In the multi-target localization based on Compressed Sensing(CS),the sensing matrix's characteristic is significant to the localization accuracy.To improve the CS-based localization approach's performance,we p...In the multi-target localization based on Compressed Sensing(CS),the sensing matrix's characteristic is significant to the localization accuracy.To improve the CS-based localization approach's performance,we propose a sensing matrix optimization method in this paper,which considers the optimization under the guidance of the t%-averaged mutual coherence.First,we study sensing matrix optimization and model it as a constrained combinatorial optimization problem.Second,the t%-averaged mutual coherence is adopted as the optimality index to evaluate the quality of different sensing matrixes,where the threshold t is derived through the K-means clustering.With the settled optimality index,a hybrid metaheuristic algorithm named Genetic Algorithm-Tabu Local Search(GA-TLS)is proposed to address the combinatorial optimization problem to obtain the final optimized sensing matrix.Extensive simulation results reveal that the CS localization approaches using different recovery algorithms benefit from the proposed sensing matrix optimization method,with much less localization error compared to the traditional sensing matrix optimization methods.展开更多
为改善压缩感知雷达(Compressive Sensing Radar,CSR)在干扰噪声背景下目标检测及距离-多普勒参数的估计性能,该文提出一种感知矩阵平均相干系数(Averaged Coherence of the Sensing Matrix,ACSM)与信干噪比(Signal to Interference and...为改善压缩感知雷达(Compressive Sensing Radar,CSR)在干扰噪声背景下目标检测及距离-多普勒参数的估计性能,该文提出一种感知矩阵平均相干系数(Averaged Coherence of the Sensing Matrix,ACSM)与信干噪比(Signal to Interference and Noise Ratio,SINR)联合优化的波形设计方法.文中首先建立了CSR距离-多普勒二维参数感知模型,推导了波形联合优化设计的目标函数,其次以多相编码信号作为优化码型并采用模拟退火(Srmulated Annealing,SA)算法对目标函数进行优化求解.与传统CSR波形相比,优化设计的波形提高了CSR在低信干噪比条件下的成功检测概率,同时有效降低了目标距离-多普勒参数估计误差,由此改善了CSR在干扰噪声背景下的距离-多普勒成像质量.计算机仿真验证了该方法的有效性.展开更多
文摘In the multi-target localization based on Compressed Sensing(CS),the sensing matrix's characteristic is significant to the localization accuracy.To improve the CS-based localization approach's performance,we propose a sensing matrix optimization method in this paper,which considers the optimization under the guidance of the t%-averaged mutual coherence.First,we study sensing matrix optimization and model it as a constrained combinatorial optimization problem.Second,the t%-averaged mutual coherence is adopted as the optimality index to evaluate the quality of different sensing matrixes,where the threshold t is derived through the K-means clustering.With the settled optimality index,a hybrid metaheuristic algorithm named Genetic Algorithm-Tabu Local Search(GA-TLS)is proposed to address the combinatorial optimization problem to obtain the final optimized sensing matrix.Extensive simulation results reveal that the CS localization approaches using different recovery algorithms benefit from the proposed sensing matrix optimization method,with much less localization error compared to the traditional sensing matrix optimization methods.
文摘为改善压缩感知雷达(Compressive Sensing Radar,CSR)在干扰噪声背景下目标检测及距离-多普勒参数的估计性能,该文提出一种感知矩阵平均相干系数(Averaged Coherence of the Sensing Matrix,ACSM)与信干噪比(Signal to Interference and Noise Ratio,SINR)联合优化的波形设计方法.文中首先建立了CSR距离-多普勒二维参数感知模型,推导了波形联合优化设计的目标函数,其次以多相编码信号作为优化码型并采用模拟退火(Srmulated Annealing,SA)算法对目标函数进行优化求解.与传统CSR波形相比,优化设计的波形提高了CSR在低信干噪比条件下的成功检测概率,同时有效降低了目标距离-多普勒参数估计误差,由此改善了CSR在干扰噪声背景下的距离-多普勒成像质量.计算机仿真验证了该方法的有效性.