasing its unused load to generate steam and heat for subsequent usage.To this end,a decision support tool(COGENTEC)was developed,which emulates a given facility’s boiler or gas-turbine system,and its operational parameters with the application of steam turbines.The tool provides necessary insights into the most appropriate parameters that enable a CHP system to be technically and economically advantageous.Based on input variables such as boiler-rated capacity,steam pressure,steam temperature,and existing boiler load,among others,COGENTEC designs a topping cycle CHP system to inform a user whether this system is feasible in their facility or not.If applicable,the tool assists the user to realize the point of break-even(fuel cost incurred and cost savings)at the desired steam flow rate.It also conducts sensitivity analyses between energy usage,cost savings,and payback on the investment of the operating parameters to understand the relationship between relevant variables.By utilizing parameters from a pulp and paper manufacturing facility,the research determines that the fuel cost,electricity cost,and steam flow rate are the most important parameters for the feasibility of the system with a desirable payback on the investment.
文摘The demand for more efficient power generation is not only a prominent subject for environmental reasons but for economic reasons as well. Continuing growth in population contributes to more and more consumption of fresh water, demanding less expensive desalination production, especially in the regions with little or no natural fresh water. Multigeneration desalination power plants may provide solutions to these issues through advanced and efficient designs that are capable of supplying fresh water and power to remote or arid regions of the world. This paper examines the flexibility and versatility of multigeneration systems to showcase the myriad of combinations that are available to accommodate any specific application. It also proposes a specific design for a multi-stage flash desalination system that is powered directly by the exhaust gases of a natural gas micro-turbine capable of producing around 1 MW of electrical power. The performance characteristics, the fresh water produced per kW and the overall plant efficiency, are numerically investigated and compared with previous designs that were analyzed on a larger scale. It is determined that the multigeneration system can produce 56,891 gallons of fresh water per day and an estimated 4.07 tons of salt per day and that a small scale multi-generation desalting systems is feasible.
文摘The aim of this study is analyzed in detail for better understanding of energy and power of an aero-engine. In this regard, this study presents energy equations were applied to the turbofan engine components. The engine has a thrust range of 82 to 109 kN. It consists of fan, axial low pressure compressor (LPC), axial high pressure compressor (HPC), an annular combustion chamber, high-pressure turbine (HPT) and low pressure turbine (LPT). The results show that power of the engine flow approaches a maximum value to be 82.85 MW in the combustor outlet, while minimum power is observed at LPC inlet with the value of 1.37 MW. Furthermore, important parameters of the engine are also analyzed from reverse-engineering method. It is expected that results of this study will be beneficial of power, cogeneration and aero-propulsive generation systems in similar environment.
文摘For a ring A, an extension ring B, a fixed right A-module M, the endomorphism ring D formed by M, the endomorphism ring E formed by , and the endomorphism ring F formed by HomA (B,M), we present equivalences and dualities between subcategories of B-modules which are finitely cogenerated injective as A-modules and E-modules and F-modules which are finitely generated projective as D-modules.
文摘Combined heat and power (CHP) plants (co-generation plants) using biomass as fuel, can be an interesting alternative to the predominant electrical heating in Canada. The biomass-fueled boiler provides heat for the steam cycle which in turn generates electricity from the generator connected to the steam turbine. In addition, heat from the process is supplied to a district heating system. The heat can be extracted from the system in a number of ways, by using a back-pressure steam turbine, an extraction steam turbine or by extracting heat directly from the boiler. The objective of the paper is the design, modeling and simulation of such CHP plant. The plant should be sized for providing electric-ity and heat for the Anticosti Island community in Quebec.
文摘The most economical and rational means of heat supply for city inhabitants are district heating systems. Heat generated in power plants and large heat sources is cheaper than heat from individual sources. The reason for that is the amount of the generated heat and the used fuel (coal for most heat sources). District heating, a very important energy sub-sector for the Polish economy, provides heat supply to centralised heating systems, which, on average, satisfy 72% of the demand for heat in Polish cities. Therefore, several million Polish citizens use heat from district heating systems that produce heat in professional, industrial and municipal power plants. In Europe, over 100 million citizens use district heating systems. The present situation of the Polish district heating sector is a result of Poland's transformation that took place at the beginning of the 1990s. The reform put the obligation of heat supply on the local authorities, on the municipality, instead of the state. Along with the transformation, district heating also made huge technological and technical progress. Increasing expectations of recipients posed new challenges for the branch, however.